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Abstract
This paper deals with the numerical resolution of a linear wave system using the Godunov scheme with a

centered discretization of the pressure gradient. The interest in such schemes is motivated by the low Mach
number accuracy problem. We have shown that for both steady and unsteady flows, an oscillatory mode appears
in the numerical solution. This can be explained by the loss of the Total Variation Diminishing property on the
characteristic variables. Moreover, we have illustrated numerically that the long time numerical solution does not
converge to the expected steady state. In addition, the existence of the oscillatory mode in the numerical solution
jeopardizes the mesh convergence rate of the scheme.

Introduction
It is well-known that explicit Godunov-type schemes for solving the Euler equations fail, in general, to be accurate
at low Mach number [7], in particular, on Cartesian grids. The most common argument to explain this failure is
based on an asymptotic analysis of both the continuous equations and the numerical scheme. Initially, the low
Mach number accuracy problem was explained via a single-scale asymptotic analysis that takes into account only
the convective waves [7]. Afterwards, both acoustic and convective waves were taken into account by performing a
two-scale asymptotic analysis [10, 8, 2], which led to a coupling of the zeroth-order momentum and the first-order
pressure through a wave system.

A natural question that arises when considering a discretization of a Cauchy-problem for a wave system which
has a long-time limit, is whether a discretization of this system also has a long-time limit and whether this long-time
limit is consistent with that of the continuous system [9]. In [8], a link was elaborated between the low Mach number
accuracy problem and the long-time consistency problem of a discrete wave system: a Godunov-type scheme is low
Mach number accurate if and only if the discrete linear wave system derived from the two-scale asymptotic analysis
is long-time limit consistent.

To ensure accuracy at low Mach number for the numerical resolution of the Euler equations on Cartesian grids,
several fixes have been proposed. In this paper, we are interested in fixes of type [3, 11]. These schemes are
also known to be two-scale asymptotic consistent with a discretization of the wave system, in which a centered
discretization of the pressure gradient is used [2]. These schemes will be called pressure-centered type schemes. Since
these fixes may introduce other issues, for instance, the appearance of an oscillatory mode (or checkerboard mode)
in the numerical solution, it is interesting to address the study of the long-time limit of the wave system. Consider
the linear wave system

#

Bτ pp`
1
pρ∇x ¨ pu “ 0,

Bτ pu` pκ∇xpp “ 0,
(1)

solved on a domain Ω, associated with the initial condition pppτ “ 0,xq “ pp0pxq and pupτ “ 0,xqT “ pu0pxqT , where pp
denotes the pressure, pu denotes the velocity field, pκ, pρ ą 0 and pc “

a

pκ{pρ is the sound velocity. Let Th “
Ť

i Ωi

denotes a mesh of the domain Ω, on which a cell-centered finite volume discretization is applied. We denote by |Ωi|
the volume of the cell Ωi, by |Γij | the size of the side Γij linking the cell Ωi to the cell Ωj , by nij the unit normal
outgoing from the cell Ωi and going to the cell Ωj , by Vintpiq the set of the cells sharing a face with the cell Ωi, by
Vbpiq the set of the boundary sides of Ωi. We consider the numerical scheme

|Ωi|

˜

pUn`1
i ´ pUn

i

δτ

¸
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jPVintpiq

|Γij |F
θ
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pUn
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pUn
j ,nij

¯

`
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pUn
i ,

pUb,nij

¯

“ 0,

(2)
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where δτ denotes the time-step, pUn
i “ ppp

n
i , pu

n
i q
T is the vector of the discretized variables, pUb “ pppb, pubq

T is a state
weakly imposed on the boundary of the domain Ω, Fθ

´

pUn
i ,

pUn
j ,nij

¯

is the numerical flux inside the domain and is
given by

Fθ
´

pUn
i ,

pUn
j ,nij

¯

“

¨

˚

˝

1

pρ

puni ` punj
2

¨ nij `
pc

2

`

ppni ´ ppnj
˘

pκ
ppni ` ppnj

2
nij ` θ

pc

2

``

puni ´ punj
˘

¨ nij
˘

nij

˛

‹

‚

, (3)

and Fb
´

pUn
i ,

pUb,nij

¯

is the numerical flux on the boundary of Ω. The parameter θ P t0, 1u is introduced in order
to consider both the Godunov (θ “ 1) and the pressure-centered (θ “ 0) schemes. Note that (2) with (3) is L2

stable for θ “ 1 with CFL 1 and for θ “ 0 with CFL 0.5, see [3]. In section 1, periodic boundary conditions will be
considered, so Vbpiq “ ∅ for all i. In section 2, wall and Steger-Warming boundary conditions will be considered. We
denote by Vwallpiq{VSWpiq the set of the boundary sides of Ωi on which wall/Steger-Warming boundary conditions
are imposed: Vbpiq “ Vwallpiq Y VSWpiq. The flux Fb

´

pUi, pUb,nij

¯

is then given by

Fb
´

pUi, pUb,nij

¯

“

$

’

&

’

%

ˆ

0
pκppinij ` pc ppui ¨ nijqnij

˙

, if j P Vwallpiq,

Fθ“1
´

pUi, pUb,nij

¯

, if j P VSWpiq.
(4)

In section 1, we show that the Total Variation Diminishing (TVD) property is lost with the pressure-centered scheme.
In section 2, a problem in which the continuous wave system has a long-time limit is addressed. We show that the
long-time limit of the numerical solution contains an oscillatory mode, which we are able to isolate. Lastly, we show
that the long-time limit consistency is lost.

1 Loss of the TVD property
In this section, we are interested in the one-dimensional first-order wave system (1), solved on an infinite domain
Ω, using a finite volume scheme of the form (2)-(3). Let us recall that the TV norm of v “ pviqiPN is given by

TVpvq “
ř

j |vj`1 ´ vj |. In what follows, the characteristic variables
pp

2
´

pu

2pρpc
and

pp

2
`

pu

2pρpc
are denoted by pC´ and

pC`, respectively. The following proposition is presented.

Proposition 1. (Total Variation Diminishing property)

• The explicit Godunov scheme (2)-(3) with θ “ 1 is TVD on the characteristic variables pC´ and pC` under the
CFL condition 0 ď pcδτ{δx ď 1, i.e

TV
´

pCn`1
¯

¯

ď TV
´

pCn¯
¯

, @ pCn¯.

• The explicit pressure-centered scheme (2)-(3) with θ “ 0 is not TVD, i.e, for all δτ P s0, δx{p2pcqr , there exists
an initial condition

`

pp0, pu0
˘

for which

TV
´

pC1
¯

¯

ą TV
´

pC0
¯

¯

.

Proof. Regarding the conservation of the TVD property for the explicit Godunov scheme, it follows immediately
since the Godunov scheme written in terms of the characteristic variables is an upwind scheme. We refer to [4], for a
detailed proof.

Regarding the loss of the TVD property for the explicit pressure-centered scheme, it is obtained by considering
the following initial condition: pp0{2 “ pu0{p2pρpcq where pu0 will be taken such that it has a discontinuity at some point.
For example, we take the discrete initial condition defined by pu0j “ ´1 for j ą k and pu0j “ 1 for j ď k. We thus
obtain

TV
´

pC1
´

¯

“
pcδt

2δx

ÿ

j

ˇ

ˇ

ˇ

ˇ

ˇ

pu0j`2 ´ 3pu0j`1 ` 3pu0j ´ pu0j´1

2pρpc

ˇ

ˇ

ˇ

ˇ

ˇ

“
δt

pρδx

ˇ

ˇ

ˇ
pu0k ´ pu0k`1

ˇ

ˇ

ˇ

“
2δt

pρδx
ą 0 “ TV

´

pC0
´

¯

,

which ends the proof.
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In order to numerically illustrate the loss of the TVD property we consider the one dimensional Riemann test
case for unsteady flows, associated with the first-order wave system (1). The initial condition considered for the
selected test case is the following

pp0L “ pu0L “ 1, pp0R “ pu0R “ ´1, (5)

with final time equal to 0.1, pc “ pρ “ 1 and a CFL number equal to 0.45.
With the chosen initial condition, we remark that the characteristic variable pC´ is initialized as zero. In Figure 1,

we observe that with the Godunov scheme, the uniformity of pC´ is preserved over time since the Godunov scheme is
TVD on the characteristic variables. However, with the pressure-centered scheme, the uniformity of this characteristic
variable is not preserved. Moreover, oscillations appear on the characteristic variables, as well as on the pressure and
velocity. Note that the same phenomenon is observed when considering an initial uniform characteristic variable
pC`. In Figure 2, the plot of the TV norms is presented. It highlights that the TV norms of the two characteristic
variables are preserved for the Godunov scheme but increase for the pressure-centered scheme. Similar results were
obtained by considering an implicit time integration for both the Godunov and the pressure-centered schemes, but
these results are not presented in this paper.
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Figure 1: One-dimensional Riemann problem: characteristic variables at t “ 0.1.
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Figure 2: One-dimensional Riemann problem: TV norm of the characteristic variables as a function of time
iterations.
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2 Loss of mesh convergence of the numerical solution in the long time
limit

In this section, we are interested in the linear wave system (1), solved on a bounded domain Ω, with wall and
Steger-Warming boundary conditions. In this framework, the long-time limit of the solution of both the continuous
wave system (1) and the numerical schemes (2)-(3)-(4) with θ P t0, 1u exists (see [9]). This limit can be identified
thanks to a Hodge-Helmholtz Decomposition (HHD). Indeed, at the continuous level, by considering a vector field
pu P L2 pΩq defined on a bounded domain Ω with a smooth boundary BΩ, pu can be uniquely decomposed into a
sum of an irrotational component (which is a gradient of a scalar potential function), and a divergence free one
(which is a curl of a vector potential function). The proof for this decomposition in the case where pu satisfies
wall/Steger-Warming boundary conditions can be found in [8] and is based on solving a Poisson equation with
Neumann boundary conditions. At the discrete level, a similar exact decomposition is obtained on triangular grids
in [8], see also [1, 5, 4, 6] for other boundary conditions. By considering a piecewise constant vector field puh, its
discrete HHD is given by puh “ Pψrpuhs ` Pϕrpuhs, where Pψrpuhs is the curl of a continuous P1 potential vector,
Pϕrpuhs is the gradient of a Crouzeix-Raviart scalar potential and Pψrpuhs ¨ n “ pub ¨ n on the boundary (see [8,
Proposition 5], for details about the proof). Back to the identification of the long-time limit, at the continuous
level, it is identified as the uniform pressure ppb and the divergence free component of the HHD of the initial velocity
pu0. On triangular meshes, with the Godunov scheme ((2)-(3)-(4) with θ “ 1), the long-time limit of pph and puh is
consistent with the one obtained at the continuous level: it corresponds to ppb and Pψrpu0

hs. Since the long-time limit
of the solution of the pressure-centered scheme ((2) with θ “ 0) has not been identified yet, our objective in this
section is to characterize it numerically. Unfortunately, the Cartesian grid case cannot be addressed due to the non
existence of a discrete HHD on such a grid (at least adapted to such boundary conditions).

The test case selected for this study is the scattering of a first-order wave system by a cylinder. The computational
domain is an annulus rr0, r1s ˆ r0, 2πr, where r0 “ 0.5 and r1 “ 5.5. The boundary conditions considered for this
test are: a wall boundary condition on the internal circle of radius r0 and a Steger-Warming boundary condition on
the external circle of radius r1 with ppb “ 0 and pub “ p1, 0q

T . The initial condition is set to pp0 “ 0 and pu0 “ p0, 0q
T .

It is worth emphasizing that the exact steady solution is known [9] and is given by ppexact pr, θq “ 0 and

puexact pr, θq “
r21

r21 ´ r
2
0

ˆ

1´
r20
r2

cosp2θq,´
r20
r2

sinp2θq

˙T

.

The mesh type considered is an unstructured triangular mesh generated using gmsh, with a characteristic length
of 2πr0{4N on the internal circle and 2πr1{4N on the external circle. The mesh selected for the next figures is
produced with N “ 40 and contains 1332 triangular cells. The test is run with a CFL number equal to 0.45 and
pρ “ pκ “ 1.

In what follows, numerical results presented correspond to a solution for which the pressure and velocity residuals
have converged with a numerical precision of 10´14.

In Figure 3, the iso-contours of the L2 norm of the long-time limit of the exact and numerical velocity fields
are plotted. We observe that the numerical velocity field computed using the Godunov scheme is close to the
exact velocity field, while the one obtained with the pressure-centered scheme is also close but polluted by spurious
oscillations. Using the long-time consistency result proved in [8, 9] and recalled above, the long-time limit of the
numerical velocity field pu8h computed using the Godunov scheme is Pψrpu0

hs, the divergence free component of the
discrete HHD of the initial velocity1

pu0
h. If pu

8
h is the long-time limit of the numerical velocity field, we define

pu8,Spurious
h “ pu8h ´ Pψrpu0

hs. (6)

The difference (6) is plotted in Figure 4 for the Godunov and the pressure-centered schemes. With the Godunov
scheme, the difference is zero, as expected, while with the pressure-centered scheme, (6) is a spurious oscillatory mode
and its scale is of order 10´1, which is not negligible compared to the magnitude of the velocity field on the boundary
which is of magnitude 1. In order to study the long-time consistency of the scheme, a grid convergence study
is performed. To do so, unstructured triangular meshes obtained with N P t12, 20, 40, 80, 160, 320u containing
96, 332, 1332, 5154, 20546, 83810 cells respectively, are considered. In Figure 5, the L2 norm of the error between
the exact solution and the long-time numerical solution computed using the Godunov and the pressure-centered
schemes is plotted. We observe that with both schemes, the long-time limit of the pressure matches a uniform pressure,
which is consistent with the long-time limit of the continuous pressure, as explained in [9]. However, regarding
the long-time velocity field, the order of convergence is 1 with the Godunov scheme, while the pressure-centered
scheme does not converge. This provides numerical evidence that the presence of the spurious mode jeopardizes the
long-time limit consistency for the velocity.

1
pu0
h is equal to 0 for this test case (note that Pψrpu0

hs is not equal to 0 due to non homogeneous boundary conditions)
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Figure 3: Numerical velocity field computed using the Godunov and the pressure-centered schemes: Exact (left),
Godunov (middle), Pressure-centered (right).

Figure 4: Difference (6) computed using the Godunov and the pressure-centered schemes: Godunov (left), pressure-
centered (right).
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Figure 5: L2 norm of the error between the exact solution and the long-time numerical solution computed using the
Godunov and the pressure-centered schemes as a function of the mesh step.

Conclusion
In this paper, the study of the numerical resolution of a first-order wave system using the pressure-centered scheme
and explicit time integration is addressed. We have shown that, with this type of scheme,

• the Total Variation Diminishing property is lost.

• Oscillations appear in the unsteady numerical solution.

• The long-time numerical solution contains a spurious mode in the velocity field, which is an oscillatory mode.

• The mesh convergence is compromised due to the existence of this spurious mode.

Further study needs to be conducted for the pressure-centered scheme with implicit time integration. Moreover,
the study was done only for triangular cell geometries, thus it needs to be extended to the quadrangular case.
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