Generalized Glauber dynamics for inference in biology - Archive ouverte HAL
Article Dans Une Revue Physical Review X Année : 2023

Generalized Glauber dynamics for inference in biology

Résumé

Large interacting systems in biology often exhibit emergent dynamics, such as coexistence of multiple time scales, manifested by fat tails in the distribution of waiting times. While existing tools in statistical inference, such as maximum entropy models, reproduce the empirical steady state distributions, it remains challenging to learn dynamical models. We present a novel inference method, called generalized Glauber dynamics. Constructed through a non-Markovian fluctuation dissipation theorem, generalized Glauber dynamics tunes the dynamics of an interacting system, while keeping the steady state distribution fixed. We motivate the need for the method on real data from Eco-HAB, an automated habitat for testing behavior in groups of mice under semi-naturalistic conditions, and present it on simple Ising spin systems. We show its applicability for experimental data, by inferring dynamical models of social interactions in a group of mice that reproduce both its collective behavior and the long tails observed in individual dynamics.
Fichier principal
Vignette du fichier
PhysRevX.13.041053.pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04252223 , version 1 (15-11-2022)
hal-04252223 , version 2 (03-09-2024)

Licence

Identifiants

Citer

Xiaowen Chen, Maciej Winiarski, Alicja Puscian, Ewelina Knapska, Aleksandra M. Walczak, et al.. Generalized Glauber dynamics for inference in biology. Physical Review X, 2023, 13 (4), pp.041053. ⟨10.1103/PhysRevX.13.041053⟩. ⟨hal-04252223v2⟩
60 Consultations
4 Téléchargements

Altmetric

Partager

More