Generalized Glauber dynamics for inference in biology - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Generalized Glauber dynamics for inference in biology

Xiaowen Chen
  • Fonction : Auteur
Maciej Winiarski
  • Fonction : Auteur
Alicja Puscian
  • Fonction : Auteur
Ewelina Knapska
  • Fonction : Auteur
Aleksandra M. Walczak
  • Fonction : Auteur
Thierry Mora

Résumé

Large interacting systems in biology often exhibit emergent dynamics, such as coexistence of multiple time scales, manifested by fat tails in the distribution of waiting times. While existing tools in statistical inference, such as maximum entropy models, reproduce the empirical steady state distributions, it remains challenging to learn dynamical models. We present a novel inference method, called generalized Glauber dynamics. Constructed through a non-Markovian fluctuation dissipation theorem, generalized Glauber dynamics tunes the dynamics of an interacting system, while keeping the steady state distribution fixed. We motivate the need for the method on real data from Eco-HAB, an automated habitat for testing behavior in groups of mice under semi-naturalistic conditions, and present it on simple Ising spin systems. We show its applicability for experimental data, by inferring dynamical models of social interactions in a group of mice that reproduce both its collective behavior and the long tails observed in individual dynamics.

Dates et versions

hal-04252223 , version 1 (15-11-2022)
hal-04252223 , version 2 (03-09-2024)

Identifiants

Citer

Xiaowen Chen, Maciej Winiarski, Alicja Puscian, Ewelina Knapska, Aleksandra M. Walczak, et al.. Generalized Glauber dynamics for inference in biology. 2022. ⟨hal-04252223v1⟩
63 Consultations
4 Téléchargements

Altmetric

Partager

More