Carbonatation of [ethylene–glycidyl methacrylate]-based copolymers with carbon dioxide as a reagent: from batch to solvent-free reactive extrusion - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Green Chemistry Année : 2023

Carbonatation of [ethylene–glycidyl methacrylate]-based copolymers with carbon dioxide as a reagent: from batch to solvent-free reactive extrusion

Bruno Guerdener
Virgile Ayzac
  • Fonction : Auteur
Sébastien Norsic
  • Fonction : Auteur
Paul Besognet
  • Fonction : Auteur
Véronique Bounor-Legaré
Vincent Monteil
Jean Raynaud
Yvan Chalamet

Résumé

The carbonatation of semi-crystalline [ethylene-glycidyl methacrylate]-based polymers (Lotader® grades) was achieved using carbon dioxide as a reagent and quaternary ammonium salts as organocatalysts to transform the polymers' epoxide pendant groups into cyclic carbonate moieties. A batch reactor allowed us to assess the kinetics, dependence on a catalyst and overall potential of this carbonatation. The influence of the ammonium salt composition (anion/cation) was studied in toluene at 110 °C to circumvent the high melting temperatures of these ethylene unit-rich copolymers and obtain a homogeneous medium. The amount of catalyst, CO 2 pressure and temperature were also optimized (TBAB, 5 mol% vs. epoxy content, 4.0 MPa, 110 °C) to allow for quantitative conversion of epoxides into cyclic carbonates. Subsequently, the reaction was transposed, for the 1 st time, to reactive extrusion under CO 2 using a dedicated co-rotating twin-screw extruder to allow for CO 2 containment within the polymer melt. This solvent-free reactive process is perfectly adapted to semi-crystalline and/or high-T g polymers. After optimization, a yield of up to 78% of cyclic carbonate, in addition to orthogonal epoxide, could be obtained with THAB (7.5 mol% vs. epoxy content, ∼30 g h −1 of cat.) at 150 °C with an industry-compliant polymer flow rate of 2 kg h −1. The respective reactivities of Lotader® grades were compared in batch and in an extruder, unveiling this trend towards carbonatation: AX8840 < AX8700 < AX8900. Sustainability and enhanced productivity of the carbonatation methodology developed herein relies on the use of CO 2 as a C1 reagent for the functionalization of epoxide-bearing polymers harnessing a continuous and clean reactive extrusion process allowing, in a single operation and a few minutes, the production of functional polymers at the kilogram scale under solvent-free conditions.

Domaines

Chimie
Fichier principal
Vignette du fichier
Green Chemistry 2023.pdf (1.28 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04251828 , version 1 (20-10-2023)

Identifiants

Citer

Bruno Guerdener, Virgile Ayzac, Sébastien Norsic, Paul Besognet, Véronique Bounor-Legaré, et al.. Carbonatation of [ethylene–glycidyl methacrylate]-based copolymers with carbon dioxide as a reagent: from batch to solvent-free reactive extrusion. Green Chemistry, 2023, 25 (16), pp.6355 - 6364. ⟨10.1039/d3gc01127e⟩. ⟨hal-04251828⟩
42 Consultations
11 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More