Choquet Capacity networks for random point process classification - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Choquet Capacity networks for random point process classification

Résumé

In this study, we revisit the Choquet capacity in the framework of convolutional neural networks, in (max, +)-algebra. By incorporating a discrete and learnable Choquet capacity model, we enhance the ability to represent the spatial arrangement and density variations in random point processes of convolutional neural networks. To validate the effectiveness of our approach, numerical experiments are conducted on synthetic datasets simulating diverse spatial point patterns of the Neyman-Scott process. When compared to classical convolutional neural networks, the proposed approach exhibits comparable or improved performances in terms of classification. Superior results are also observed in regression problems involving the Neyman-Scott parameter that monitors the point patterns spatial dispersion.
Fichier principal
Vignette du fichier
ccn_v2.pdf (664.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04250560 , version 1 (19-10-2023)
hal-04250560 , version 2 (09-01-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04250560 , version 2

Citer

Mehran Mohammadi, Santiago Velasco-Forero, François Willot, Mateus Sangalli, Thomas Walter, et al.. Choquet Capacity networks for random point process classification. 2024. ⟨hal-04250560v2⟩
258 Consultations
126 Téléchargements

Partager

More