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Choquet Capacity networks for random point
process classification and regression
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Mines Paris, PSL University, Center for Mathematical Morphology (CMM), France
Mines Paris, PSL University, Centre for Computational Biology (CBIO), France

Abstract. In this study, we revisit the Choquet capacity in the frame-
work of convolutional neural networks, in (max,+)-algebra. By incor-
porating a discrete and learnable Choquet capacity model, we enhance
the ability to represent the spatial arrangement and density variations
in random point processes of convolutional neural networks. To validate
the effectiveness of our approach, numerical experiments are conducted
on synthetic datasets simulating diverse spatial point patterns of the
Neyman-Scott process. When compared to classical convolutional neural
networks, the proposed approach exhibits comparable or improved per-
formances in terms of classification. Superior results are also observed in
regression problems involving the Neyman-Scott parameter that moni-
tors the point patterns spatial dispersion.

Keywords: Choquet capacity, Max-Plus Algebra, Deep Learning

1 Introduction

There is a significant demand for analytical techniques that can handle vast
amounts of image data in particular in engineering science [3]. For instance,
images from satellites, geological maps, microscope images of metals and ma-
terials, cellular tissue, and data from computerized tomography [7] all require
automatic and quantitative methods due to the sheer volume of data involved.
In some scenarios, the information observed is set of coordinates in 2D or 3D,
and the feature of interest depends on the spatial relationship between these
points. For example, individual brain activation maps [36,21], RNA Localization
patterns [11], positions on random sensor networks [22], realizations of random
processes [20], among others. On one hand, mathematical morphology [26,29,19]
offers ideas that are applicable in this context, particularly due to its interpreta-
tion in terms of the size/shape relationship of the object of interest. On the other
hand, data-driven learning methods have changed the way image problems are
solved. Especially the deep models allow to solve recognition problems with per-
formance sometimes superior to humans [15]. In this paper, we follow the results
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of [24,31,32,18], to present a new application of morphological models learned
from data for the characterization of random point processes. The Neyman-Scott
point process is presented in section 2. The proposed Choquet Capacity model is
described in section 3. Section 4 demonstrate the benefits of the proposed model
in comparison with classical convolutional neural networks (CNNs) for classi-
fication and regression problems on images generated by Neyman-Scott point
process. We conclude in section 5.

2 Neyman-Scott point processes

In the present work, we consider Neyman-Scott point processes [34,33,35,23] as
a way to generate point patterns that are statistically different from the classical
Poisson model of points [5,6,17]. The Neyman-Scott model, like Poisson’s one,
is a particular type of Boolean random set [30]. Poisson point processes on R2

depend on a single parameter θ, called the intensity. The intensity θ represents
the mean number number of points per unit area. In the Poisson point model,
the presence of points in two disjoint domains is uncorrelated which lead to the
following Poisson-distributed law for the number of points η(Ω) in a domain Ω,

P{η(Ω) = k} =
(θ|Ω|)k

k!
exp−θ|Ω|, (1)

where |Ω| is the surface area of Ω. This leads to the formula:

TX(K ) := P(X ∩K ̸= ∅) = 1− P{K ⊆ Xc} = 1− exp−θ|K|, (2)

for the Choquet capacity T (K ) of a realization X = {x1, x2, ...} of a Poisson
point process and a compact set K [4].

Neyman-Scott point processes are different from Poisson point processes in
that they generate clustered sets of points. This is achieved in two steps. In
the first step, a standard Poisson point process of intensity θp is generated,
leading to a set of parent points x(p) ∈ R2 (p ∈ N). In the second step, we
associate each parent point with a set of np daughter points x

(p)
1 , . . . , x

(p)
np . The

Neyman-Scott point process is made of all daughter points; parent points are
not included. Neyman-Scott models are accordingly parametrized by θp, the
probability law for the np and that of the daughter points, given in term of
the multivariate probability law for the x

(p)
i − x(p). For simplicity, we consider

a constant distribution np ≡ n. We also assume that the vectors x
(p)
i − x(p)

are i.i.d. variables drawn from a multivariate random distribution in R2, with
uniform angular distribution in [0; 2π]. Distances from parent to daughter points
are drawn from a Pareto law with parameters α, rm such as:

P{|x(p)
i − x(p)| > r} =

(rm
r

)α

H(r − rm), α > 0, rm > 0, (3)

where H(·) is the Heavyside function, equal to one on R+ and zero elsewhere.
Here rm controls the typical size of the clusters whereas the parameter α moni-
tors the spatial dispersion. Thus, r has infinite variance when α ≤ 2 and infinite
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mean when α ≤ 1. Examples of realizations are shown in Fig. (1). The points
spatial dispersion in the Neyman-Scott model is markedly more heterogeneous
when α is large (see Fig. (1b). When α approaches one, the Neyman-Scott and
Poisson models are difficult to distinguish (see Figs. 1).

(a) (b) (c)

Fig. 1: Realizations of a Poisson point process (a) and Neyman-Scott models
(b-c) with the same density of points. b) Parameters rm = 0.1, α = 100. c)
rm = 0.1, α = 3.

Importantly, the Choquet-Matheron-Kendall theorem established indepen-
dently by [14,16] states that any stationary and ergodic random set, such as
Poisson or Neyman-Scott point processes, is completely determined by the func-
tional T (K ). In the next section, we propose a model that use (2) to find optimal
K in a discrete setting (denoted as K), in the sense of learning from labeled data
for supervised problems. Note that this learning process makes use of convo-
lutional layer where K are optimized in the real set. Accordingly, we propose
regulatization terms to encourage the network to learn binary kernels.

3 Choquet Capacity models

3.1 Discrete random set

Usually random sets are defined in the sense of Euclidean geometry, as subsets
of Rd. However, in many applications, as in image processing, the domain is
discrete, as pixels structures in 2D, Ω = Z2. The discrete random set (DRS)
X on Z2 is now defined by X := {(i, j) ∈ Z2 : xi,j = 1}. The discrete-capacity
functional of a discrete random set X is defined by [16]:

TX(K) := P(X ∩ K ̸= ∅) = 1− P{K ⊆ Xc} := 1−QX(K) (4)

for every K ∈ S the collection of all bounded subsets of Z2. From (4), it is easy
to see that: a) 0 ≤ TX(K) ≤ 1 for every K ∈ S, b) TX(∅) = 0, and c) TX(K1) ≤
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TX(K2),∀K1,K2 ∈ S such that K1 ⊆ K2. Other important properties can be
shown for DRS [28,9]. According to the Choquet-Kendall-Matheron theorem, any
discrete random set X is uniquely characterized by its discrete-capacity functional
T (K), defined over all bounded subsets K ∈ S of Z2. Furthermore, we note that:

P(X ∩ K ̸= ∅) = P(x ∈ δK̆(X)) (5)

where K̆ denotes the K mirrored in the origin. The capacity in (4) is accordingly
given by the morphological dilation of X by K [27,13].

Fig. 2: Schematic of proposed Choquet Capacity model.

3.2 Choquet Capacity layer

This section describes a layer that can be used for the computation of (5), in the
context of neural networks. To do so, we use the extension of convolutional mod-
els in the (

∨
,+) algebra, called max-plus convolutions [1], or dilation layer [31].

The dilation layer replaces discrete classical convolutions and can be compared
to fuzzy measures in so-called fuzzy integral neural networks [12]. For an input
image f, the dilation layer is defined as:

δK(f)(x) :=
∨

y∈Z2

[f(x− y) +K(y)] =
∨

y∈Z2

[f(y) +K(x− y)] (6)

where K is a matrix of real values called kernel or structuring function. In the
cases where the image f represents a DRS (denoted by f), and the kernel K
takes on values in {−1; 0}1, we have that f(y) + K(x − y) = 0 if K ⊆ f and 1

1 Hereafter, we consider input images lying in the interval [0, 1], so that in practice,
−1 plays the same role as −∞ for kernel.
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elsewhere. By sliding the kernel through the domain and calculating its average,
assuming ergodicity, we obtain an estimation for the value of Qf(K) in (4):

Q̂f(K) :=
1

M

M∑
j=1

δK(f)(xj) (7)

where M is the number of pixels in the image. In the following, equation (7) is
called a Choquet Capacity layer with convolutional kernels K.

Hereafter, we propose to study the performance of the Choquet Capacity
layers to learn nk kernels, K := {Ki}nk

i=1, in the framework of neural networks.
Accordingly, for each input image f , a vector containing the nk values computed
by (7) is used as features, transformed linearly by a dense layer (or many for
multilayer perceptrons (MLP) models) with parameter W, and finally passed
trough an activation function adapted to the regression or classification prob-
lem. Fig (2) shows a schematic of the proposed Choquet Capacity model for
a classification problem. The classical training mechanism on neural networks
seeks to find the optimal model’s parameters (W,K),

argmin
(K,W)

{
N∑
ℓ=1

loss(Yℓ, Ŷℓ) + Reg(W,K)

}
(8)

where Ŷℓ is the prediction of the network for the ℓ-th sample, Yℓ is the ground
truth, N is the number of samples and Reg(W,K) is a regularization term on
the parameters of the model. In its simplest form, the parameters (W,K) are
initialized to random values and updated by means of a stochastic gradient
descend, the gradient being computed by backpropagation [15]. Note that the
shape K in (5) is a bounded subset, whereas each of the matrix K in (6) is a max-
plus convolutional kernel with real values. Therefore, we propose two alternatives
that address this difference during the training of the model:

i) Regularization: the term Reg in (8) is set to penalize kernel values that are far
from a binary equivalent, in our case of max-plus algebra on binary images,
0 or −1. Two different regularization functions are considered for R:

Reg1(K) = λ1

nk∑
i=1

(Ki + 1) + λ2

nk∑
i=1

(Ki + 1)2, (9a)

Reg2(K) = λ1

nk∑
i=1

(Ki + 1)Ki + λ2

nk∑
i=1

(Ki + 1)2K2
i , (9b)

where nk in the number of kernels and λ1 ≥ 0 and λ2 ≥ 0 are the hyperpa-
rameters to control the effect of regularization.

ii) Quantization of the kernels during optimization. We use an integrated value
filter to enforce kernel values in [−1, 0]. We use the straight-through estimator
proposed in [2,37]. Predictions are computed by rounding the kernel to the
closest integer (−1 or 0) whereas the gradient in the backpropagation is left
unchanged.
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The different approaches above are compared to one another and to classical
convolutional networks in the next section. We would like to study the effect of
including more layers into the model. This is called the depth of the network in
deep learning [8]

4 Numerical experiments

In the present section, we quantify the performances of the various convolutional
networks. Two problems are addressed: first, that of classification of realizations
of Neyman-Scott point patterns w.r.t. Poisson; second, the prediction of the
dispersion parameter α in a regression problem2.

4.1 Classification of point pattern

In this experiment, we set the image size to 500 × 500 pixels and θ = 0.05 in
number of points per pixel unit. We choose n = 50 and let θp = θ/n so that
the density of points is the same irrespective of the model chosen. We also fix
rm = 0.1× 500 = 50 and let α varies between 1 and 100. All point patterns are
statistically homogeneous. We perform the classification task on two classes of
Poisson and Neyman-Scott point patterns with different values of the parameter
α and conduct a comparative analysis with the CNNs. The data set contains
500 images for each class, with a train-to-validation ratio of 4:1. For simplicity,
we use one layer in each neural network, with four filters of size 7 × 7 pixels.
For supervised classification, a common choice of loss function is the binary
cross-entropy also known as log loss, defined by

logloss(Y, Ŷ ) := − 1

N

N∑
ℓ=1

[
Yℓ log q

ℓ
0 + (1− Yℓ) log q

ℓ
1

]
(10)

where (qℓ0, q
ℓ
1) denote the prediction of the network for the ℓ-th samples, Yℓ the

ground truth of the ℓ-th samples and N is the number of samples. The models
are trained to predict the class between images produced by Poisson processes
and Neyman-Scott models with different values of α parameter. Figure 3 shows
the boxplot of validation accuracy for models training from different initializa-
tion values. Interestingly, the Choquet Capacity layer demonstrates competitive
performance, especially when the parameter α decreases, so that realizations of
the Neyman-Scott point pattern are similar to that of a Poisson distribution.
When regularization is applied, the model tend to have values {−1, 0}, but they
are still values that prevent us from indicating that the solution is binary. For
quantization, K contain only values in {−1, 0} in Figure (4)(c), although no dis-
tinctive shape is observed. However, performance significantly degraded, when
regularization or quantization is used, specially in more difficult cases.
2 The source code of this section is available at https://github.com/Jacobiano/
ChoquetLayer

https://github.com/Jacobiano/ChoquetLayer
https://github.com/Jacobiano/ChoquetLayer
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Fig. 3: Validation accuracy for the different neural network models in the two-
classes classification problem (Poisson and Neyman-Scott point processes) vs.
the parameter α that monitors spatial dispersion.

(a) Regularization 1 in (9a) (b) Regularization 2 in (9b)

(c) Quantization operator (d) No regularization

Fig. 4: Example of learned kernel K = {K1, . . . ,K4} using different proposed
alternatives for regulatization of the Choquet Capacity layer.
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4.2 Parameter regression of the Neyman-Scott point processes

In the present subsection, we compare the performances of different neural
network models for predicting the value of the parameter α, in a regression
problem. We set the image size to 128 × 128 pixels, the density of points to
θ = 100/(128 × 128) and rm = 0.02. We also let α vary between 0 and 9. This
last is the value that we would like to predict. For the regression problem, the
mean absolute error is the mean absolute difference between true value and
prediction:

MAE(Y, Ŷ ) := − 1

N

N∑
ℓ=1

|Yℓ − Ŷℓ| (11)

is used as loss function. During training the α values are scaled to the interval
[0, 1] as it is standard practice in regression models. As a first example, we
compare the result between Choquet Capacity and a classical convolutional layer
followed by a multi-layer perceptron that consists of two layers of dimension ten
and batch normalization [25], followed by a sigmoid activation, see Figure 5. Note
that the convolutional layer and our proposition have exactly the same number
of parameters. In this case, our Choquet Capacity model obtains predictions
that are clearly quantitatively better.

As a second illustration in the regression case we studied the effect of net-
work depth, prior to the use of the Choquet Capacity model. Usually, increasing
both depth and width (number of filters per layer) helps to improve the model
performance until the number of parameters becomes too high and stronger reg-
ularization is needed [10]. For that, we consider convolutional layers with kernel
size of 3×3 pixels and 48 filters are concatenated before the use of global pooling
and the MLP. This architecture is represented in Figure 6. We compare differ-
ent convolutions in the last layer before the global pooling: proposed Choquet
Capacity model, classical CNN, and depthwise convolutional (DWCNN). The
latter is included because contains exactly the same number of parameters com-
pared to our Choquet Capacity model. In Figure 7, we compare the validation
loss of the three networks with the number of parameters in each model shown
in logarithmic scale. The number of degrees of freedom is increased by augment-
ing the depth from one to seven in the convolutional part in each architecture,
leading to models with deeper feature extractions. The Choquet Capacity model
improves the regression results in all explored cases, for a fixed number of pa-
rameters, compared to DWCNN. Finally, Figure 7 also shows than comparable
performances to the Choquet model are achieved by classical CNNs at the cost
of a much higher number of parameters.

5 Conclusion

The results obtained in this study are based on a novel approach that makes use
of dilation layers with global pooling, inspired from the definition of the Choquet
capacity for random sets in the theory of integral geometry. Numerical exper-
iments performed on synthetic datasets which simulate diverse Neyman-Scott
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(a) Convolutional layer with average pooling

(b) Proposed Choquet Capacity model

Fig. 5: Comparison on the prediction over testing training for one layer convolu-
tional with global average pooling network and our Choquet Capacity proposi-
tion in the regression problem of the Neyman-Scott point processes. Both models
have the same number of parameters and they have been trained with the same
protocol.
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Fig. 6: In the architecture used in section 4.2, we vary the number of layers
referring to classical convolutional layers of kernel size 3 × 3 pixels follow by
ReLU activation.

Fig. 7: Performance of different neural networks for varying number of layers in
each model (See Figure 6). Three architectures are compared. In all cases each
layer has 48 kernels of size 3 × 3, ReLU is used as activation function, and a
final layer with a convolution of size 13× 13 followed by GlobalAveragePooling,
BatchNormalization and a MLP with two layers of dimension ten with a final sig-
moid activation. DWCNN refers to a depthwise convolution, CNN to a classical
convolution and Choquet Capacity to the max-plus convolutions in 3. DWCNN
and Choquet Capacity models have exactly the same number of parameters.
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point patterns, demonstrate the efficiency of the method, as well as seemingly
superior performances in particular in regression problems involving the disper-
sion parameter in the Neyman-Scott point process. Compared to classical con-
volutions, the Choquet Capacity networks are somewhat more difficult to train,
due to the presence of a nonlinear convolution filters. Yet they are versatile in
that they may be combined with classical convolutional networks. As a negative
result, the alternatives studied to motivate the estimation of binary kernels re-
sult in very important losses in the performance of the models. This topic, as
well as the adequacy of Choquet capacity networks to analyse real-world data,
will be addressed in future research works.
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