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Introduction

There is a significant demand for analytical techniques that can handle vast amounts of image data in particular in engineering science [START_REF] Chinesta | Virtual, digital and hybrid twins: a new paradigm in data-based engineering and engineered data[END_REF]. For instance, images from satellites, geological maps, microscope images of metals and materials, cellular tissue, and data from computerized tomography [START_REF] Etiemble | Numerical prediction of multiscale electronic conductivity of lithium-ion battery positive electrodes[END_REF] all require automatic and quantitative methods due to the sheer volume of data involved. In some scenarios, the information observed is set of coordinates in 2D or 3D, and the feature of interest depends on the spatial relationship between these points. For example, individual brain activation maps [START_REF] Worsley | Searching scale space for activation in pet images[END_REF][START_REF] Poline | Analysis of individual brain activation maps using hierarchical description and multiscale detection[END_REF], RNA Localization patterns [START_REF] Imbert | Pointfish: Learning point cloud representations for rna localization patterns[END_REF], positions on random sensor networks [START_REF] Ram | On the path coverage properties of random sensor networks[END_REF], realizations of random processes [START_REF] Pawlasová | Supervised nonparametric classification in the context of replicated point patterns[END_REF], among others. On one hand, mathematical morphology [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF][START_REF] Najman | Mathematical Morphology: From Theory to Applications[END_REF] offers ideas that are applicable in this context, particularly due to its interpretation in terms of the size/shape relationship of the object of interest. On the other hand, data-driven learning methods have changed the way image problems are solved. Especially the deep models allow to solve recognition problems with performance sometimes superior to humans [15]. In this paper, we follow the results of [START_REF] Sangalli | Scale equivariant neural networks with morphological scale-spaces[END_REF][START_REF] Velasco-Forero | Learnable empirical mode decomposition based on mathematical morphology[END_REF][START_REF] Velasco-Forero | Fixed point layers for geodesic morphological operations[END_REF][START_REF] Mondal | Morphological network: How far can we go with morphological neurons? In: 33rd British Machine Vision Conference 2022[END_REF], to present a new application of morphological models learned from data for the characterization of random point processes. The Neyman-Scott point process is presented in section 2. The proposed Choquet Capacity model is described in section 3. Section 4 demonstrate the benefits of the proposed model in comparison with classical convolutional neural networks (CNNs) for classification and regression problems on images generated by Neyman-Scott point process. We conclude in section 5.

Neyman-Scott point processes

In the present work, we consider Neyman-Scott point processes [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous neyman-scott processes[END_REF][START_REF] Vere-Jones | Stochastic models for earthquake occurrence[END_REF][START_REF] Westcott | Results in the asymptotic and equilibrium theory of poisson cluster processes[END_REF][START_REF] Ripley | Modelling spatial patterns[END_REF] as a way to generate point patterns that are statistically different from the classical Poisson model of points [START_REF] Daley | An introduction to the theory of point processes: volume I: elementary theory and methods[END_REF][START_REF] Daley | An introduction to the theory of point processes: volume II: general theory and structure[END_REF][START_REF] Moller | Statistical inference and simulation for spatial point processes[END_REF]. The Neyman-Scott model, like Poisson's one, is a particular type of Boolean random set [START_REF] Stoyan | Stochastic geometry and its applications[END_REF]. Poisson point processes on R 2 depend on a single parameter θ, called the intensity. The intensity θ represents the mean number number of points per unit area. In the Poisson point model, the presence of points in two disjoint domains is uncorrelated which lead to the following Poisson-distributed law for the number of points η(Ω) in a domain Ω,

P{η(Ω) = k} = (θ|Ω|) k k! exp -θ|Ω| , (1) 
where |Ω| is the surface area of Ω. This leads to the formula:

T X (K ) := P(X ∩ K ̸ = ∅) = 1 -P{K ⊆ X c } = 1 -exp -θ|K| , (2) 
for the Choquet capacity T (K ) of a realization X = {x 1 , x 2 , ...} of a Poisson point process and a compact set K [START_REF] Choquet | Theory of capacities[END_REF]. Neyman-Scott point processes are different from Poisson point processes in that they generate clustered sets of points. This is achieved in two steps. In the first step, a standard Poisson point process of intensity θ p is generated, leading to a set of parent points x (p) ∈ R 2 (p ∈ N). In the second step, we associate each parent point with a set of n p daughter points x

(p) 1 , . . . , x (p) 
np . The Neyman-Scott point process is made of all daughter points; parent points are not included. Neyman-Scott models are accordingly parametrized by θ p , the probability law for the n p and that of the daughter points, given in term of the multivariate probability law for the x (p) i -x (p) . For simplicity, we consider a constant distribution n p ≡ n. We also assume that the vectors x (p) i -x (p) are i.i.d. variables drawn from a multivariate random distribution in R 2 , with uniform angular distribution in [0; 2π]. Distances from parent to daughter points are drawn from a Pareto law with parameters α, r m such as:

P{|x (p) i -x (p) | > r} = r m r α H(r -r m ), α > 0, r m > 0, (3) 
where H(•) is the Heavyside function, equal to one on R + and zero elsewhere.

Here r m controls the typical size of the clusters whereas the parameter α monitors the spatial dispersion. Thus, r has infinite variance when α ≤ 2 and infinite Importantly, the Choquet-Matheron-Kendall theorem established independently by [START_REF] Kendall | Foundation of a theory of random sets[END_REF][START_REF] Matheron | Random Sets and Integral Geometry[END_REF] states that any stationary and ergodic random set, such as Poisson or Neyman-Scott point processes, is completely determined by the functional T (K ). In the next section, we propose a model that use (2) to find optimal K in a discrete setting (denoted as K), in the sense of learning from labeled data for supervised problems. Note that this learning process makes use of convolutional layer where K are optimized in the real set. Accordingly, we propose regulatization terms to encourage the network to learn binary kernels.

Choquet Capacity models

Discrete random set

Usually random sets are defined in the sense of Euclidean geometry, as subsets of R d . However, in many applications, as in image processing, the domain is discrete, as pixels structures in 2D, Ω = Z 2 . The discrete random set (DRS) X on Z 2 is now defined by X := {(i, j) ∈ Z 2 : x i,j = 1}. The discrete-capacity functional of a discrete random set X is defined by [START_REF] Matheron | Random Sets and Integral Geometry[END_REF]:

T X (K) := P(X ∩ K ̸ = ∅) = 1 -P{K ⊆ X c } := 1 -Q X (K) (4) 
for every K ∈ S the collection of all bounded subsets of Z 2 . From (4), it is easy to see that: a)

0 ≤ T X (K) ≤ 1 for every K ∈ S, b) T X (∅) = 0, and c) T X (K 1 ) ≤ T X (K 2 ), ∀K 1 , K 2 ∈ S such that K 1 ⊆ K 2 .
Other important properties can be shown for DRS [START_REF] Singh | Discrete random functions: Modeling and analysis using mathematical morphology[END_REF][START_REF] Goutsias | Morphological analysis of discrete random shapes[END_REF]. According to the Choquet-Kendall-Matheron theorem, any discrete random set X is uniquely characterized by its discrete-capacity functional T (K), defined over all bounded subsets K ∈ S of Z 2 . Furthermore, we note that:

P(X ∩ K ̸ = ∅) = P(x ∈ δ K(X)) (5) 
where K denotes the K mirrored in the origin. The capacity in ( 4) is accordingly given by the morphological dilation of X by K [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Jeulin | Random texture models for material structures[END_REF].

Fig. 2: Schematic of proposed Choquet Capacity model.

Choquet Capacity layer

This section describes a layer that can be used for the computation of ( 5), in the context of neural networks. To do so, we use the extension of convolutional models in the ( , +) algebra, called max-plus convolutions [START_REF] Akian | Max-plus algebra[END_REF], or dilation layer [START_REF] Velasco-Forero | Learnable empirical mode decomposition based on mathematical morphology[END_REF].

The dilation layer replaces discrete classical convolutions and can be compared to fuzzy measures in so-called fuzzy integral neural networks [START_REF] Islam | Enabling explainable fusion in deep learning with fuzzy integral neural networks[END_REF]. For an input image f, the dilation layer is defined as:

δ K (f )(x) := y∈Z 2 [f (x -y) + K(y)] = y∈Z 2 [f (y) + K(x -y)] ( 6 
)
where K is a matrix of real values called kernel or structuring function. In the cases where the image f represents a DRS (denoted by f), and the kernel K takes on values in {-1; 0} 1 , we have that f(y) + K(x -y) = 0 if K ⊆ f and 1 elsewhere. By sliding the kernel through the domain and calculating its average, assuming ergodicity, we obtain an estimation for the value of Q f (K) in (4):

Qf (K) := 1 M M j=1 δ K (f)(x j ) ( 7 
)
where M is the number of pixels in the image. In the following, equation ( 7) is called a Choquet Capacity layer with convolutional kernels K.

Hereafter, we propose to study the performance of the Choquet Capacity layers to learn n k kernels, K := {K i } n k i=1 , in the framework of neural networks. Accordingly, for each input image f , a vector containing the n k values computed by ( 7) is used as features, transformed linearly by a dense layer (or many for multilayer perceptrons (MLP) models) with parameter W, and finally passed trough an activation function adapted to the regression or classification problem. Fig [START_REF] Bengio | Estimating or propagating gradients through stochastic neurons for conditional computation[END_REF] shows a schematic of the proposed Choquet Capacity model for a classification problem. The classical training mechanism on neural networks seeks to find the optimal model's parameters (W, K), arg min

(K,W) N ℓ=1 loss(Y ℓ , Y ℓ ) + Reg(W, K) (8) 
where Y ℓ is the prediction of the network for the ℓ-th sample, Y ℓ is the ground truth, N is the number of samples and Reg(W, K) is a regularization term on the parameters of the model. In its simplest form, the parameters (W, K) are initialized to random values and updated by means of a stochastic gradient descend, the gradient being computed by backpropagation [15]. Note that the shape K in ( 5) is a bounded subset, whereas each of the matrix K in ( 6) is a maxplus convolutional kernel with real values. Therefore, we propose two alternatives that address this difference during the training of the model: i) Regularization: the term Reg in ( 8) is set to penalize kernel values that are far from a binary equivalent, in our case of max-plus algebra on binary images, 0 or -1. Two different regularization functions are considered for R:

Reg 1 (K) = λ 1 n k i=1 (K i + 1) + λ 2 n k i=1 (K i + 1) 2 , (9a) Reg 2 (K) = λ 1 n k i=1 (K i + 1)K i + λ 2 n k i=1 (K i + 1) 2 K 2 i , (9b) 
where n k in the number of kernels and λ 1 ≥ 0 and λ 2 ≥ 0 are the hyperparameters to control the effect of regularization. ii) Quantization of the kernels during optimization. We use an integrated value filter to enforce kernel values in [-1, 0]. We use the straight-through estimator proposed in [START_REF] Bengio | Estimating or propagating gradients through stochastic neurons for conditional computation[END_REF][START_REF] Yin | Understanding straightthrough estimator in training activation quantized neural nets[END_REF]. Predictions are computed by rounding the kernel to the closest integer (-1 or 0) whereas the gradient in the backpropagation is left unchanged.

The different approaches above are compared to one another and to classical convolutional networks in the next section. We would like to study the effect of including more layers into the model. This is called the depth of the network in deep learning [START_REF] Goodfellow | Deep learning[END_REF] 4 Numerical experiments

In the present section, we quantify the performances of the various convolutional networks. Two problems are addressed: first, that of classification of realizations of Neyman-Scott point patterns w.r.t. Poisson; second, the prediction of the dispersion parameter α in a regression problem2 .

Classification of point pattern

In this experiment, we set the image size to 500 × 500 pixels and θ = 0.05 in number of points per pixel unit. We choose n = 50 and let θ p = θ/n so that the density of points is the same irrespective of the model chosen. We also fix r m = 0.1 × 500 = 50 and let α varies between 1 and 100. All point patterns are statistically homogeneous. We perform the classification task on two classes of Poisson and Neyman-Scott point patterns with different values of the parameter α and conduct a comparative analysis with the CNNs. The data set contains 500 images for each class, with a train-to-validation ratio of 4:1. For simplicity, we use one layer in each neural network, with four filters of size 7 × 7 pixels. For supervised classification, a common choice of loss function is the binary cross-entropy also known as log loss, defined by

logloss(Y, Y ) := - 1 N N ℓ=1 Y ℓ log q ℓ 0 + (1 -Y ℓ ) log q ℓ 1 ( 10 
)
where (q ℓ 0 , q ℓ 1 ) denote the prediction of the network for the ℓ-th samples, Y ℓ the ground truth of the ℓ-th samples and N is the number of samples. The models are trained to predict the class between images produced by Poisson processes and Neyman-Scott models with different values of α parameter. Figure 3 shows the boxplot of validation accuracy for models training from different initialization values. Interestingly, the Choquet Capacity layer demonstrates competitive performance, especially when the parameter α decreases, so that realizations of the Neyman-Scott point pattern are similar to that of a Poisson distribution. When regularization is applied, the model tend to have values {-1, 0}, but they are still values that prevent us from indicating that the solution is binary. For quantization, K contain only values in {-1, 0} in Figure (4)(c), although no distinctive shape is observed. However, performance significantly degraded, when regularization or quantization is used, specially in more difficult cases. 

Parameter regression of the Neyman-Scott point processes

In the present subsection, we compare the performances of different neural network models for predicting the value of the parameter α, in a regression problem. We set the image size to 128 × 128 pixels, the density of points to θ = 100/(128 × 128) and r m = 0.02. We also let α vary between 0 and 9. This last is the value that we would like to predict. For the regression problem, the mean absolute error is the mean absolute difference between true value and prediction:

MAE(Y, Y ) := - 1 N N ℓ=1 |Y ℓ -Y ℓ | (11) 
is used as loss function. During training the α values are scaled to the interval [0, 1] as it is standard practice in regression models. As a first example, we compare the result between Choquet Capacity and a classical convolutional layer followed by a multi-layer perceptron that consists of two layers of dimension ten and batch normalization [START_REF] Santurkar | How does batch normalization help optimization?[END_REF], followed by a sigmoid activation, see Figure 5. Note that the convolutional layer and our proposition have exactly the same number of parameters. In this case, our Choquet Capacity model obtains predictions that are clearly quantitatively better. As a second illustration in the regression case we studied the effect of network depth, prior to the use of the Choquet Capacity model. Usually, increasing both depth and width (number of filters per layer) helps to improve the model performance until the number of parameters becomes too high and stronger regularization is needed [START_REF] He | Deep residual learning for image recognition[END_REF]. For that, we consider convolutional layers with kernel size of 3×3 pixels and 48 filters are concatenated before the use of global pooling and the MLP. This architecture is represented in Figure 6. We compare different convolutions in the last layer before the global pooling: proposed Choquet Capacity model, classical CNN, and depthwise convolutional (DWCNN). The latter is included because contains exactly the same number of parameters compared to our Choquet Capacity model. In Figure 7, we compare the validation loss of the three networks with the number of parameters in each model shown in logarithmic scale. The number of degrees of freedom is increased by augmenting the depth from one to seven in the convolutional part in each architecture, leading to models with deeper feature extractions. The Choquet Capacity model improves the regression results in all explored cases, for a fixed number of parameters, compared to DWCNN. Finally, Figure 7 also shows than comparable performances to the Choquet model are achieved by classical CNNs at the cost of a much higher number of parameters.

Conclusion

The results obtained in this study are based on a novel approach that makes use of dilation layers with global pooling, inspired from the definition of the Choquet capacity for random sets in the theory of integral geometry. Numerical experiments performed on synthetic datasets which simulate diverse Neyman-Scott point patterns, demonstrate the efficiency of the method, as well as seemingly superior performances in particular in regression problems involving the dispersion parameter in the Neyman-Scott point process. Compared to classical convolutions, the Choquet Capacity networks are somewhat more difficult to train, due to the presence of a nonlinear convolution filters. Yet they are versatile in that they may be combined with classical convolutional networks. As a negative result, the alternatives studied to motivate the estimation of binary kernels result in very important losses in the performance of the models. This topic, as well as the adequacy of Choquet capacity networks to analyse real-world data, will be addressed in future research works.

mean when α ≤ 1 .

 1 Examples of realizations are shown in Fig. (1). The points spatial dispersion in the Neyman-Scott model is markedly more heterogeneous when α is large (see Fig. (1b). When α approaches one, the Neyman-Scott and Poisson models are difficult to distinguish (see Figs. 1).

Fig. 1 :

 1 Fig. 1: Realizations of a Poisson point process (a) and Neyman-Scott models (b-c) with the same density of points. b) Parameters r m = 0.1, α = 100. c) r m = 0.1, α = 3.

Fig. 3 :

 3 Fig. 3: Validation accuracy for the different neural network models in the twoclasses classification problem (Poisson and Neyman-Scott point processes) vs. the parameter α that monitors spatial dispersion.

Fig. 4 :

 4 Fig. 4: Example of learned kernel K = {K 1 , . . . , K 4 } using different proposed alternatives for regulatization of the Choquet Capacity layer.

  (a) Convolutional layer with average pooling (b) Proposed Choquet Capacity model

Fig. 5 :

 5 Fig. 5: Comparison on the prediction over testing training for one layer convolutional with global average pooling network and our Choquet Capacity proposition in the regression problem of the Neyman-Scott point processes. Both models have the same number of parameters and they have been trained with the same protocol.

Fig. 6 :

 6 Fig. 6: In the architecture used in section 4.2, we vary the number of layers referring to classical convolutional layers of kernel size 3 × 3 pixels follow by ReLU activation.

Fig. 7 :

 7 Fig.7: Performance of different neural networks for varying number of layers in each model (See Figure6). Three architectures are compared. In all cases each layer has 48 kernels of size 3 × 3, ReLU is used as activation function, and a final layer with a convolution of size 13 × 13 followed by GlobalAveragePooling, BatchNormalization and a MLP with two layers of dimension ten with a final sigmoid activation. DWCNN refers to a depthwise convolution, CNN to a classical convolution and Choquet Capacity to the max-plus convolutions in 3. DWCNN and Choquet Capacity models have exactly the same number of parameters.

Hereafter, we consider input images lying in the interval [0, 1], so that in practice, -1 plays the same role as -∞ for kernel.

The source code of this section is available at https://github.com/Jacobiano/ ChoquetLayer
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