Deviation results for Mandelbrot's multiplicative cascades with exponential tails - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Deviation results for Mandelbrot's multiplicative cascades with exponential tails

Résumé

Let W be a nonnegative random variable with expectation 1. For all r ⩾ 2, we consider the total mass Z ∞ r of the associated Mandelbrot multiplicative cascade in the r-ary tree. For all n ⩾ 1, we also consider the total mass Z n r of the measure at height n in the r-ary tree. Liu, Rio, Rouault [11, 12, 18] established large deviation results for (Z n r) r⩾2 for all n ∈ 1, ∞ (resp. for n = ∞) in case W has an everywhere finite cumulant generating function Λ W (resp. W is bounded). Here, we extend these results to the case where Λ W is only finite on a neighborhood of zero. And we establish all deviation results (moderate, large, and very large deviations). It is noticeable that we obtain nonconvex rate functions. Moreover, our proof of upper bounds of deviations for (Z ∞ r) r⩾2 rely on the moment bound instead of the standard Chernoff bound.
Fichier principal
Vignette du fichier
Cascades_TauEgalUn.pdf (474.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04250022 , version 1 (19-10-2023)

Identifiants

Citer

Thierry Klein, Agnès Lagnoux, P Petit. Deviation results for Mandelbrot's multiplicative cascades with exponential tails. 2023. ⟨hal-04250022⟩
63 Consultations
48 Téléchargements

Altmetric

Partager

More