Fine-Grained Cooperative Coevolution in a Single Population: Between Evolution and Swarm Intelligence - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Fine-Grained Cooperative Coevolution in a Single Population: Between Evolution and Swarm Intelligence

Résumé

Particle Swarm Optimisation (PSO) and Evolutionary Algorithms (EAs) differ in various ways, in particular with respect to information sharing and diversity management, making their scopes of applications very diverse. Combining the advantages of both approaches is very attractive and has been successfully achieved through hybridisation. Another possible improvement, notably for addressing scalability issues, is cooperation. It has first been developed for co-evolution in EA techniques and it is now used in PSO. However, until now, attempts to make PSO cooperate have been based on multi-population schemes almost exclusively. The focus of this paper is set on single-population schemes, or fine-grained cooperation. By analogy with an evolutionary scheme that has long been proved effective, the fly algorithm (FA), we design and compare a cooperative PSO (coPSO), and a PSO flavoured fly algorithm. Experiments run on a benchmark, the Lamp problem, show that fine-grained cooperation based on marginal fitness evaluations and steady-state schemes outperforms classical techniques when the dimension of the problem increases. These preliminary results highlight interesting future directions of research on fine-grained cooperation schemes, by combining features of PSO and FA.
Fichier principal
Vignette du fichier
2022-LuttonEA2022-Final.pdf (428.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04245024 , version 1 (16-10-2023)

Identifiants

Citer

Evelyne Lutton, Shatha F. Al-Maliki, Jean Louchet, Alberto Tonda, Franck Vidal. Fine-Grained Cooperative Coevolution in a Single Population: Between Evolution and Swarm Intelligence. Artificial Evolution, Oct 2022, Exeter (England), United Kingdom. ⟨10.1007/978-3-031-42616-2_8⟩. ⟨hal-04245024⟩
62 Consultations
73 Téléchargements

Altmetric

Partager

More