
HAL Id: hal-04245024
https://hal.science/hal-04245024

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-Grained Cooperative Coevolution in a Single
Population: Between Evolution and Swarm Intelligence
Evelyne Lutton, Shatha F. Al-Maliki, Jean Louchet, Alberto Tonda, Franck

Vidal

To cite this version:
Evelyne Lutton, Shatha F. Al-Maliki, Jean Louchet, Alberto Tonda, Franck Vidal. Fine-Grained
Cooperative Coevolution in a Single Population: Between Evolution and Swarm Intelligence. Ar-
tificial Evolution, Oct 2022, Exeter (England), United Kingdom. �10.1007/978-3-031-42616-2_8�.
�hal-04245024�

https://hal.science/hal-04245024
https://hal.archives-ouvertes.fr


Fine-Grained Cooperative Coevolution in a
Single Population: Between Evolution and

Swarm Intelligence

É. Lutton1, S. Al-Maliki2,3, J. Louchet4, A. Tonda1, and F.P. Vidal2

1 UMR 518 MIA, INRAE, Palaiseau, France
evelyne.lutton@inrae.fr,alberto.tonda@inrae.fr

2 School of Computer Science and Electronic Engineering, Bangor University, UK
f.vidal@bangor.ac.uk shatha.f.almaliki@bangor.ac.uk

3 Computer Science department, College of Science, Basrh University, Iraq
4 EFREI, Villejuif, France, jean.louchet@gmail.com

Abstract. Particle Swarm Optimisation (PSO) and Evolutionary
Algorithms (EAs) differ in various ways, in particular with respect to
information sharing and diversity management, making their scopes
of applications very diverse. Combining the advantages of both
approaches is very attractive and has been successfully achieved through
hybridisation. Another possible improvement, notably for addressing
scalability issues, is cooperation. It has first been developed for
co-evolution in EA techniques and it is now used in PSO. However,
until now, attempts to make PSO cooperate have been based on
multi-population schemes almost exclusively. The focus of this paper
is set on single-population schemes, or fine-grained cooperation. By
analogy with an evolutionary scheme that has long been proved effective,
the fly algorithm (FA), we design and compare a cooperative PSO
(coPSO), and a PSO-flavoured fly algorithm. Experiments run on a
benchmark, the Lamp problem, show that fine-grained cooperation based
on marginal fitness evaluations and steady-state schemes outperforms
classical techniques when the dimension of the problem increases. These
preliminary results highlight interesting future directions of research on
fine-grained cooperation schemes, by combining features of PSO and FA.

1 Introduction

Swarm intelligence is a source of inspiration for many optimisation algorithms,
for instance for Particle Swarm Optimisation (PSO) proposed by J. Kennedy
and R. Eberhart in 1995 [22], Ant Colony Algorithms [16], Artificial Bee Colony
Algorithms [20] or Bacterial Foragings [13]. The idea is to exploit the collective
behaviour of a set of entities, the same way as natural populations (flocks of
birds or ant colonies) search for food.

There is actually a proliferation of new techniques based on analogies to
animal behaviour [38]. With respect to the ongoing debate about the originality
and relevance of such a proliferation, we stress the fact that this contribution is



2 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

not proposing yet another novel optimisation methodology, but making a point
on two established heuristics that date back over 20 years and might look similar
at first glance.

PSO is based on social interactions. The emerging collective behaviour results
from a balance between following a leader and following an individual focus,
thanks to inter-individual communications [31]. This mechanism is different
from Evolutionary Algorithms (EAs) that rely on genetic transmission and
natural selection analogies (birth, death and inheritance within a population).
An important difference between them is how they manage diversity and share
information5, making them best fitted to different optimisation tasks [19].

Among other desirable features, scalability is a major concern. A way to
deal with it is co-evolution, which was first developed for EA techniques [33]
and starts to be experimented for PSO [6]. There are two major existing
co-evolution schemes: mono- and multi-population [30], but as far as we know,
only multi-population schemes are used in PSO [18,42].

This study investigates the differences and commonalities between
intra-population communication in PSO and cooperative-co-evolution [12] as
implemented in the Fly Algorithm (FA) [26,41,3]. This paper is organised as
follows. After a rapid overview of the state of the art for PSO and cooperative
PSO (Section 2), mono-population cooperative co-evolution and FA (Section 3),
we propose a mono-population cooperative PSO (coPSO) and a new operator for
the FA in Section 4. These schemes are compared on a cooperative-coevolution
benchmark, the Lamp test case [39] in Section 5. The discussion and conclusions
are given in Section 6.

2 From PSO to cooperative PSO

Each entity of a PSO, called a particle, has a position in space and a velocity,
that determines a random movement depending on the context. Velocities and
positions are updated at each iteration using rules taking into account local and
collective memories, mimicking respectively a cognitive and a social behaviour.

Similar to evolutionary techniques, the theoretical understanding of swarm
intelligence is a formidable challenge: with very simple mechanisms, interactions
of a large number of elements produce a nontrivial global dynamic. Besides
experimental evidence that such a system is able to concentrate the population
into optimal areas of a search space [35], theoretical results for convergence and
convergence rates [31] exist and are based on simple PSO models. The parameter
settings and the structure of the update rules clearly have a crucial influence on
performance [37].

A canonical PSO can be described as follows [22]: each particle keeps track
of its own best known position pbest and has also access at any time to the global
swarm best known position gbest. An iteration loop is then implemented:

1. Particles are initialised with random positions and velocities.

5 via inter-individual communications in PSO or genetic inheritance in EAs



Fine-Grained Cooperative Coevolution 3

2. Best known positions are computed (according to the function to be
optimised): pbesti for each particle i and gbest for the whole swarm.

3. For each particle i, velocity vi and position xi are then updated (in vector
notation, valid for any dimension of the search space):

vi(t+ 1) = ωvi(t) + φprp(pbesti − xi) + φgrg(gbest− xi) (1)

xi(t+ 1) = xi(t) + vi(t) (2)

where rp and rg are random values uniformly distributed between 0 and 1, ω
is the inertia weight, φp and φg are the cognitive and social learning factors.

4. The process is repeated from Step 2 until a stopping criterion is met
(e.g. stagnation, predefined level of fitness, or max. number of iterations).

The most common scheme, also called gbest strategy, corresponds to “fully
informed” particles aware of the state of the whole population. In another
important trend, called lbest strategy, each particle may only access local
information [31]. The update rule is the same, except that in equation (1) lbest,
a best local position, is used instead of gbest. This is more time-consuming as the
neighbours of each particle (according to a given topology) have to be identified.
This lbest scheme allows various subtleties to preserve diversity; neighbourhood
topology has a strong influence on the performance of the algorithms [23].
Topology may vary: the neighbourhood can be gradually enlarged according
to a topological distance or a graph hierarchy, sometimes using adaptive
strategies [31]. The lbest scheme is particularly useful in parallel implementations
when communication between processors is limited [42]. However, it may cause
trouble with high dimensional search spaces, as it relies on a distance measure
which may become computationally expensive with large swarms, besides the
fact that distance functions get less useful in high dimension spaces [27]. In this
paper, we will focus on gbest strategies only.

Diversity is an important issue in PSO, to avoid premature convergence. For
instance, dispersion and collision-avoiding mechanisms or repulsion mechanisms
have been proposed [42]. It has to be noted that multi-population approaches
have been developed for improving the management of diversity.

Cooperative PSO and multi-swarm models6 have been developed
for different purposes: to improve diversity [45,29], track multiple optima in
multimodal or dynamic multimodal landscapes [31,11], address multi-objective
problems [42], perform dynamic optimisation using adaptive strategies [8],
handle constrained optimisation [36], or deal with large search spaces, by
explicitly splitting the problem into interdependent sub-problems with smaller
dimensions [42].

Bergh and Engelbrecht [6] were the first to use a cooperative scheme,
in the style of Potter and De Jong [33,14] with separate sub-populations.
Cooperation comes from the exchange of information between sub-populations,
to build a composite fitness in the high-dimension problem. Usually the gbest
particles of other sub-swarms are used to evaluate the particles of a sub-swarm.

6 [18] defines cooperative search for any method as strategies that have several search
modules running and exchanging information to improve search capability.



4 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

Fine tuning these algorithms is difficult [32], the choice of information to be
exchanged and the synchronisation strategies deeply affect performance. It has
been observed that “Increasing the number of cooperating swarms helps in
improving the performance up to a certain limit, after which, the solution starts
to deteriorate” [18].

Note that cooperative PSO developed until now corresponds to what we may
call coarse-grained cooperation, i.e. the swarms or sub-swarms are explicitly
separated: cooperation occurs at swarm-, not particle-level7.

3 Fine grained cooperative co-Evolution

Co-evolution is an extension of standard EAs [30] that “distributes” the encoding
of a solution onto several individuals. As a consequence the fitness of each
individual depends on other individuals. An early example of this technique is
the “Michigan approach” [44] for classifier systems, in which a single population
of individuals, each being a rule, is evolved to collectively achieve a given task
(rule-based machine learning). Another pioneering work is the multi-population
approach of Potter and De Jong [33], later transferred to the PSO model.
Co-evolution has actually been structured and exploited in optimisation in
quite different ways, according the interacting behaviour, competitive versus
cooperative [12,14,43,9,5,40] or the granularity of interaction: a single population
of interbreeding individuals versus multiple interacting populations [30].

Various versions of fine grained single-population cooperation have
been proposed: ”Parisian Evolution”[12,17] in 2000 and more recently ”Kaizen
programming”[15], ”FFX”[28] or ”ϵ-lexicase survival”[24]. In [12], all individuals
share the same representation, can exchange genetic material thanks to genetic
operators and evolve together inside a single population. The EA loop then
embeds an additional step at each generation for aggregating individuals to
build a solution, evaluate it and distribute rewards to individuals. The idea
is to exploit the evolution mechanism in a more parsimonious manner: where
a traditional Evolutionary Algorithm (EA) only keeps the best individual
as an optimum solution at the end of the evolution (forgetting all precious
information gathered by the population during its exploration of the search
space), a Parisian approach tries to capitalise the full potential of an evolved
population. It possess all usual features (e.g. mutation, crossover, and selection),
but with two possible levels of fitness: a local fitness to assess the performance
of a single individual (partial evaluation or local information) and a global
fitness to assess the collective performance of the whole population. Maintaining
diversity helps avoid degenerate solutions, e.g. when individuals gather in

7 However, an application to the generation of improvised music [7] implements both
types of cooperation, coarse and fine grained (this is not quite an optimisation,
but rather an exploration task). It was performed with multi-swarms: each particle
being a note (loudness, pulse and pitch of a MIDI event), each swarm a voice or
instrument, and the whole system being considered as an improvising ensemble.
Coherence is reached by self-organisation of particles and swarms.



Fine-Grained Cooperative Coevolution 5

only a few areas of the search space. Finally, a solution is built from a
collation of individuals (sometimes with the concatenation of whole population).
The way the fitness functions are constructed and the solution is extracted,
are of course problem-dependent. Parisian Evolution has been successfully
applied to various optimisation problems, such as text-mining [25], hand
gesture recognition [21], complex interaction modelling in industrial agrifood
processes [4,5], imaging problems such as computer stereo vision in robotics [26],
tomography reconstruction in medical physics [2], and computer art [1].

A typical fine-grained cooperation is the Fly Algorithm (FA) [26]. First
designed for stereovision applications, the Fly algorithm evolves a population
of individuals called “flies”. It uses an “inverse problem” approach where
conventional approaches to stereovision use primitive extraction, pattern
matching and calculation of disparities [26]. In the original version, a fly is
defined as a 3-D point (x, y, z). A population of flies is initialised in the
field of view common to at least two cameras, then evolved using a classical
Evolutionary Strategy, guided by the flies’ fitness values. The solution is given by
the whole population (or a subset of the population), concentrated on the visible
surfaces of the objects in the scene [10]. The fitness of a fly is a measurement
of the consistency of its projections on the cameras. Classical operators –
mutation, optional CMX crossover, immigration (introducing brand new flies)
and tournament selection – are most commonly used.

4 Fine-grained optimisation based on PSO and FA

Particle Swarm Optimisation versus Fly Algoritm
Besides the narrative attached to each scheme (communications and social
behaviour versus genealogical features transmission and selection mechanisms),
PSO and FA share obvious features, and a parallel can be drawn between flies
mutations and particle movements, but this actually leads to a different balance
between diversification and intensification [19]. In particular, selection is not
used in PSO, although it is an explicit intensification mechanism. Additionally,
diversity preservation mechanisms are more explicit and tunable in FA, with
the help of an “immigration” operator that introduces a proportion of purely
random flies in the current population. We propose hereafter two different lines
for mutual cross-fertilisation (i) implementing the PSO algorithm using the
Parisian approach, and (ii) introducing the same information sharing mechanism
as in PSO into the FA.
A cooperative PSO: coPSO
A Cooperative Particle Swarm Optimisation (coPSO), in terms of fine grained
approach, consists in evolving, within a single swarm, particles that carry only
a small part of a solution. At each iteration of the algorithm it is necessary
to aggregate the particles of the swarm (or a selected part of it) to build the
problem solution. As for FA, there are now two levels of objective functions, an
optional global one computed on the whole swarm and a local one computed
for each particle. The local fitness function is used to update pbest. Due to the



6 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

distributed nature of the approach, the social learning factor (φg in Eq. 1) is set
to 0 as it makes no sense to follow the global best particle (gbest). Eq. 2 remains
the same. In the experiments below, a marginal fitness8 is used at the local level.
FA as a Swarm: SFA
To introduce a ”PSO-like” information sharing mechanism within a FA, we
built an additional operator, the genealogical mutation. The idea is, for each
individual, to keep track of the best of its ancestors, according to the genealogy
due to the genetic operators. Additionally, an extra vector similar to the velocity
in PSO is attached to each fly. When a genealogical mutation is triggered, the
velocity and position of offspring are updated using Equations 1 and 2. For the
same reason as above, φg is set to zero. Note that this operator tends to focus the
search of a fly into the direction of its pbest. However, it may be too restrictive
(i) at the start of the optimisation when no knowledge is available, and (ii) at
the end of optimisation when the result needs to be refined. This is why an an
adaptive mutation scheme has been built.
Adaptive mutation
The adaptive genetic bi-operator, concurrently assesses two different genetic
operators (here Gaussian mutation and genealogical mutation) so that the most
successful operator in generating good offspring is favoured. Both operators are
initially given an equal probability of occurrence. Their success rates are checked
at regular intervals to adjust their probabilities. The update rule is multiplicative
as for the famous 1/5th rule [34].
Each operator has i) a counter to keep track of how many times it has been
applied and ii) an accumulator that keeps track of how many times it has been
successful. This accumulator is incremented if the marginal fitness of the newly
created fly is positive, decremented if negative. The success rate of an operator
is its accumulator divided by its counter. The probability of the most successful
operator over the last period is increased at the expense of the other one. The
probabilities are then clamped in the range 10%-90% to make sure that the least
successful operator retains a chance to be picked up.

5 Experimental analysis on a toy problem

A toy problem for cooperative-coevolution: the Lamps
There are few benchmarks designed for cooperative co-evolutionary algorithms.
The Lamps [39] is one of the toy problems available: the basic premise is to
optimally place a set of circles (lamps) of given radius, so that they completely
cover a square field. The fitness function rewards each lamp separately, and also
provides a global reward that depends on the overall placement of all lamps.
While each single lamp can be optimally placed on the square field, so that it

8 Positive or negative contribution of the individual to the global fitness, i.e. the
difference between the fitness of the population, when complete or deprived from this
particular individual. This concept has been successfully used in various applications,
see for instance [2]. In the absence of additional information at the local level for
building a specific ”local fitness”, marginal fitness is a convenient option.



Fine-Grained Cooperative Coevolution 7

lits as much area as possible, it is interesting to notice that sometimes individual
lamps with sub-optimal positions (e.g. part of their area falls outside of the field)
can significantly improve the global reward (see Fig. 1). This simple toy problem
only has one parameter, the ratio between the radius of a circle/lamp and the
side of the square field (i.e. the ratio between the surface of a lamp and the
surface of the field), problem size = area room

area lamp . With higher parameter values,
more lamps are needed with more placement possibilities, making the benchmark
more challenging. A further difficulty can be added by introducing penalties for
overlapping lamps.

Fig. 1. Arrangement of a set of four lamps
to enlighten a square field. (left) The lamps
completely cover the square field, but part of
their own area is outside of the square itself.
(right) One of the lamps is now completely
inside the square, but the global solution is
unable to completely cover the square.

fitness =
area enlightened

total area
−W.

area overlap

total area
(3)

The fitness of a candidate involves the total area enlightened and the number
of lamps used. A weight W sets the balance with the overlapping term, see eq.
(3). Best solutions maximise the illuminated area whilst minimising the number
of lamps to cover the whole area. Tonda et al. showed that traditional approaches
based on genetic operators are competitive when the search space is relatively
small, i.e., for Lamps problem size less than 10 [39]. For more complex problems,
the Parisian approach outperformed the other algorithms tested.
Experimental setup
The Lamps problem with increasing sizes (3, 5, 10, 20, 100, and 500) has been
used for benchmarking the scalability of six algorithms:

– A traditional PSO with no algorithmic enhancement, as a baseline for
comparison (labelled PSO in the tables and figures below);

– The coPSO algorithm (labelled coPSO in the tables and figures);
– A steady state FA with marginal fitness, threshold selection, varying

population size using mitosis and slaughtering/culling, 30% of immigration
and 70% of Gaussian mutation (labelled FA);

– A steady state FA as above but with 30% of immigration, 35% of Gaussian
mutation, and 35% of Genealogical mutation (labelled SFA35);

– As above but with 30% of immigration, and 70% of Genealogical mutation
(labelled SFA70);

– As above but with 30% of immigration, and 70% of genetic bi-operator with
both Gaussian and Genealogical mutation (labelled SFA-bi operator).

The lamp radius is 8 and W = 1 (Eq. 3) to match the value initially used
in [39]. Algorithms 1 and 2 show the skeleton of FA and coPSO implementations,
displayed side-by-side to highlight similarities and differences. The structure of
the algorithms is fairly similar but coPSO lacks natural selection for killing and
breeding. The mutation in FA and the position update in coPSO are similar in
the sense that they both move an individual or particle from its current position.



8 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

// Read problem specific data
// Set the algorithm

Initialisation

// Create the initial population of n
individuals

repeat n times
Create a fly at a random position in
the search space;

Add the fly to the population;
Add the fly’s contribution to the
population’s fitness;

end

Compute the global fitness;

repeat // Optimisation loop
repeat n times

repeat // Select a bad fly
i← Random(0, n− 1);
MF(i)← Marginal fitness of
Fly i;

until MF(i) ≤ 0;
Remove Fly(i)’s contribution
from the population’s;

Compute the global fitness;

Select genetic operator;
if Genetic operator is
immigration then

Replace Fly(i) with a
random fly in the search
space;

else // Mutation is used
repeat// Select a good fly

j ← Random(0, n− 1);
MF(j)← Marginal
fitness of Fly j;

until MF(j) > 0;

Copy Fly(j)’s genes into
Fly(i)’s;

Randomly mutate Fly(i)’s
genes;

end
Add Fly(i)’s contribution to
global fitness;

Compute the global fitness;
end

until Convergence;

Iteratively eliminate bad flies;

Convert the population of flies into
problem specific answer;

Algorithm 1: Steady state FA

// Read problem specific data
// Set the algorithm

Initialisation

// Create the initial swarm of n
particle

repeat n times
Create a particle at a random
position in the search space;

Initialise the particle’s velocity;
Add the particle to the swarm;
Add the particle’s contribution to
the swarm’s;

end

Compute the global fitness;

repeat // Optimisation loop
foreach Particle pi ∈ Swarm do

Remove pi’s contribution from
the swarm’s;

Update the pi’s velocity;
Update the pi’s position;

Compute the global fitness;

Compute pi’s local fitness
(Marginal fitness)

Update pi’s lbest if needed
end

until Convergence;

Iteratively eliminate bad particles;

Convert the swarm of particles into
problem specific answer;

Algorithm 2: Cooperative PSO.



Fine-Grained Cooperative Coevolution 9

Algorithmic enhancements such as varying population or swarm size are not
shown to improve the readability of the pseudocode. In our experiment, we added
an extra loop so that each time stagnation is detected slaughtering/culling and
mitosis are alternatively triggered. In the slaughtering/culling step, bad flies
or particles are eliminated so that there are only good flies or particles left.
If triggering slaughtering/culling and mitosis does not help the population or
swarm improve the global fitness overN iterations (stagnation), the optimisation
ends and the problem solution is extracted. Our main stopping criterion is thus
stagnation.

N is set to 5 for coPSO, FA and SFA. However, it was empirically determined
that this number was far too low for PSO, which is why we use 50 in
our experiments. An additional stopping criterion is the maximum number
of iterations in case an algorithm fails to converge towards a solution. All
parameters are provided in Table 1.

Each experiment is repeated 100 times using a supercomputer to gather
statistically meaningful results9. That is 100 runs × 6 problem sizes ×
6 algorithms = 3600 optimisation processes in total. Each algorithm records
the global fitness of the solution it provided, and how many lamps needed to
be created and tested before a solution was accepted. This number is linearly
proportional to the computational power that was required to find the solution.

Results and discussion10

Quantitative results are given in Table 2. It highlights for each problem size
which algorithm(s) provides solutions significantly better (p < 0.05) than the
other algorithms. From the table it is clear that PSO performs best with small
problem sizes but collapses rapidly. It is also computationally intensive compared
to FAs. Figures 2 and 3 are a visualisation of these data in terms of global fitness
and computing time versus problem size in log scale.11

With small problem sizes, FA does not perform quite as well as PSO; Swarm
Fly Algorithm (SFA) is comparable to FA though a little less performing, and
coPSO does not perform well at all. With larger problem sizes, Figure 2 shows
that PSO collapses; FA stabilises, taking advantage of its scalability; coPSO
starts a shy improvement, showing that communication is only beneficial with
a larger problem size. Figure 3 clearly shows that PSO and coPSO are not as
efficient as FA and SFA. On both figures FA and the 3 variants of SFA are hard
to distinguish when the problem size increases. A zoomed scatterplot (Figure 4)
of global fitness versus computational effort (number of lamps created) gives a
more precise comparison for FA and SFA. FA’s performance decreases when the
problem size increases to become quite close to SFA35’s and SFA70’s. SFA-bi
operator is, however, more consistent and starts to slightly outperform FA in
terms of computing requirements (p < 0.05).

9 Except for the largest instance (size 500) for which only 50 runs were done.
10 Reproducibility: code available at http://doi.org/10.5281/zenodo.7101160
11 A synthetic scatterplot is also provided in https://evelyne-lutton.fr/Lutton_

EA2022-Additional.pdf for assessing the balance between both measurements.

http://doi.org/10.5281/zenodo.7101160
https://evelyne-lutton.fr/Lutton_EA2022-Additional.pdf
https://evelyne-lutton.fr/Lutton_EA2022-Additional.pdf


10 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

Table 1. Summary of the algorithms’ parameters.

PSO FA coPSO SFA35 SFA70 SFA-bi
operator

Initial number of
particles/individuals:

√
FA

3×pb size
3× pb size 3× pb size 3× pb size 3× pb size 3× pb size

Lamps per
particle/individual:

3× pb size 1 1 1 1 1

W in Eq. 3: 1 1 1 1 1 1

Immigration
probability (%):

N/A 30 N/A 30 30 30

Gaussian mutation
probability (%):

N/A 70 N/A 35 0 varying

Genealogical
mutation probability
(%):

N/A 0 N/A 35 70 varying

Initial Gaussian
mutation factor
(pixels):

N/A 16 N/A 16 N/A 16

Decrease of
mutation factor
per generation:

N/A 0.016 pixel N/A 0.016 pixel N/A 0.016 pixel

ω in Eq. 1: 1
2×log(2)

N/A 1
2×log(2)

1
2×log(2)

1
2×log(2)

1
2×log(2)

φp in Eq. 1: 1
2
+ log(2) N/A 1

2
+ log(2) 1

2
+ log(2) 1

2
+ log(2) 1

2
+ log(2)

φg in Eq. 1: 1
2
+ log(2) N/A 0 0 0 0

Stopping criteria
1) No improvement
over the last :

50 iterations 5 iterations 5 iterations 5 iterations 5 iterations 5 iterations

2) Max # of gen. or
iterations:

500 500 500 500 500 500

For each problem size, FA is the average number of lamps created over 100 runs of FA to reach the
problem solution.

6 Conclusions

The previous experiments are a first try with fine-grained cooperative swarms.
For the moment this has been reached with a single swarm in which social
communications have been cut (the gbest position has no influence on local
rules). Together with a convenient formulation of the problem (which information
is carried by a particle), this rough strategy (coPSO) is able to drive the full
swarm into a good solution, while having better scalability than the classical
gbest PSO. Marginal fitness is actually an indirect way to implement some social
communication, as it evaluates the contribution of a particle with respect to
the whole swarm. Less efficient than FA, a mature technique of fine-grained
cooperative based on EA, this simple coPSO however exhibits interesting
scalability properties (positive slope on Fig. 2 for large problem sizes).

Future improvements of this strategy can follow different lines. A first
one could be distance-based lbest strategies, but possibly limited in high
dimensions. Another line, sketched in this paper, is a combination of features
from Evolutionary Algorithms (life and death, genetic transmission) and swarms
(internal memory and social communication in the group). SFA is an attempt to
add a memory to the flies, in the same spirit as coPSO, as an inter-generational
transmission of information. The experiments displayed above prove that these



Fine-Grained Cooperative Coevolution 11

3 5 10 20 100 500
Problem size

0.5

0.6

0.7

0.8

Gl
ob

al 
fit

ne
ss PSO

FA
coPSO
SFA70
SFA35
SFA-bi_operator

Fig. 2. Comparison in terms of global fitness (maximisation).

3 5 10 20 100 500
Problem size

103

105

107

Nu
mb

er 
of 

lam
ps

 te
ste

d
be

for
e a

cc
ep

tan
ce

 of
 th

e s
olu

tio
n

PSO
FA
coPSO
SFA70
SFA35
SFA-bi_operator

Fig. 3. Comparison in terms of computational requirement. This is a value that should
be as small as possible.

10
1

10
3

0.64

0.66

0.68

0.70

0.72

0.74

0.76
problem size: 3

10
2

10
5

problem size: 5

10
2

10
5

problem size: 10

10
2

10
5

problem size: 20

10
3

10
4

problem size: 100

10
4

10
5

problem size: 500

PSO
FA
coPSO
SFA70
SFA35
SFA-bi_operator

0.0 0.2 0.4 0.6 0.8 1.0

Number of lamps created before acceptance of the solution

0.0

0.2

0.4

0.6

0.8

1.0

Gl
ob

al
 fi

tn
es

s

Fig. 4. Performance comparison in terms of effectiveness (highest global fitness) and
efficiency (smallest number of tested lamps) zoomed onto FA and SFA. The best
algorithms are in the top-left corner of the plots.

inter-generational communications improve the scalability of FA. Making the
balance of the SFA mutations adaptive also yields important information
about the efficiency of these operators during the runs (see also supplementary
material).

Future work on this topic will aim at exploring the combinations of PSO and
FA, and extending the experiments to other benchmarks and real problems.

Acknowledgements: We would like to thank Supercomputing Wales for
the supercomputer used to generate all the experimental results (https://www.
supercomputing.wales/).

References

1. Abbood, Z.A., Vidal, F.P.: Fly4Arts: Evolutionary digital art with
the Fly algorithm. ISTE Arts & Science 17-1(1), 11–16 (2017).
https://doi.org/10.21494/ISTE.OP.2017.0177

2. Ali Abbood, Z., Lavauzelle, J., Lutton, E., Rocchisani, J.M., Louchet, J., Vidal,
F.P.: Voxelisation in the 3-D fly algorithm for PET. Swarm and Evolutionary
Computation 36, 91–105 (Oct 2017). https://doi.org/10.1016/j.swevo.2017.04.001

https://www.supercomputing.wales/
https://www.supercomputing.wales/
https://doi.org/10.21494/ISTE.OP.2017.0177
https://doi.org/10.1016/j.swevo.2017.04.001


12 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

Table 2. Results of the experiments.
Values for algorithms marked in bold
are significantly better (p < 0.05)
than the others for the same problem
size. Values in italics highlight cases
where the best performance is equally
achieved by two or more algorithms
(non separable, with p > 0.05).

Problem Global Lamps created
size Evolution fitness before acceptance

3 PSO 80.58 % ± 6.84 1.18e+03 ± 473.47

3 FA 75.81 % ± 4.22 1.32e+02 ± 100.75

3 coPSO 49.66 % ± 11.58 7.63e+02 ± 1560.97

3 SFA70 67.74 % ± 7.59 1.23e+02 ± 100.48

3 SFA35 69.03 % ± 7.56 1.08e+02 ± 79.37

3 SFA-bi operator 69.87 % ± 7.71 1.18e+02 ± 83.20

5 PSO 76.74 % ± 4.98 3.63e+03 ± 1296.64

5 FA 72.71 % ± 3.51 2.49e+02 ± 138.45

5 coPSO 50.09 % ± 8.51 1.73e+03 ± 1274.77

5 SFA70 64.82 % ± 5.23 1.95e+02 ± 152.83

5 SFA35 66.80 % ± 4.83 1.99e+02 ± 142.94

5 SFA-bi operator 67.21 % ± 4.74 1.75e+02 ± 129.27

10 PSO 71.44 % ± 4.48 9.89e+03 ± 2843.23

10 FA 69.11 % ± 3.28 5.15e+02 ± 301.90

10 coPSO 45.51 % ± 7.39 8.39e+03 ± 6427.39

10 SFA70 63.91 % ± 4.02 3.31e+02 ± 208.52

10 SFA35 65.13 % ± 3.90 3.55e+02 ± 225.33

10 SFA-bi operator 66.01 % ± 3.22 3.49e+02 ± 205.07

20 PSO 61.52 % ± 4.46 1.50e+04 ± 3893.98

20 FA 66.39 % ± 2.56 9.97e+02 ± 536.03

20 coPSO 48.12 % ± 6.07 4.37e+04 ± 27148.87

20 SFA70 63.49 % ± 2.81 6.77e+02 ± 290.76

20 SFA35 64.46 % ± 2.69 6.51e+02 ± 322.55

20 SFA-bi operator 65.47 % ± 2.26 7.09e+02 ± 253.34

100 PSO 49.74 % ± 2.26 1.20e+05 ± 34739.96

100 FA 64.47 % ± 1.11 4.33e+03 ± 1664.40

100 coPSO 52.86 % ± 4.53 2.14e+06 ± 1215718.00

100 SFA70 63.78 % ± 1.29 3.85e+03 ± 854.81

100 SFA35 63.81 % ± 1.42 3.86e+03 ± 912.96

100 SFA-bi operator 64.57 % ± 1.18 3.71e+03 ± 842.15

500 PSO 42.43 % ± 1.37 7.94e+05 ± 252250.84

500 FA 63.73 % ± 0.56 2.22e+04 ± 7000.81

500 coPSO 56.04 % ± 3.09 9.00e+07 ± 40418907.90

500 SFA70 63.66 % ± 0.61 2.02e+04 ± 3852.50

500 SFA35 63.81 % ± 0.57 2.07e+04 ± 4109.04

500 SFA-bi operator 64.03 % ± 0.54 2.01e+04 ± 3935.58

3. Ali Abbood, Z., Vidal, F.P.: Basic, dual, adaptive, and directed mutation operators
in the fly algorithm. In: Artificial Evolution. pp. 100–114. Springer International
Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-78133-4 8

4. Barrière, O., Lutton, E.: Experimental Analysis of a Variable Size
Mono-population Cooperative-Coevolution Strategy, pp. 139–152. Springer
(2009). https://doi.org/10.1007/978-3-642-03211-0 12

5. Barrière, O., Lutton, E., Wuillemin, P.: Bayesian network structure
learning using cooperative coevolution. In: GECCO. pp. 755–762 (2009).
https://doi.org/10.1145/1569901.1570006

6. Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization.
Evolutionary Computation, IEEE Transactions on 8, 225–239 (07 2004).
https://doi.org/10.1109/TEVC.2004.826069

7. Blackwell, T.: Swarm music: Improvised music with multi-swarms. In: Symposium
on Artificial Intelligence and Creativity in Arts and Science. pp. 41–49 (2003)

8. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments, p.
19–26. Springer-Verlag (2004)

9. Bongard, J., Lipson, H.: Active coevolutionary learning of deterministic finite
automata. Journal of Machine Learning Research 6, 1651–1678 (2005)

10. Boumaza, A.M., Louchet, J.: Mobile Robot Sensor Fusion Using Flies, pp. 357–367
(2003). https://doi.org/10.1007/3-540-36605-9 33

11. Brits, R., Engelbrecht, A., van den Bergh, F.: Scalability of niche PSO. In:
Proceedings of the IEEE swarm intelligence symposium, Indianapolis, Indiana,
USA, April 24–26. p. 228–234 (2003)

12. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS + Parisian genetic
programming = efficient IFS inverse problem solving. Genetic Programming and
Evolvable Machines Journal 1(4), 339–361 (2000), october

https://doi.org/10.1007/978-3-319-78133-4_8
https://doi.org/10.1007/978-3-642-03211-0_12
https://doi.org/10.1145/1569901.1570006
https://doi.org/10.1109/TEVC.2004.826069
https://doi.org/10.1007/3-540-36605-9_33


Fine-Grained Cooperative Coevolution 13

13. Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial Foraging Optimization
Algorithm: Theoretical Foundations, Analysis, and Applications, pp. 23–55 (2009).
https://doi.org/10.1007/978-3-642-01085-9 2

14. De Jong, E.D., Stanley, K.O., Wiegand, R.P.: Introductory tutorial on coevolution.
In: GECCO ’07, London, UK (2007)

15. De Melo, V.V.: Kaizen programming. In: Igel, C., Arnold, D.V., Gagne, C.,
Popovici, E., Auger, A., Bacardit, J., Brockhoff, D., Cagnoni, S., Deb, K., Doerr,
B., Foster, J., Glasmachers, T., Hart, E., Heywood, M.I., Iba, H., Jacob, C., Jansen,
T., Jin, Y., Kessentini, M., Knowles, J.D., Langdon, W.B., Larranaga, P., Luke,
S., Luque, G., McCall, J.A.W., Montes de Oca, M.A., Motsinger-Reif, A., Ong,
Y.S., Palmer, M., Parsopoulos, K.E., Raidl, G., Risi, S., Ruhe, G., Schaul, T.,
Schmickl, T., Sendhoff, B., Stanley, K.O., Stuetzle, T., Thierens, D., Togelius,
J., Witt, C., Zarges, C. (eds.) GECCO ’14: Proceedings of the 2014 conference
on Genetic and evolutionary computation. pp. 895–902. ACM, Vancouver, BC,
Canada (12-16 Jul 2014). https://doi.org/doi:10.1145/2576768.2598264, http://
doi.acm.org/10.1145/2576768.2598264

16. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE
Computational Intelligence Magazine 1(4), 28–39 (2006)

17. Dunn, E., Olague, G., Lutton, E.: Parisian camera placement for
vision metrology. Pattern Recognition Letters 27(11), 1209–1219 (2006).
https://doi.org/https://doi.org/10.1016/j.patrec.2005.07.019, https://www.

sciencedirect.com/science/article/pii/S016786550500334X, evolutionary
Computer Vision and Image Understanding

18. El-Abd, M., Kamel, M.S.: A taxonomy of cooperative particle swarm optimizers.
International Journal of Computational Intelligence Research 4 (01 2008).
https://doi.org/10.5019/j.ijcir.2008.133

19. Kachitvichyanukul, V.: Comparison of three evolutionary algorithms: Ga, pso,
and de. Industrial Engineering and Management Systems 12, 215–223 (09 2012).
https://doi.org/10.7232/iems.2012.11.3.215

20. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (abc) algorithm and applications. Artif Intell Rev 42, 21–57
(2014). https://doi.org/10.1007/s10462-012-9328-0

21. Kaufmann, B., Louchet, J., Lutton, E.: Hand posture recognition using real-time
artificial evolution. In: EvoApplications, LNCS 6024. pp. 251–260. Springer (2010)

22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. vol. 4, pp. 1942–1948
(Nov 1995). https://doi.org/10.1109/ICNN.1995.488968

23. Kennedy J, M.R.: Population structure and particle swarm performance. In: CEC,
Honolulu, HI, USA, Sept 22–25. p. 1671–1676 (2002)

24. La Cava, M., Moore, J.: A general feature engineering wrapper for machine learning
using epsilon lexicase survival. In: J. McDermott, e.a. (ed.) Genetic Programming,
pp. 80–95. Springer (2017)

25. Landrin-Schweitzer, Y., Collet, P., Lutton, E.: Introducing lateral thinking in
search engines. Genetic Programming and Evolvable Machines 7(1), 9–31 (Mar
2006). https://doi.org/10.1007/s10710-006-7008-z

26. Louchet, J.: Using an individual evolution strategy for stereovision.
Genetic Programming and Evolvable Machines 2(2), 101–109 (Jun 2001).
https://doi.org/10.1023/A:1011544128842

27. Marimont, R.B., Shapiro, M.B.: Nearest Neighbour Searches and the Curse of
Dimensionality. IMA Journal of Applied Mathematics 24(1), 59–70 (08 1979).
https://doi.org/10.1093/imamat/24.1.59

https://doi.org/10.1007/978-3-642-01085-9_2
https://doi.org/doi:10.1145/2576768.2598264
http://doi.acm.org/10.1145/2576768.2598264
http://doi.acm.org/10.1145/2576768.2598264
https://doi.org/https://doi.org/10.1016/j.patrec.2005.07.019
https://www.sciencedirect.com/science/article/pii/S016786550500334X
https://www.sciencedirect.com/science/article/pii/S016786550500334X
https://doi.org/10.5019/j.ijcir.2008.133
https://doi.org/10.7232/iems.2012.11.3.215
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/s10710-006-7008-z
https://doi.org/10.1023/A:1011544128842
https://doi.org/10.1093/imamat/24.1.59


14 É. Lutton, S. Al-Maliki, J. Louchet, A. Tonda, and F.P. Vidal

28. McConaghy, T.: FFX: Fast, scalable, deterministic symbolic regression
technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic
Programming Theory and Practice IX, chap. 13, pp. 235–260. Genetic and
Evolutionary Computation, Springer, Ann Arbor, USA (12-14 May 2011).
https://doi.org/doi:10.1007/978-1-4614-1770-513, http://trent.st/content/

2011-GPTP-FFX-paper.pdf

29. Niu, B., Zhu, Y., He, X.: Multi-population cooperative particle swarm
optimization. In: Advances in Artificial Life. pp. 874–883. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11553090 88

30. Ochoa, G., Lutton, E., Burke, E.K.: Cooperative royal road functions. In: Evolution
Artificielle, Tours, France, October 29-31 (2007)

31. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm
Intelligence 1(1), 33–57 (Jun 2007). https://doi.org/10.1007/s11721-007-0002-0

32. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary Principles,
pp. 987–1033. Springer (2012). https://doi.org/10.1007/978-3-540-92910-9 31

33. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function
optimization. In: Parallel Problem Solving from Nature — PPSN III. pp. 249–257.
Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

34. Schwefel, H.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., USA (1993)

35. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In:
Congress on Evolutionary Computation, CEC99. vol. 3, pp. 1945–1950 (July 1999).
https://doi.org/10.1109/CEC.1999.785511

36. Shi, Y., Krohling, R.A.: Co-evolutionary particle swarm optimization to solve
min-max problems. In: CEC, vol. 2. p. 1682–1687 (2002)

37. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Evolutionary Programming VII. pp. 591–600. Springer (1998)

38. Sörensen, K.: Metaheuristics—the metaphor exposed. International Transactions
in Operational Research 22(1), 3–18 (2015)

39. Tonda, A., Lutton, E., Squillero, G.: Lamps: A test problem for cooperative
coevolution. In: NICSO. vol. 387, pp. 101–120. Springer (10 2011).
https://doi.org/10.1007/978-3-642-24094-2 7

40. Vidal, F.P., Lazaro-Ponthus, D., Legoupil, S., Louchet, J., Lutton, E., Rocchisani,
J.M.: Pet reconstruction using a cooperative coevolution strategy. In: Proceedings
of the IEEE Medical Imaging Conference 2009. IEEE, Orlando, Florida (Oct 2009)

41. Vidal, F.P., Lutton, E., Louchet, J., Rocchisani, J.: Threshold selection,
mitosis and dual mutation in cooperative coevolution: application to medical
3D tomography. In: PPSN. LNCS, vol. 6238, pp. 414–423 (Sep 2010).
https://doi.org/10.1007/978-3-642-15844-5 42

42. Wang, D., Tan, D., Liu, L.: Particle swarm optimization algorithm: an overview.
Soft Computing (01 2017). https://doi.org/10.1007/s00500-016-2474-6

43. Wiegand, R.P., Potter, M.A.: Robustness in cooperative coevolution. In:
Proceedings of GECCO, Seattle, Washington, USA. p. 369–376 (2006).
https://doi.org/10.1145/1143997.1144063

44. Wilson, S.T., Goldberg, D.E.: A Critical Review of Classifier Systems . In: Third
International Conference on Genetic Algorithms. pp. 244–255 (1989)

45. Zhang, H.: A Newly Cooperative PSO – Multiple Particle Swarm Optimizers
with Diversive Curiosity, MPSOα/DC, pp. 69–82. Springer Netherlands, Dordrecht
(2011). https://doi.org/10.1007/978-94-007-0286-8 7

https://doi.org/doi:10.1007/978-1-4614-1770-5_13
http://trent.st/content/2011-GPTP-FFX-paper.pdf
http://trent.st/content/2011-GPTP-FFX-paper.pdf
https://doi.org/10.1007/11553090_88
https://doi.org/10.1007/s11721-007-0002-0
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1109/CEC.1999.785511
https://doi.org/10.1007/978-3-642-24094-2_7
https://doi.org/10.1007/978-3-642-15844-5_42
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1145/1143997.1144063
https://doi.org/10.1007/978-94-007-0286-8_7

	Fine-Grained Cooperative Coevolution in a Single Population: Between Evolution and Swarm Intelligence 

