Some completeness results in derivational modal logic - Archive ouverte HAL
Article Dans Une Revue Journal of Logic and Computation Année : 2023

Some completeness results in derivational modal logic

Some completeness results in derivational modal logic

Quentin Gougeon
  • Fonction : Auteur
  • PersonId : 1159256

Résumé

Alongside the traditional Kripke semantics, modal logic also enjoys a topological interpretation, which is becoming increasingly influential. In this paper, we present various developments related to the topological derivational semantics, based on the Cantor derivative operator. We provide several characterizations of the validity of the axioms of bounded depth. We also elucidate the topological interpretation of the axioms of directedness and connectedness—which come in different forms, all of which we examine. We then prove results of soundness and completeness for all of these logics, using a range of old and new techniques.
Fichier principal
Vignette du fichier
main.pdf (617.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04244926 , version 1 (17-10-2023)

Identifiants

Citer

Quentin Gougeon. Some completeness results in derivational modal logic. Journal of Logic and Computation, 2023, ⟨10.1093/logcom/exad047⟩. ⟨hal-04244926⟩
100 Consultations
77 Téléchargements

Altmetric

Partager

More