A short remark on inviscid limit of the stochastic Navier–Stokes equations
Résumé
Abstract In this article, we study the inviscid limit of the stochastic incompressible Navier–Stokes equations in three-dimensional space. We prove that a subsequence of weak martingale solutions of the stochastic incompressible Navier–Stokes equations converges strongly to a weak martingale solution of the stochastic incompressible Euler equations in the periodic domain under the well-accepted hypothesis, namely Kolmogorov hypothesis ( K41 ).
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |