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Abstract. In this article, we study the inviscid limit of the stochastic incompressible Navier–Stokes equations in three-
dimensional space. We prove that a subsequence of weak martingale solutions of the stochastic incompressible Navier–Stokes
equations converges strongly to a weak martingale solution of the stochastic incompressible Euler equations in the periodic
domain under the well-accepted hypothesis, namely Kolmogorov hypothesis (K41).
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1. Introduction

The theory of turbulence revolutionized classical physics was put forward in the 1930 s and 1940 s by
Kolmogorov, Richardson, Taylor, and others (see [26] and the references therein). It has been widely
prominent in fluid mechanics, atmospheric and ocean sciences, and plasma physics. In the sequence of
papers [34–36], usually referred to as K41, Kolmogorov took basically three basic axioms (homogeneity,
isotropic and self-similarity) about the fluid flow and formally derived various universal predictions about
the statistics of fully developed turbulence (see also [8] for reviews). On the mathematical side, the
problem in the context of Navier–Stokes equations is very delicate and the rigorous understanding of
these predictions is still in its infancy. Euler equations are the classical model for the motion of an
incompressible, inviscid, homogeneous fluid. The addition of stochastic terms to the governing equations
is commonly used to account for empirical, numerical and physical uncertainties in applications ranging
from climatology to turbulence theory; see, for example, [23, Chapter 5]. In this article, we consider the
stochastic Euler equations governing the time evolution of the velocity u and the scalar pressure field Π
of an inviscid fluid on the three-dimensional torus T

3. The system of equations reads
⎧
⎪⎨

⎪⎩

du(t, x) + [div(u(t, x) ⊗ u(t, x)) + ∇xΠ(t, x)] dt = σ(u(t, x)) dW (t), in (0, T ) × T
3,

divu(t, x) = 0, in (0, T ) × T
3,

u(0, x) = u0(x), in T
3

(1.1)

where T > 0 fixed, u0 is a given initial data. Let
(
Ω,F, (Ft)t≥0,P

)
be a stochastic basis, where

(
Ω,F,P

)
is

a probability space and (Ft)t≥0 is a complete filtration with the usual assumptions. We assume that W is
an adapted cylindrical Wiener process defined on the probability space (Ω,F,P), and the coefficient σ is
generally nonlinear and satisfies suitable growth assumptions (see Sect. 2 for the complete list of assump-
tions). In particular, the map u �→ σ(u) is a Hilbert space-valued function signifying the multiplicative
nature of the noise. In this article, we also consider the following Navier–Stokes equations subject to
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stochastic forcing,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

duμ(t, x) + [div(uμ(t, x) ⊗ uμ(t, x)) + ∇xΠμ(t, x)] dt

= μΔuμ(t, x) dt + σ(uμ(t, x)) dW (t), in (0, T ) × T
3,

divuμ(t, x) = 0, in (0, T ) × T
3,

uμ(0, x) = u0(x), in T
3.

(1.2)

1.1. Previous work

In the deterministic setup, for general initial data, global existence of a smooth solution remains a well-
known open problem for Euler equations and also their dissipative counterpart, Navier–Stokes equations.
Non-uniqueness of solutions for Euler equations was shown for the first time by Scheffer [38] who con-
structed a non-trivial weak solution of 2D incompressible Euler equations with compact support in time.
Later, De Lellis, Székelyhidi [19,20] and Chiodaroli et al. [16] established groundbreaking results that
confirms infinitely many weak solutions can be constructed for Euler equations in three dimensions. In
these works, the method of so-called convex integration was used to prove the non-uniqueness of weak
solutions to Euler equations. Furthermore, non-uniqueness results were established among weak solutions
with dissipating energy, which is one of the well-accepted criteria for the selection of physically relevant
solutions. In quest for a global-in-time solution, DiPerna [21] proposed a new concept of solution, known
as measure-valued solution, for the nonlinear system of partial differential equations admitting uncon-
trollable oscillations. Moreover, Brenier et al. [7] proposed a new approach, seeing the measure-valued
solutions as possibly the largest class, in which the family of smooth solutions is stable. In particular,
they showed the so-called weak (measure-valued)–strong uniqueness principle for the incompressible Eu-
ler equations. On the other hand, the inviscid limit for Navier–Stokes equations has also been extensively
studied in [2,14]. N. Masmoudi remarks about the inviscid limit of Navier–Stokes system in [37]. A weaker
version of Kolmogorov hypothesis which was derived in [12,13,40] can provide the convergence of weak
solutions of Navier–Stokes equations through a subsequence to a weak solution of Euler equations. In [25],
under a weaker version of Kolmogorov’s hypothesis, the authors also show that the limit of statistical
solution of the incompressible Navier–Stokes equations is a statistical solution of the incompressible Euler
equations. Recently, Hofmanová et. al [29] have identified a sufficient condition under which solutions to
the 3D forced Navier–Stokes equations satisfy an Lp-in-time version of Kolmogorov 4/5 law for the be-
havior of the averaged third-order longitudinal structure function along the vanishing viscosity limit. In
the stochastic setup, Glatt-Holtz and Vicol [27] obtained local well-posedness results for strong solutions
of the stochastic incompressible Euler equations in two and three dimensions, and global well-posedness
results in two dimensions for additive and linear multiplicative noise. Local well-posedness results for
the three-dimensional stochastic compressible Euler equations were proved by Breit and Mensah [5].
Moreover, the convex integration method has already been applied in stochastic setting, namely to the
isentropic Euler system by Breit, Feireisl and Hofmanova [4] and to the full Euler system by Chiodaroli,
Feireisl and Flandoli [15]. There have been many attempts to define a suitable notion of measure-valued
solutions for the stochastic incompressible Euler equations driven by additive noise, starting from the
work of Kim [33], Breit & Moyo [3], and most recently by Hofmanová et al. [31], where the authors
introduced a class of dissipative solutions which allowed them to demonstrate weak–strong uniqueness
property and non-uniqueness of solutions in law. In the recent works [1,28], the authors also investigated
the existence of global weak solutions of the stochastic Euler equations. In particular, by exploiting the
structure of the noise, with a suitable radial symmetry and of transport type in Stratonovich form, respec-
tively, the authors proved the existence of weak solutions which are strong from the probabilistic point
of view. However, none of the above-mentioned frameworks can be applied to (1.1), since the driving
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noise is multiplicative in nature. We also mention recent works [10,11,30] on Euler equations driven by a
multiplicative noise.

1.2. Aim of the paper

In general, the vanishing viscosity limit of the stochastic Navier–Stokes equations (1.2) is not a solution
to the corresponding Euler equations (1.1), since the uniform bounds cannot guarantee the convergence
of the nonlinear term. In other words, when one considers a sequence of dissipative1 weak martingale
solutions (see Definition 3.1) to the incompressible Navier–Stokes equations (1.2) which are uniformly
bounded in L2 (see (4.1)), then a weak limit in L2 obtained through vanishing viscosity does not satisfy
the stochastic Euler equation (1.1) in the usual sense of distributions because of the appearance of oscil-
lations and concentrations. The main issue that hinders convergence in the nonlinear term divx(uμ ⊗uμ)
requires enough regularity of the velocity to properly compute the limit μ → 0, e.g., see [9–11]. On this
basis, we state that the existence of dissipative weak solutions for the stochastic Euler equations (1.1)
are open in 3D, as in the convergence of the inviscid limit from the stochastic Navier–Stokes (1.2) for
general initial data. The global existence theory of dissipative weak solutions to the stochastic Euler
equations (1.1) in three-dimensional space has not been established. We make an effort to find a way of
obtaining the existence result of a dissipative weak solution to the stochastic Euler equations (1.1) under
special conditions. We observe that existence theories for the stochastic Euler equations are relevant to
the mathematical theories of numerical analysis. Euler equations are fundamental for turbulence [17] and
Kolmogorov assumption is well accepted in the field of fluid turbulence. Therefore, the main aim of this
paper is to study the vanishing viscosity limit of the stochastic Navier–Stokes equations (1.2) under the
well-known hypothesis by Kolmogorov [34–36]. Particularly, we are interested in investigating such limits
of global weak martingale solutions from the stochastic incompressible Navier–Stokes equations (1.2) to
the corresponding stochastic Euler equations (1.1) under the weaker Kolmogorov-type hypothesis, which
was particularly motivated by [12,40] for incompressible fluids and [13] for compressible fluids. Com-
pared to the previous work of Chen and Glimm [12], the special features of the stochastic Navier–Stokes
equations (1.2) bring some difficulties to the mathematical analysis. Specifically, due to the additional
probability variable, it is hard to obtain strong convergence of weak solutions to stochastic Navier–Stokes
equations (1.2) in the given probability space. To overcome this difficulty, we need to use the so-called
stochastic compactness. The main tool is Skorokhod’s representation theorem in our analysis.

The manuscript is organized as follows. In Sect. 2, we first introduce mathematical setting, assump-
tions, and preliminary result. Then we give the definition of finite energy weak martingale solutions for
the incompressible fluid flow equations driven by a multiplicative noise and state the main results of
this article in Sect. 3. In Sect. 4, we give details of a priori estimates, space regularity estimates and
time regularity estimates. In Sect. 5, we demonstrate the convergence of finite energy (dissipative) weak
martingale solutions to the stochastic Navier–Stokes equations (1.1), using stochastic compactness, to
show the existence of a finite energy weak martingale solution to the stochastic Euler equations (1.1)
under the weak version of Kolmogorov hypothesis.

1Here a dissipative weak solution means a weak solution with finite energy inequality.
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2. Mathematical setting

Function spaces: Let C∞
div(T

3;R3) be the space of infinitely differentiable three-dimensional vector fields
u on T

3, satisfying ∇ · u = 0.

C∞
div(T

3;R3) = {ϕ ∈ C∞(T3;R3) : ∇ · ϕ = 0}.

L2
div(T

3;R3) = clL2(T3)C
∞
div(T

3;R3) = {ϕ ∈ L2(T3;R3) : ∇ · ϕ = 0}.

In a similar fashion, we denote by Hα
div(T

3) the closure of C∞
div(T

3) in Hα(T3;R3), for α ≥ 0. Identifying
L2
div(T

3) with its dual space (L2
div(T

3))′ and identifying (L2
div(T

3))′ with a subspace of H−α(T3) (the
dual space of Hα(T3)), we have Hα

div(T
3) ↪→ L2

div(T
3) ≡ (L2

div(T
3))′ ↪→ H−α

div (T3), and we can denote the
dual pairing between Hα

div and H−α
div by 〈·, ·〉 when no confusion may arise, see [24].

Moreover, we set D(A) := H2
div(T

3) and define the linear operator A : D(A) ⊂ L2
div(T

3) → L2
div(T

3)
by Au = −Δu. We then define the bilinear operator B(u,v) : H1

div × H1
div → H−1

div as

〈B(u,v), z〉 :=
∫

T3

z(x) · (u(x) · ∇)v(x) dx, for all z ∈ H1
div(T

3).

Note that the bilinear operator B can be extended to a continuous operator

B : L2
div(T

3) × L2
div(T

3) → D(A−α) = H−2α
div

for all α > 5
4 , for details consult [24]. A straightforward computation using incompressibility condition

reveals that

〈B(u,v), z〉 = −〈B(u, z),v〉 = −〈u ⊗ v,∇z〉 (2.1)

for all u,v ∈ H1
div(T

3) and z ∈ C∞
div(T

3).
Helmholtz projection : An important consequence of elliptic theory is the existence of Helmholtz’s
decomposition. It allows to decompose any vector-valued function in L2(T3;R3) into a divergence free
part and a gradient part. Set

(L2
div(T

3;R3))⊥ := {u ∈ L2(T3;R3)|u = ∇ψ, ψ ∈ H1
div(T

3;R)}.

Helmholtz’s decomposition is defined by

u = PHu + QHu, for any u ∈ L2(T3;R3),

where PH is the projection from L2(T3;R3) to L2
div(T

3;R3) and QH = I − PH is also a projection from
L2(T3;R3) to (L2

div(T
3;R3))⊥. Note that L2(T3;R3) admits a decomposition

L2(T3;R3) = L2
div(T

3;R3)⊕(L2
div(T

3;R3))⊥.

This decomposition is orthogonal with respect to L2(T3;R3)-inner product. By property of projection
PH , we have for u ∈ L2(T3;R3)

〈PHu, ψ〉 = 〈u, ψ〉, for all ψ ∈ L2
div(T

3;R3). (2.2)

2.1. Stochastic framework

Here we specify details of the stochastic forcing term.
Brownian motions: Let (Ω,F, (Ft)t≥0,P) be a stochastic basis with a complete, right-continuous filtra-
tion. The stochastic process W is a cylindrical (Ft)-Wiener process in a separable Hilbert space U. It is
formally given by the expansion

W (t) =
∑

k≥1

ekβk(t),
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where {βk}k≥1 is a sequence of mutually independent real-valued Brownian motions relative to (Ft)t≥0

and {ek}k≥1 is an orthonormal basis of U. Finally, we define the auxiliary space U0 ⊃ U via

U0 :=
{

u =
∑

k≥1

γkek;
∑

k≥1

γ2
k

k2
< ∞

}

,

endowed with the norm

‖u‖2U0
=

∑

k≥1

γ2
k

k2
, u =

∑

k≥1

γkek.

Note that the embedding U ↪→ U0 is Hilbert–Schmidt. Moreover, P-a.s., trajectories of W are in C([0, T ];U0).
Multiplicative noise : For each u ∈ L2(T3;R3), we introduce a mapping σ(u) : U → L2(T3;R3) given
by

σ(u)ek = σk(u(·)).
In particular, we suppose that the coefficients σk : R3 → R

3 are C1-functions that satisfy the following
conditions, for every ξ, ζ ∈ R

3,
∑

k≥1

|σk(ξ)|2 ≤ D0(1 + |ξ|2), (2.3)

∑

k≥1

|σk(ξ) − σk(ζ)|2 ≤ D1|ξ − ζ|2. (2.4)

The assumption (2.3) imposed on σ implies that

σ : L2(T3;R3) → L2(U;L2(T3;R3)),

where L2(U;L2(T3;R3)) denotes the space of Hilbert–Schmidt operators from U to L2(T3;R3). Thus,
given a predictable process u ∈ L2(Ω;L2(0, T ;L2(T3;R3))), the stochastic integral

t∫

0

σ(u) dW =
∑

k≥1

t∫

0

σk(u) dWk

is a well-defined (Ft)-martingale taking values in L2(T3;R3); see [6, Sect. 2.3] for a detailed construction.

2.2. Preliminary result

In this subsection, we state the convergence theorem for stochastic integrals. This result will be used
below to facilitate the passage to the limit in the Navier–Stokes equations. The proof of the following
result can be found in [18, Lemma 2.1]. We also refer to [1, Lemma 4.1] for a improved version of the
following result.
Lemma 2.1. Let

(
Ω,F,P

)
be a complete probability space and Y a separable Hilbert space. For n ∈ N, let

Wn be a (Ft)-cylindrical Wiener process and let Gn be a (Ft)-predictable measurable stochastic process
ranging in L2(U;Y ). Suppose that

Wn → W in probability in C([0, T ];U0),
Gn → G in probability in L2(0, T ;L2(U, Y )),

where W is a cylindrical Wiener process adapted to a filtration (Ft)t ≥ 0, and G is (Ft)-progressively
measurable. Then

·∫

0

GndWn →
·∫

0

GdW in probability in L2(0, T ;Y ).
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2.3. Kolmogorov hypothesis

Here we give the details of the Kolmogorov hypotheses for incompressible fluids and the corresponding
Kolmogorov-type hypothesis in mathematical terms. This is a standard criterion to ensure the convergence
of weak solutions of Navier–Stokes equations to a weak solution of Euler equations. This criterion is
inspired from well-known experimental and theoretical concepts in the study of turbulent flows (see [32]
for review). It is based on the energy spectrum Eμ(t, j) associated with a vector field uμ, defined as

Eμ(t, j) =
1
2
E

⎛

⎝
∑

|ĵ|=j,ĵ∈Z3

|ûμ(t, ĵ)|2
⎞

⎠ , ∀ j ∈ N,

where ûμ(t, ĵ) is ĵth Fourier coefficient of u, defined as

ûμ(t, ĵ) =
∫

T3

uμ(x, t) exp−ix·ĵ dx.

Note that the kinetic energy is obtained as a sum

1
2
E

∫

T3

|uμ(t)|2 dx =
∑

j∈N

Eμ(t, j).

For this subsection, we closely follow [12]. Note that two fundamental assumptions for the isotropic
incompressible turbulence were proposed by Kolmogorov [34–36]:

(a). At sufficiently high wave numbers, the energy spectrum Eμ(t, j) can depend only on the fluid
viscosity μ, the dissipation rate ε and the wave number j.

(b). Eμ(t, j) should be independent of the viscosity μ as the Reynolds number tends to infinity:

Eμ(t, j) ≈ α ε2/3j−5/3, (2.5)

in the limit of infinite Reynolds number, where α depends on t, but is independent of dissipation
rate ε and wave number j.

Under the above Kolmogorov’s two hypotheses, Chen–Glimm [12,13] interpreted in mathematical terms
for the incompressible and compressible Kolmogorov-type hypothesis in deterministic setting. Similarly,
here we generalize them for the stochastic fluid equations as follows.

Assumptions (K41)

For any T > 0, there exist constants CT > 0 and M ∈ N, depending on initial data but independent of
viscosity μ, such that

T∫

0

Eμ(t, j) dt ≤ CT j−5/3, ∀ j ≥ M. (2.6)

For our analysis, the following weaker version of Assumption (wK41) is sufficient.
Weaker version of Kolmogorov hypothesis (wK41) 2

2In [12,13,40], the authors refer this type of condition as a weaker version of Kolmogorov hypothesis.
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For any T > 0, there exist positive constants CT > 0 and M ∈ N, depending on initial data u0 but
independent of the viscosity μ, such that for j = |ĵ| ≥ M ,

sup
|ĵ|=j ≥ M

⎛

⎝j3+γ
E

T∫

0

|ûμ(t, ĵ)|2dt

⎞

⎠ ≤ CT , (2.7)

for some γ > 0.

3. Definitions and main results

3.1. Incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations driven by noise is studied by Flandoli & Gatarek in [24],
[11, Theorem 2.13] where the authors proved the existence of a dissipative weak martingale solutions to
the stochastic Navier–Stokes equations (1.2).

Definition 3.1. (Dissipative weak martingale solution) Let α > 5
4 and Λμ be a Borel probability measure

on L2
div(T

3). Then
[(

Ωμ,Fμ, (Fμ,t)t≥0,Pμ

)
;uμ,Wμ

]
is a dissipative weak martingale solution of (1.2) if

(a)
(
Ωμ,Fμ, (Fμ,t)t≥0,Pμ

)
is a stochastic basis with a complete right-continuous filtration,

(b) Wμ is a (Fμ,t)-adapted cylindrical Wiener process,
(c) the velocity field uμ is a L2

div(T
3)-valued progressively measurable process and P−a.s.

uμ(·, ω) ∈ C([0, T ];H−2α
div (T3)) ∩ L∞(0, T ;L2

div(T
3)) ∩ L2(0, T ;H1

div(T
3))

(d) Λμ = Pμ ◦ [
uμ(0)

]−1,
(e) for all ϕ ∈ H2α

div(T
3), P-a.s., for all t ∈ [0, T ],

〈uμ(t),ϕ〉 = 〈uμ(0),ϕ〉 −
t∫

0

〈B(uμ(s),uμ(s)),ϕ〉ds + μ

t∫

0

〈Δuμ(s),ϕ〉ds

+

t∫

0

〈PHσ(uμ(s)),ϕ〉dW (s),

(3.1)

(f) for all φ ∈ C∞
c ([0, T )), φ ≥ 0, P-a.s.,

−
T∫

0

∂tφ

∫

T3

1
2
|uμ(t)|2 dx dt + μ

T∫

0

φ

∫

T3

|∇xuμ(t)|2 dx dt ≤ φ(0)
∫

T3

1
2
|uμ(0)|2

+
∞∑

k=1

T∫

0

φ

(∫

T3

PHσk(uμ(t)) · uμ(t) dx

)

dWk(t) +
1
2

∞∑

k=1

T∫

0

φ

∫

T3

|PHσk(uμ(t))|2 dt (3.2)

holds.

Remark 3.2. Note that, in the view of Skorokhod [39], it is possible to consider,
(
Ωμ,Fμ,Pμ

)
=

(
[0, 1],B([0, 1]),LR

)
,

for every μ. However, it is worth noticing that it may not be possible to obtain a filtration that is
independent of μ, due to lack of pathwise uniqueness for the underlying system.
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3.2. Incompressible Euler equations

Definition 3.3. (Dissipative weak martingale solution) Let α > 5
4 and Λ be a Borel probability measure

on L2
div(T

3). Then
[(

Ω,F, (Ft)t≥0,P
)
;u,W

]
is a dissipative weak martingale solution of (1.1) if

(a)
(
Ω,F, (Ft)t≥0,P

)
is a stochastic basis with a complete right-continuous filtration,

(b) W is a (Ft)-adapted cylindrical Wiener process,
(c) the velocity field u is a L2

div(T
3)-valued predictable measurable process and P−a.s.

u(·, ω) ∈ C([0, T ];H−2α
div (T3)) ∩ L∞(0, T ;L2

div(T
3))

(d) Λ = P ◦ [
u(0)

]−1,
(e) for all ϕ ∈ C∞

div(T
3), P-a.s., for all t ∈ [0, T ],

〈u(t),ϕ〉 = 〈u(0),ϕ〉 −
t∫

0

〈B(u(s),u(s)),ϕ〉ds +

t∫

0

〈PHσ(u(s)),ϕ〉dW (s), (3.3)

(f) for all φ ∈ C∞
c ([0, T )), φ ≥ 0, P-a.s.,

−
T∫

0

∂tφ

∫

T3

1
2
|u(t)|2 dx dt ≤ φ(0)

∫

T3

1
2
|u(0)|2

+
∞∑

k=1

T∫

0

φ

(∫

T3

PHσk(u(t)) · u(t) dx

)

dWk(t) +
1
2

∞∑

k=1

T∫

0

φ

∫

T3

|PHσk(u(t))|2 dt (3.4)

holds.

3.3. Statements of main results

We now state the main results of this paper. The result states the inviscid limit of the stochastic Navier–
Stokes equations.

Theorem 3.4. Let u0 ∈ Lp(Ω;L2
div(T

3)) for all p ≥ 1. Let
[(

Ω,F, (Fμ,t)t≥0,P
)
;uμ,Wμ

]
be a family of

dissipative weak martingale solutions to the stochastic Navier–Stokes equations (1.2) in the sense of
Definition 3.1 and satisfying the weaker version of Kolmogorov hypothesis (wK41) (2.7). Then there
exists a sequence

[(
Ω̃, F̃, (F̃μn,t)t≥0, P̃

)
; ũμn

, W̃μn

]
of dissipative weak martingale solutions to the Navier–

Stokes equations and a dissipative martingale solution
[(

Ω̃, F̃, (F̃t)t≥0, P̃
)
; ũ, W̃

]
to the stochastic Euler

equations (1.1) in the sense of Definition 3.3 such that P̃-almost surely,

ũμn
→ ũ in L2(0, T ;L2

div(T
3)).

Remark 3.5. Please note that compared to deterministic work [12], due to the time regularity of Itô
integral, one need bounded higher-order moment (i.e., u0 ∈ Lp(Ω;L2

div(T
3))) to get the uniform bound

in the sufficient regular Sobolev space (see Proposition 4.2).

4. A priori estimates

4.1. Uniform L2- estimate

In what follows, we can now derive a priori bounds from the above energy inequality (for details see [11]).
Indeed, after taking pth power and expectation of both sides (1.1), making use of Gronwall’s and BDG
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inequality, we immediately get the following uniform bounds in n, for all p ≥ 1,

E
[

sup
t∈[0,T ]

‖uμ(t)‖p
L2

div(T
3;R3)

]
+ E

∣
∣
∣
∣

T∫

0

‖√
μ∇uμ‖2L2(T3)ds

∣
∣
∣
∣

p/2

≤ C
(
1 + E‖u0‖p

L2
div(T

3;R3)

)
. (4.1)

4.2. Space regularity estimate

Proposition 4.1. Let u0 ∈ L2(Ω;L2
div(T

3)). Let uμ be a weak martingale solution to the stochastic Navier–
Stokes equations (1.2) with initial data u0. Under the assumption (2.7), for any T > 0 and any β ∈
(0, γ/2), there exists a positive constant C, independent of μ > 0, such that

E‖uμ‖2
L2(0,T ;Hβ

div(T
3))

≤ C (1 + E‖u0‖2L2
div(T

3)). (4.2)

Proof. Using the definition of fractional derivatives via Fourier transform, Parseval identity, and assump-
tion (2.7), we have for all β ∈ (0, γ/2),

E‖uμ‖2
L2(0,T ;Hβ

div(T
3))

≤ E

⎛

⎝

T∫

0

⎛

⎝
∑

ĵ∈Z3

|ĵ|2β |ûμ(ĵ, k)|2
⎞

⎠ dt

⎞

⎠

= E

⎛

⎝

T∫

0

⎛

⎝
∑

0≤ |ĵ|≤ M

|ĵ|2β |ûμ(ĵ, k)|2
⎞

⎠ dt

⎞

⎠ + E

⎛

⎝

T∫

0

⎛

⎝
∑

|ĵ|> M

|ĵ|2β |ûμ(ĵ, k)|2
⎞

⎠ dt

⎞

⎠

≤ M2β
E‖uμ‖2L2

div(0,T ;L2(T3)) + C
∑

|ĵ|>M

|ĵ|2β−3−γ

≤ C M2β(1 + E‖u0‖2L2
div(T

3)) + C
∑

j> M

j2 · j2β−3−γ

≤ C M2β(1 + E‖u0‖2L2
div(T

3)) + C
∑

j∈N

j2β−1−γ

≤ C M2β(1 + E‖u0‖2L2
div(T

3)) + Cβ (where Cβ =
∑

j∈N

j2β−1−γ <∞)

≤ C(T,M, β)< ∞.

This completes the proof. �

4.3. Time regularity estimate

Proposition 4.2. Let u0 ∈ Lp(Ω;L2
div(T

3)) for all p > 2. Let uμ be a finite energy weak martingale solution
to the stochastic Navier–Stokes equations (1.2) with initial data u0. Then for every ν < 1

2 , and m > 5
2 ,

there exists a positive constant C such that for all p > 2,

E‖uμ‖p

W ν,p
(
[0,T ];H−m

div (T3)
) ≤ C(1 + E‖u0‖p

L2
div(T

3)
). (4.3)

Proof. For convenience, we rewrite the equation (1.2) as

∫

T3

uμ(t) · ϕ dx =
∫

T3

uμ(0) · ϕ dx +

t∫

0

∫

T3

Iμ(s) : ∇ϕ dx ds +

t∫

0

∫

T3

PHσ(uμ) · ϕ dx dW
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for all t ∈ [0, T ], for all ϕ ∈ C∞
div(T

3), where

Iμ := −μ∇uμ + uμ ⊗ uμ.

Let us consider the functional

〈Iμ(t),ϕ〉 :=

t∫

0

∫

T3

Iμ(s) : ∇ϕ dx ds,

which is related to the deterministic part of the equation. From the embedding L1(T3) ↪→ H−m(T3) for
m > 3

2 , we obtain for m > 3
2 , for all t ∈ [0, T ]

‖uμ(t) ⊗ uμ(t)‖H−m
div (T3) ≤ C ‖uμ(t)‖2L2(T3),

and

‖∇xuμ(t)‖H−m
div (T3) ≤ ‖uμ(t)‖L2(T3).

Then from the energy estimate (4.1) and the above estimate, we deduce for all ν ∈ [0, 1], p ≥ 1, and
m > 5

2 ,

E

[

‖Iμ‖p

W ν,p(0,T ;H−m
div (T3))

]

≤ C(1 + E‖u0‖p
L2

div(T
3)

).

For the stochastic term from [24, Lemma 2.1], we have, for p > 2, for ν ∈ (0, 1/2)

E

[∥
∥
∥
∥

·∫

0

PHσ(uμ)dW

∥
∥
∥
∥

p

W ν,p([0,T ];L2
div(T

3))

]

≤ C(1 + E‖u0‖p
L2

div(T
3)

)

Combining the previous estimates, we conclude for all p ≥ 2, for all m > 5
2 , for all ν < 1

2 ,

E

[

‖uμ‖p

W ν,p([0,T ];H−m
div (T3))

]

≤ C(1 + E‖u0‖p
L2

div(T
3)

).

It completes the proof. �

5. Stochastic compactness

Now, we have all in hand to conclude our compactness argument by showing the tightness of a certain
collection of laws. First, let us introduce some notations which will be used later on. If E is a Banach
space and t ∈ [0, T ], we consider the space of continuous E-valued functions and denote by st the operator
of restriction of the interval [0, t]. To be more precise, we define

st : C([0, T ];E) → C([0, t] : E)

given by

st : g �→ g|[0,t]
.

Clearly, st is a continuous mapping. Let us define the path space

Xu := C([0, T ];H−2α
div (T3)) ∩ L2([0, T ];L2

div(T
3)), and XW = C([0, T ];U0)

equipped with the norms

‖ · ‖u = ‖ · ‖L2(0,T ;L2
div(T

3)) + ‖ · ‖C([0,T ];H−2α
div (T3)), and ‖ · ‖W = ‖ · ‖C([0,T ];U0), (5.1)

where α > 5
4 . Next, we set X = Xu × XW . Let λuμ

denote the law of uμ on Xu and λW denote the law
of Wμ on XW . Their joint law on X is then denoted by λμ.
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5.1. Tightness of laws

Lemma 5.1. The set {λμ;μ ∈ (0, 1)} is tight on X .

Proof. First, we employ an Aubin-Dubinskii-type compact embedding theorem which, in our setting,
reads [24, Theorem 2.1]:

L2(0, T ;Hβ
div(T

3)) ∩ Hν(0, T ;H−m
div (T3)) ↪→↪→ L2(0, T ;L2

div(T
3)).

For M > 0, we define the set for any m > 5/2

B1,M =
{
u ∈ L2(0, T ;Hβ

div(T
3)) ∩ Hν(0, T ;H−m

div (T3)); ‖u‖L2(0,T ;Hβ
div(T

3)) + ‖u‖Hν(0,T ;H−m
div (T3)) ≤ M

}

which is thus relatively compact in L2(0, T ;L2
div(T

3)). Moreover, by estimates (4.2)–(4.3), we have

λuμ
(BC

1,M ) ≤ C

M
.

In order to prove the tightness in C([0, T ];H−2α
div (T3)), we employ the compact embedding [22, Theorem

2.2],

W ν,p(0, T ;H−m
div (T3)) ↪→↪→ C([0, T ];H−2α

div (T3)) (5.2)

where νp > 1 and choose m at the beginning such that m
2 < α. Define

B2,M =
{
u ∈ W ν,p(0, T ;H−m

div (T3)); ‖u‖W ν,p(0,T ;H−m
div (T3)) ≤ M

}

then by (4.3), we have

λuμ
(BC

2,M ) ≤ C

Mp
.

As a consequence, the set BM = B1,M ∩B2,M is relatively compact in Xu. If δ > 0 is given, then for some
suitably chosen M > 0, it holds true that

λμ(BM ) ≥ 1 − δ,

and we obtain the tightness of {λuμ
;μ ∈ (0, 1)}. Since also the law λW is tight as being Radon measure

on the Polish spaces XW , we conclude that also the set of their joint laws {λμ;μ ∈ (0, 1)} is tight and
Prokhov’s theorem therefore implies that it is also relatively weakly compact. �

Having secured all necessary tightness results, we can now apply Skorokhod representation theorem
to extract an almost sure convergence on a new probability space. To that context, we infer the following
result:

Proposition 5.2. There exists a subsequence λuμn
, a probability space (Ω̃, F̃, P̃) with X -valued Borel mea-

surable random variables (ũμn
, W̃μn

) and (ũ, W̃ ) such that

(1) the law of (ũμn
, W̃μn

) is given by λuμn
,

(2) the law of (ũ, W̃ ), denoted by λ, is a Radon measure,
(3) (ũμn

, W̃μn
) converges P̃-almost surely to (ũ, W̃ ) in the topology of X , i.e.,

ũμn
→ ū in C([0, T ];H−2α

div (T3)) ∩ L2(0, T ;L2
div(T

3)), W̃μn
→ W̃ in C([0, T ];U0)).
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5.2. Passing to the limit

Note that, in view of the equality of joint laws, the energy inequality (3.2) and the a priori estimate
(4.1) for the new random variables hold on the new probability space. Making use of convergence results
given by Proposition 5.2, we can now pass to the limit in the approximate equation (1.2) and the energy
inequality (3.2). First we show that the approximations ũμn

solve the equation given by (1.2) on the new
probability space (Ω̃, F̃, P̃). For that purpose, let us denote by (F̃μn

t ) and (F̃t), P̃-augmented canonical
filtration of the process (ũμn

, W̃μn
) and (ũ, W̃ ), respectively. This means

F̃μn

t = σ
(
σ
(
stũμn

, stW̃μn

) ∪ {
N ∈ F̃; P̃(N) = 0

})
, t ∈ [0, T ],

F̃t = σ
(
σ
(
stũ, stW̃

) ∪ {
N ∈ F̃; P̃(N) = 0

})
, t ∈ [0, T ],

ũ is a (F̃t)-predictable H−2α
div (T3)-valued process since it has continuous trajectories. Furthermore, by the

embedding L2(T3) ↪→ H−2α
div (T3), we conclude that

ũ ∈ L2(Ω̃ × [0, T ], P̃ ,dP ⊗ dt;L2
div(T

3)),

where P̃ denotes the predictable σ-algebra associated with (F̃t)t≥0.

Proposition 5.3. For every n ∈ N,
(
(Ω̃, F̃, (F̃μn,t)t≥0, P̃), ũμn

, W̃
)
is a finite energy weak martingale solu-

tion to (1.2) with the initial law Λμn
.

Proof. The proof of the above proposition is standard, and one can furnish the proof following the same
line of argument, as in the monograph by Breit et. al. [6, Theorem 2.9.1]. For brevity, we skip all the
details. �

We remark that, in light of the above proposition, the new random variables satisfy the following equations
and the energy inequality on the new probability space

• for all ϕ ∈ C∞
div(T

3), P̃-a.s., for all t ∈ [0, T ]

〈ũμn
(t),ϕ〉 = 〈ũμn

(0),ϕ〉 −
t∫

0

〈ũμn
(s) ⊗ ũμn

(s),∇xϕ〉ds − μn

t∫

0

〈∇xũμn
(s),∇xϕ〉ds

+

t∫

0

〈σ(ũμn
(s)),ϕ〉dW̃μn

(s),

(5.3)

• the energy inequality, for all φ ∈ C∞
c ([0, T )), φ ≥ 0, P̃-a.s.,

−
T∫

0

∂tφ

∫

T3

1
2
|ũμn

(t)|2 dx dt + μn

T∫

0

φ

∫

T3

|∇xũμn
(t)|2 dx dt ≤ φ(0)

∫

T3

1
2
|ũμn

(0)|2 dx

+
∞∑

k=1

T∫

0

φ

(∫

T3

σk(ũμn
(t)) · ũμn

(t) dx

)

dW̃μn,k(t) +
1
2

∞∑

k=1

T∫

0

φ

∫

T3

|PHσk(ũμn
(t))|2 dt, (5.4)

holds.

Now we are in a position to pass to the limit in μn in (5.3) and (5.4). To see this, note that we have a
priori estimate (4.1) for the new random variable. With the help of strong convergence of ũμn

, Lemma
2.1 and the assumptions (2.3) on the coefficients σk, we can pass to the limit in all the terms of the
formulation and the energy inequality to conclude that
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• for all ϕ ∈ C∞
div(T

3), P̃-a.s., for all t ∈ [0, T ],

〈ũ(t),ϕ〉 = 〈ũ(0),ϕ〉 −
t∫

0

〈ũ(s) ⊗ ũ(s),∇xϕ〉ds +

t∫

0

〈σ(ũ(s)),ϕ〉dW̃ (s), (5.5)

• the energy inequality, for all φ ∈ C∞
c ([0, T )), φ ≥ 0, P̃-a.s.,

−
T∫

0

∂tφ

∫

T3

1
2
|ũ(t)|2 dx dt ≤ φ(0)

∫

T3

1
2
|ũ(0)|2 dx

+
∞∑

k=1

T∫

0

φ

⎛

⎝

∫

T3

σk(ũ(t)) · ũ(t) dx

⎞

⎠ dW̃k(t) +
1
2

∞∑

k=1

T∫

0

φ

∫

T3

|PHσk(ũ(t))|2 dt (5.6)

holds.
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