Unrestricted quantum moduli algebras, III: surfaces of arbitrary genus and skein algebras - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Unrestricted quantum moduli algebras, III: surfaces of arbitrary genus and skein algebras

Résumé

We prove that the quantum moduli algebra associated to a punctured (finite type) surface and a complex semisimple Lie algebra $\mathfrak{g}$ is a Noetherian, finitely generated ring, and that it has no non-trivial zero divisors. Moreover, we show it is isomorphic to a skein algebra of the surface, defined by means of the Reshetikhin-Turaev functor for the quantum group $U_q(\mathfrak{g})$, and which coincides with the Kauffman bracket skein algebra when $\mathfrak{g}=\mathfrak{sl}_2$.
Fichier principal
Vignette du fichier
ARXIV_version_20:06.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04242557 , version 1 (15-10-2023)

Identifiants

  • HAL Id : hal-04242557 , version 1

Citer

Stéphane Baseilhac, Matthieu Faitg, Philippe Roche. Unrestricted quantum moduli algebras, III: surfaces of arbitrary genus and skein algebras. 2023. ⟨hal-04242557⟩
86 Consultations
43 Téléchargements

Partager

More