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ABSTRACT. We prove that the quantum moduli algebra associated to a possibly punctured
compact oriented surface and a complex semisimple Lie algebra g is a Noetherian and finitely
generated ring; if the surface has punctures, we prove also that it has no non-trivial zero
divisors. Moreover, we show that the quantum moduli algebra is isomorphic to the skein
algebra of the surface, defined by means of the Reshetikhin-Turaev functor for the quantum
group Uq(g), and which coincides with the Kauffman bracket skein algebra when g = sls.
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1. INTRODUCTION

1.1. Context. The quantum moduli algebras have been introduced in the mid '90s by
Alekseev-Grosse-Schomerus [AGS95, [AGS96, [AS96b] and Buffenoir-Roche BR96].
They are associative, non commutative algebras defined over the ground field (C(ql/ b ), quan-
tizing the algebras of functions on the moduli spaces of flat g-connections on surfaces, where
q is a formal variable, g is a complex simple Lie algebra, and D is the corank of the root
lattice of g in the weight lattice (see for the generalization to semisimple Lie algebras).

The main purpose of this paper is to prove that the quantum moduli algebras are Noe-
therian and finitely generated rings, with no non trivial zero divisors when the surface has
punctures, and that they are isomorphic to skein algebras. Theses results should allow one
to study the prime and primitive spectra of the skein algebras similarly as those of quantized
coordinate rings (see eg. [BG02], Part II).

Denote by ¥, the oriented surface with genus g and n punctures (n € N), and by E;’n the
surface with one boundary component, obtained from ¥, ,, by removing an open 2-disk (these
surfaces are pictured in . To g and ¥ ,, one can associate an algebra L, ,(g), endowed
with an action of the Drinfeld-Jimbo (simply-connected) quantum group U, = U,(g) making

Ly7(g9) a module-algebra. The subalgebra of invariant elements Elgj‘}b(g) is the quantum
moduli algebra of g and ¥ ,,. The case g = 0 was studied in [BR22] BR21].

There are at least two areas of good motivations to study the quantum moduli algebras.
On one hand, the definition of L, (g) relies on Hopf algebra and quantum group theory. It
is built by a twisting procedure from 2g + n copies of the quantum coordinate algebra O4(G)
associated to a complex semisimple algebraic group G with Lie algebra g, and it is therefore
a natural problem to study the algebraic structure and representation theory of L, ,(g) and
Lg(9).

On another hand, connections with quantum topology are well-established: for instance,
[AS96a] showed that the Witten-Reshetikin-Turaev representations of the mapping class
groups of surfaces can be recovered from certain representations of Ly ,,(g),

proved (with a slightly different formalism) that [,g,% (sl2) is isomorphic to the Kauffman
bracket skein algebra of ¥y ., and recently these results have been extended in [Fail9al [Fai20a]

and [Fai20bl, [Kor23| respectively. It is a natural problem to extend the isomorphism of Eg‘il (9)
with a skein algebra beyond g = slo. By using such an isomorphism one can naturally expect
that L4, (g), which has an algebraic flavour by definition, provides good tools to study the
skein algebras.
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Our results in this paper make advances on these two families of problems. Firstly, we show
that £, ,,(g) and Eg‘%(g) are Noetherian, finitely generated rings, and have no non-trivial zero
divisors. Such properties are well-known for O,(G) and the subalgebra of invariant elements
under the coadjoint action of U,(g) (see eg. [VY20l Prop. 3.117]). In our context we use also
tools, like filtrations, which are standard for quantum groups, and a version of the Hilbert—
Nagata theorem in invariant theory. The similar result when g = 0 was obtained in [BR21].
The present genus g > 0 case is substantially more complicated.

Our second main result is the construction of an (explicit) isomorphism of E(;n( ) with a
skein algebra associated to the surface Eo . That skein algebra is defined by means of the
Reshetikhin-Turaev functor for the quantum group U, (g), applied to certain ribbon graphs in
¥5n x[0,1]. When g = sly, the isomorphism recovers the one obtained in [BEK98b]. In order
to define it, the main tool is a “holonomy map”, which is an isomorphism relating L, (g)
with an algebra of “stated skeins” on E;:L, the surface obtained from E » Dy removing a
point on the boundary component, in the sense of [Lel8, [CL22], [LS21] and [CKL] for g = sly,
sln41 and any g, respectively. The holonomy map generalizes a construction in [Fai20b, §5]
in the case g = sly. For g = sl;;, 41, the existence of an isomorphism between L, (g) and
a stated skein algebra was obtained in [LS21] by using results from factorization homology
[BBJ1S].

Combining our two results we see that the skein algebra of EO associated to an arbitrary
semisimple Lie algebra g is a Noetherian and finitely generated rmg, and has no non-trivial
zero divisors. These facts were proved in the case g = sly in [Bul99] and [PS19] (including
also the case of closed surfaces), and [F'S22| proved finite generation for g = sl3. For stated
skein algebras of any surface and when g = sly, this was proved in [LY22]. These papers use
geometric techniques based on curves on surfaces. The paper [LY23], which appeared online
after the first version of the present work, studies the skein algebras for g = sl,,41.

Finally, the quantum moduli algebra of ¥, ,,, including the case n = 0, can be defined by
using the notion of quantum reduction developed by several authors and applied to L, (g).
The topological counterpart of this notion is the operation of gluing a 2-disk along the bound-
ary component of E . We describe quantum reduction in detail, especially for £, (g), and
show that the resultlng algebra is a Noetherian and finitely generated ring, indeed isomorphic
to the skein algebra of 3, ,,. For closed surfaces (n = 0), whether or not it has no non trivial
zero divisors is still an open question at this stage.

We can formulate most of our constructions for general quasitriangular Hopf algebras
H, thus obtaining a H-module algebra L, ,(H) and a subalgebra of H-invariant elements
E;{n (H). We do so in the text, and then make the required adaptation to handle the case of
Uq(g), which is quasitriangular only in a categorical completion. Our results are described
with more details in the next subsection.

We note that the algebras £, ,(g) and Eg%(g) have integral forms, which are subalgebras

E;"n(g) and (ﬁén)Ufs () defined over the ground ring A = C[¢"/”,¢~'/P], and such that
res U T : 3 ?

E‘;n(g) ®4 C(ql/D) =Ly n(g) and (E;n)UA (g) @4 C(q 1/D) L45.(g), where U™ is Lusztig’s
restricted quantum group associated to the adjoint quantum group U;d( ). It is because of
integrality properties of the R-matrix of UL® that the twists involved in the definition of
Lyn(g) yield a well-defined algebra structure on E;n(g).

Trivially our first main result implies that E;"n(g) and (Lén)Uﬁes (g) have no non-trivial zero
divisors. By using the Kashiwara-Lusztig theory of canonical basis, we have shown in [BR21]
that Eén(g) is a Noetherian and finitely generated algebra. We expect that these results still
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hold true in genus g > 0. In [BER] we study the algebraic properties and representations of
these algebras when the parameter g is specialized to a root of unity.

1.2. Summary of results. We first give an overview of the definition of L, (H). Let H
be a quasitriangular Hopf algebra with R-matrix R € H®?, and let H° be its restricted dual
(see i} For g,n € N, the algebra L, (H) is the vector space (H°)®(29+“) with a product
“twisted by R”. There is a coadjoint action coad” on Ly, (H), which gives it the structure of
aright H-module-algebra ( In particular we have the subalgebra Lfm(H ) of H-invariant
elements for this action.

The definitions and some results will be given for general H but we are mainly interested
in the case where H is a quantum group. So let g be a complex simple Lie algebra and G be
the simply-connected algebraic Lie group with Lie algebra g; for the extension to semisimple
g, see Fix a formal variable ¢ and denote by U, = Uy,(g) the simply connected Drinfeld-
Jimbo quantum group defined over C(q), by U, ad ~ U, the adjoint quantum group, and by
O, = O4(G) the associated quantized coordmate algebra (see §2.4] - In this situation we

denote the resulting algebra by L, ,(g) or simply L, which is O4(G) 229+1) a5 a C(g"/P)-

vector space (see for the definition of the integer D), and by L’g?l(g) or simply [I(g’{qn the
subalgebra of Ug-invariant elements.

The definition of L, (H) relies on the special cases Lo,1(H) and Lq,(H):

(1) Lon(H) = L1o(H)®I & Lo (H)®"

where & is the braided tensor product in the braided tensor category of right H-modules,
as defined in [Maj92, Lem 9.2.12] and recalled before Proposition Hence the algebras
Lo,1(H) and L1 0(H) play a special role and have to be examined first. The papers [BR22|
BR21] were focused on g = 0 and in particular Lo,1(H). Here we are interested in L, ,,(H) for
arbitrary g. So we start with £49(H) in This algebra is very different from Lo ;(H); for
instance Ly 1( 1s strongly related to H Whlle L1,0(H) is strongly related to the Heisenberg

double of H® -

Here is our ﬁrst main result for the algebra L, := Ly ,(9):

Theorem 1 (Theorems B.8). 1. The algebra Ly, is Noetherian and does not have
non-trivial zero divisors.
2. The algebra Eg‘% is Noetherian and finitely generated.

We note that it is not difficult to prove that L, ,, is finitely generated (Prop. 4.7)) and that
it follows of course from item 1 that Eg‘il does not have non-trivial zero divisors.

Let us discuss a bit how we prove Theorem [1] The main ideas of the proof are similar to
those for £y ,, in [BR22, BR21]; however when g > 0 the presence of the algebra £ o requires
many non-trivial generalizations and new computations.

To prove that L, , is Noetherian, we use filtrations. A filtration for £g; has been intro-
duced in [VY20, §3.14.4]. In §3.4] we modify it in order to define a filtration of £;( and
show that the associated graded algebra is Noetherian, which implies that £ ¢ is Noetherian.
Then in we first define a filtration of £,, whose associated graded algebra transforms
the braided tensor product into a “quasi-commutative” tensor product; this allows us in
a second step to use tensor products of the filtrations of Lo and L1 in order to get an
associated graded algebra which is Noetherian.

The proof of the item 2 of Theorem [I] is based on a generalization of the Hilbert—Nagata
theorem. Let G be a group acting on a graded algebra A in such a way that the action
is compatible with the multiplication and the grading. The Hilbert—Nagata theorem gives
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sufficient conditions for the subalgebra of G-invariant elements of A to be Noetherian and
finitely generated. In §4.4] we generalize this theorem to the case where A is a graded module-
algebra over a Hopf algebra H. We then apply this general result to the case where H = Uqacl
and A is a “graded truncation” of L, .

The fact that £, does not have non-trivial zero divisors is not proven directly but through
a morphism ®,,, called the Alekseev morphism, which we now discuss. In relying on the
formulas given in [Ale94], we define for any quasitriangular Hopf algebra H a morphism of
algebras

Byt Lon(H) = HH(H)® @ HO".

Here HH(H®) is the “two-sided Heisenberg double”, an algebra which we introduce in §5.1]
and which extends the usual Heisenberg double H(H®) recalled in §3.20 For g > 1 it is
necessary to use HH(H®) instead of H(H®) to make sense of the formulas in [Ale94] if H is
not finite-dimensional (this point is explained at the end of . It is important to define and
analyze ®( 1 and ® o first since their properties are used in the proofs for ®,,,. The morphism
P, is well-known in quantum group theory (see eg. [Bau00]), while ®1¢ : L1 0(H) — H(H®)
is defined in following [Ale94].

Let us return to the case H = U;d(g). In that situation @, takes values in HH(0,)®? @
Ufm. We prove that HH(0,)®? ® U((?” does not contain non-trivial zero divisors (Prop. |5.7)
and that ®,,, is injective (Th. , which implies that L, , does not have non-trivial zero
divisors. In [Bau00] it was already proved that ®¢; : Lo1 — U, is injective; moreover, that
paper showed that the image of ®¢; is U;f, namely the subspace of locally finite elements
of Uy for the adjoint action. In Theorem we show a similar result for @4, that is,
Q10 : L1 — H(O,) is injective and its image is the subspace of locally finite elements for an

action of U, on H(O,) that we introduce in

In We relate the algebra L, ,,(H) and its subalgebra of H-invariant elements E;{n (H) to
skein theory. Let H be a ribbon Hopf algebra over a field k, and let Frr : Riby — H-mod
be the Reshetikhin—Turaev functor, which to an H-colored oriented ribbon graph associates
some H-linear morphism [RT90]. Let 3 be an oriented surface, possibly with boundary. The
skein algebra of ¥ associated to H, denoted by Sy (), is the k-vector space generated by the
isotopy classes of H-colored oriented ribbon links (with coupons) modulo the skein relations:

el
> AFrr(T) =0 = Y M{ T | =0in8y(%).
The T; are any ribbon graphs and the A\; € k are any scalars such that the linear equation on
the left holds. The right hand-side represents a linear combination of links which are equal
outside of the cube in ¥ x [0, 1] which is depicted in grey. The product of two links L1, Ly in
Sp(X) is obtained by putting L; below Ly in ¥ x [0, 1].

The stated skein algebra S§y(X) is a generalization of S (X) where one uses ribbon graphs
in ¥ x [0,1] instead of links. The endpoints of these ribbon graphs are required to be in
0% x [0,1] and are labelled by “states” i.e. vectors in H-modules. Each boundary circle of 3
must contain at least one puncture. Stated skein algebras have been introduced and studied
for H = U2(sly) in [L&I8, [CT.22, Kor23] and for H = U2(sln41) in [LS21]. The general
definition of S5¢(X) for any ribbon Hopf algebra H will appear in [CKT]. In the present paper
we will deal with stated skeins for the surface ¥ = X707 obtained by removing one point e
on the circle (%7 ,,). The definition of S;}(E;::l) is explained in as a particular case of
[CKT.
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In [Fai20b, §4.1] a “holonomy map” hol has been defined, which to a H-colored oriented
ribbon graph T in (377) x [0, 1] associates a tensor hol(T) with coefficients in Ly, (H). The
type of the tensor hol(T) depends of the orientation and the number of endpoints of T.
The map hol generalizes the ReshetikhinfTuraev functor to the surfaces ¥7. In we
refine it to a “stated holonomy map” hol*" : EO ) — L4, (H), which is a morphism of
algebras due to the properties of hol. Then in ‘we note that there is a natural algebra
morphism I : Sy (X ,) — S (E;;L) simply obtained by seeing a link as a ribbon graph
without boundary points. When restricted to links hol and hol* are equal and give a
morphism W = hol** o I : Su(¥y,) — L'H . In this way we recover the “Wilson
loop map” W already defined and studled in [BR96 BFK98a] (the latter paper also defined
holonomy for certain tangles called g-nets). Our second main result is:

Theorem 2 (Theorems and . 1. hol*" : S;}(E;;;) — Lgn(H) is an isomorphism of
algebras.
2. If the category H-mod of finite dimensional H-modules is semisimple, then W : Sy (35 ,,) —

Egn(H) is an isomorphism of algebras.
This result is a generalization of [Fai20bl, §5] for the first item and of [BEFK98b| (see [BR22,

§8.2] in our context) for the second item, which proved it for H = U;d(S[Q). If H-mod is

not semisimple the second item fails because in general E;{n(H ) is bigger than im (W), as
explained in §6.4, To sum up:

~

Stated skein algebra Sf}(Z;:;) 5t Lgn(H)

Stated holonomy ho
I & (subalgebra)

~ (if H-mod semisimple) H

Skein algebra Sy (X ) g.n

, (H)
Wilson loop map W

When H-mod is semisimple we get in particular that the morphism I is injective (Corollary
6.12). This is an interesting consequence, because it seems more difficult to prove this fact
by using only skein theory.

Take H = Ugd(g). The category C of type 1 finite dimensional Uqad(g)—modules is semisim-
ple. Write S3'(2570), Sg(5,,) and Sg(Ey,,) for the stated skein and skein algebras of the
respective surfaces Zg o Z; » and g5, where the ribbon graphs are colored by objects and
morphisms in C. They are (C(ql/ Dy_algebras. For g = sly(C) these algebras are respec-
tively the Kauffman bracket skein algebra and the stated skein algebra of [Lél8, [CL22].
For g = sl,+1(C) they can be described in terms of special ribbon graphs called webs
[Sik05), [LS21].

The conjunction of Theorems [1] and [2] finally gives:

Corollary 3. 1. The stated skein algebra S;t(E;:;l) 1s finitely generated, Noetherian and does
not have non-trivial zero divisors.

2. The skein algebra Sg(2 1s finitely generated, Noetherian and does not have non-
trivial zero divisors.

gn)

In §7|we extend our results to the surface ¥,,. It is a fact that the skein algebra Sg(Xg.,)
is a quotient of Sy (X} ,,) (see §7.4). Then the item 2 of Corollary (3| implies

Corollary 4. The skein algebra Sg(34,) is finitely generated and Noetherian.



UNRESTRICTED QUANTUM MODULI ALGEBRAS, III 7

We consider the quantum reduction L7, (H) of L, ,,(H) associated to the counit e: H — k
(see below), and we show that, under suitable hypothesis satisfied eg. in the case of H =
U;d(g), we have:

Theorem 5 ( and . 1. There is a surjective algebra morphism m: ﬁ;{n(H) —
L4 (H).

2. The isomorphism W : Sy(¥,,,) — Ef’n(H) descends to an algebra isomorphism W :
Su(Egn) — LG, (H).

The notion of quantum reduction of module algebras over quantum groups has been in-
troduced in [Lu93] as an analog of Hamiltonian reduction in symplectic geometry [MaWeT4]
(see [AMO9S]| for the broader notion of quasi-Hamiltonian reduction, well-suited to character
varieties of surface groups).

In that setup, one considers a symplectic space X endowed with a Hamiltonian action of a
Lie group G generated by a moment map % : X — g*, and the reduction procedure describes
symplectic leaves in X/G as quotients (u)~(C)/G, where C is a coadjoint orbit in g*.

In the quantum setup one works dually, and considers a module algebra A over a Hopf
algebra H. The quantum moment map is a morphism of algebras pu: H' — A, where H' ¢ H
is a coideal subalgebra, and p satisfies an equation which guarantees that it generates the
action of H' on A. The reduction procedure describes algebras of invariant elements in certain
quotients of A, defined by means of y and characters of H'.

An ansatz of quantum reduction was implemented in [Ale94] and [BNRO2]. Its proper
definition and fundamental properties were settled in [VV10], which applied it to double
affine Hecke algebras (which are closely related to £i0(g)). Quantum reduction was also
applied to quivers in [Jorl4] and [GJS19], where it was axiomatized in a categorical setting.

In the case H = U;d(g), the quantum reduction in Theorem |5|is obtained from a quantum

moment map fi: Uéf(g) — L4 ,(g), where Uéf(g) C Uy(g) is the subalgebra of locally finite
elements (which is known to be isomorphic to O4((G)), and one uses the counit € as a character
of U;f. In the case ¢ = 1, p is essentially the quantum moment map denoted by d4 in
Proposition 1.8.2 of [VV10], and for g = gl,,,; and arbitrary genus g, it coincides with the
quantum moment map of [Jor14].

For the reader’s convenience, before we prove Theorem [5| we recall the general setup of
quantum reduction (, and we describe the quantum moment map y leading to £, (H),
providing all arguments we did not find in the litterature (§7.2)). In particular there is a
subtlety in the normalization of y (see Remark .
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Universe” - 390833306.

2. PRELIMINARIES

The notations and conventions used in this paper agree with those from [BR21].
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2.1. Hopf algebras. Let H be a Hopf algebra over a field & (see e.g. [Kas95, Chap. III] or
[CP94] §4.1]). We denote by

A:H— H®H, e:H—k, S:H—H
the coproduct, counit and antipode of H. The unit of H is denoted by 1. We occasionally
write Ay, g, Sg, 1g if there is an ambiguity. We assume that the antipode S is invertible.

For an element X € H®" we use the notation X = Z(X) X(1)®...® X, as a substitute
for X = Zz X(l),i R...xQ X(n),z

For the coproduct we write A(h) = >, ha) ® h(z) (Sweedler’s notation) instead of
> amy) Alh) ) @ A(h)(g). The opposite coproduct, denoted by AP, is defined by A°P(h) =
Z(h) h(z) ® h(1). The co-opposite Hopf algebra H®P is the algebra H endowed with the
coproduct A the counit ¢ and the antipode S71.

In § and [5| H is a quasitriangular Hopf algebra as defined e.g. in [CP94l §4.2] or
[Kas95, §VIIL2]. We write the R-matrix of H as R = ) Ry ® Ry € H®% In :ﬁ we

moreover assume that H is a ribbon Hopf algebra, which means that it contains an element
v with the properties listed e.g. in [Kas95l §XIV.6] or [CP94, §4.2.C]; in particular

(2) v is central and A(v) = (v ® v)(R'R)!,
where R’ = >r) B2 ® Ruy. Let u = 7z S(R2))Ra) be the Drinfeld element, then

— uv ™! is the pivotal element of H. It satisfies A(g) = g ® g and S?(h) = ghg™! for all
h e H.

Let H* = Homy(H, k) be the dual vector space of H. For a finite-dimensional H-module
Vand v € V, f € V¥, we define y¢! € H* by ¢! (h) = f(h-v), where - is the action of
H on V. The linear form v/ is called a matriz coefficient of V. When a basis (vj) of V' is
given we allow ourselves to write ng; instead of ngz; for a better readability, where (’UZ) is
the dual basis. The restricted dual of H, denoted by H°, is the subspace of H* spanned by
the matrix coefficients of finite-dimensional H-modules. Let us set

dim(V)
) vl woly = vewdlay, Alyeh) = > v ovel,
k=1
lgo = k¢1, e(veh) =iy, Sveh) = ve¢]

or in other words

e =(peyP)oh, Alp)z@y) =¢(ry), lmo=e &(p)=¢(1), Sp)=¢oS
for all ¢ € H°. Then H° is a Hopf algebra. The above formula for A(¢p) is not well-defined
for a general ¢ € H™*, which explains the relevance of H°. If H is finite-dimensional then
H° = H* because ¢ = g¢f for all o € H*.
Let C be a full subcategory of H-mod (the category of finite-dimensional H-modules) such
that the trivial module & is in C and if V,W € C then V@ W € C and V* € C. Let H¢ be

the subspace of H° spanned by the matrix coefficients of the objects in C. It is clear from
that Hp is a subalgebra of H°.

2.2. Filtrations of algebras. Let (5, <) be an ordered abelian monoid and let A be an
associative k-algebra (k is a field). If F' = (F¥)scg is an algebra filtration of A indexed by
S, we denote by grp(A) = @,cq8rp(A)s the associated graded algebra which is defined by
grp(A)s = F°/F<°, where F<* =3 __F" and endowed with the product

(CL+ F<S)(b+ F<t) = ab + F<(s+t)
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for a € F* and b € F*.

Assume now that A has a decomposition A = @, 4 X, as a k-vector space, where the
family of subspaces X = (X;)ses is such that X, X, C ®t§r+s X; for all r,s. Assume
moreover that the partial order < on S satisfies

(4) Vr,se S, dmesS, r<mands<m

or in other words that any finite subset of S has an upper bound. Define ¥°(X) = , -, X,.
Then %(X) = (ES(X))Ses is a filtration of the algebra A. The condition A = J,cg $5(X)
follows from (). Moreover, ¥<°(X) = @, ., X, so that grs, x)(A) can be identified with
D.cs X as graded vector spaces, and under this identification the product o in gry, x)(4) is

roy = mis(zy)

where z € X,., y € X, xy is the product in A and w45 : X" 75(X) — X, is the canonical
projection. All the filtrations used in the subsequent sections are of this form.

Recall that an order relation < is called well-founded if any decreasing chain s; > s > ...
is eventually constant. The relevance of filtered algebras in the present paper comes from the
following criterion :

Lemma 2.1. Assume that the order relation < on S is well-founded and let F = (F*®)scg be
a filtration of A. If grp(A) is Noetherian, then A is Noetherian.

See e.g. [VY20, Lem. 3.130] for the proof. We note that the converse statement is false in
general (see [MCRO1], §1.6.9] for a simple counter-example).

A strategy to prove the Noetherianity of some algebra A is then to find a filtration F' of
A such that grp(A) is simpler to analyze. For the algebras A considered in this paper, we
will define F' in such a way that the following criterion from [BG02, Prop. 1.8.17] applies to

grp(A):

Lemma 2.2. If an associative k-algebra is generated by elements uy, ..., Uy, such that
j—1 m
V1i<j<i<m, wuuj=qjuju;+ Z ( g + 5stutus>
s=1 t=1

for certain scalars g;; € k™, aﬁ, g € k, then it is Noetherian.
Finally, we record two classical transfer results:

Lemma 2.3. Assume that the order relation < on S is well-founded and let F = (F*®)scg be
a filtration of A. If grp(A) is finitely generated, then A is finitely generated as well.

Proof. The easy proof by well-founded induction is left to the reader. O

We say that F' = (F®)seg is locally bounded below if for each nonzero element a € A the
set of all s € S such that a € F° has a minimal element. We have (see e.g. [MCRO1) §1.6.6]
r [VY20, Lem. 3.130]):

Lemma 2.4. Assume that (S, <) is totally ordered and F' = (F*®)scs is a filtration of A which
is locally bounded below. If grp(A) has no non-trivial zero divisors, then A has no non-trivial
zero divisors as well.
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2.3. Semisimple Lie algebras. Let g be a finite-dimensional complex simple Lie algebra;
one can more generally adapt the notations to handle the case of finite-dimensional complex
semisimple Lie algebras, by replacing D below with the lowest common multiple of the
corresponding integers for the simple components of g. Here we fix the notations regarding
g.

We denote by m the rank of g and its Cartan matrix by (a;;). We fix a Cartan subalgebra
h C g and a basis of simple roots «; € hr. Let by be the associated Borel subalgebras. We
denote by N the number of positive roots of g.

Let dy,...,dy, be the unique coprime integers such that the matrix (d;a;;) is symmetric.
There is an inner product (—, —) on by defined by (a;, ;) = d;a;; on the simple roots. The
simple coroots are o = di_lozi for every 1 < i < m, so that (o, ) = 2.

The root lattice is Q@ = @;~, Za; C hi. The weight lattice P is the Z-lattice formed by
all the \ € bi satisfying (), ;) € Z for every i. The fundamental weights w;, 1 < i < m,
are defined by (w;, aJV) = §;;j for all j. Then P = ;| Zw;. We have Q C P and we denote
by D the smallest positive integer such that DP C ). Note that D is also the corank of Q
in P.

The cone of dominant integral weights is Py = ;" Nw;. We also put Q4 = @."; Na;.
Note that Q4 ¢ P,. But P, € D™'Q., which is due to the classical fact that the inverse of
the Cartan matrix has coefficients in DN,

The standard partial order < on P is defined by A < p if and only if p — A € Q4. We will
need another partial order < on P, defined by A\ < p if and only if 4 — A € D7'Q.. Note
that A < p implies A < u. The advantage of < is that it satisfies the condition , contrarily
to <.

2.4. Quantum group U,(g). Let g be a semisimple finite-dimensional Lie algebra of rank m
and let C(q) be the field of fractions of C[q], where ¢ is an indeterminate. The simply connected
quantum group U, = U,(g) is the C(q)-algebra generated by E;, Fj, Lii1 for 1 < i < m modulo
the relations
LFLF' =1,  LiLj=LjL, LE=q¢"EL, LF;=q “FL,
K, — K;*
a%—q "
g-Serre relations (see e.g. [VY20, Def. 3.13])
where ¢; = ¢% and for u = 37" | njw; € P we set K,=1[" LY and K; = Ko, = H;nzl L;Lji.
The Hopf algebra structure on Uy is given by
AE)=FoK +10E, A(F)=Fol1+K '®F, A(L)=L;®L;,
S(E;) = ~EK; !, S(F;) = —K;F;, S(L;) =L;*,
E(El) = 0, E(Fz) = O, €(Li) =1.
We denote by Uy(h), Us(ny) and Uy(n_) the subalgebras of U, generated respectively by
(Kp)uep, (Ei)i<i<m and (Fi)i<i<m.
The adjoint quantum group U;d = U;d(g) is the Hopf subalgebra of U, generated by the
elements E;, F;, K;. In particular K, € U;d for all o € Q.

Fix a reduced expression s;, ... s;, of the longest element wg of the Weyl group of g, where
as usual s; : bg — bg, a; — «a; — ajjoy. This expression induces a total ordering of the
positive roots:

E;F; — F,E; = 6,

ﬁl = Oy, /Bk = Si; --- Sikfl(aik)
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for all 2 < k < N. The root vectors of U, associated to this ordering are
Eg =FE;, Eg, =T, ... T;, ,(E;,), Fp F, Fg, =T; ... T;, ,(Fi,)

i1 \ ik 1=

for all 2 < k < N, where the T; are Lusztig’s algebra automorphisms whose defining formulas
can be found e.g. in [VY20, Th. 3.58]. We record that for any u € P,

(5) K, Ep, = WP Es K,  K.Fs, =q "“FyK,.

For t = (t1,...,ty) € NV, p€ Pand s = (sy,...,sy) € NV consider the monomial
(6) X(t,p,s) = FgN .. FK,E5N .. ES.

It is a theorem that these monomials form a basis of Uy, called the Poincaré-Birkhoff- Witt
basis (PBW basis). In particular the elements X (0,0,s) form a basis of Uy(ny) (where 0 =
(0,...,0)), the elements X (t,0,0) form a basis of Uy(n_) and the elements K, = X (0, i, 0)
form a basis of Uy(h).

Recall that the height of an element in @ is ht (3, kjo;) = >, ki, and let

N

ho (X (6, 1,5)) = 3 (1 + s0)he(5).

i=1
Then the degree of X (t, u,s) is defined as
d(X(t,,u,s)) = (SN, e, S EN, .. ,tl,ht(X(t,u,s))) e N2V+L
The set N2V *1 i5 a totally ordered additive monoid for the lexicographic order given by
(7) (1,0,...,0) < (0,1,0,...,0) <...<(0,...,0,1,0) < (0,...,0,1).

For m € N?N*! denote by Fiit.k the subspace of U, spanned by the monomials X (t, 1, s) of
degree < m. It was shown in [DCK90), Prop 1.7] that (Fpti)menzv+1 is an algebra filtration
of U, and that the graded algebra grz . (U;) is quasi-polynomial, generated by the cosets

— <d(Eg. _— <d(Fp, — d(K,
B = o+ Foor " B = Fs + Fpox s Ky = Ky + Fpiil”)
for 1 <i < N and v € P (note that fggg{“) = 0 since d(K ) = 0), modulo the relations
® Ep, Bs, = """ Es By, Fp, Fy, = """ F5 Fs, Ep Fs, = Fp, Ep,
Lon P ors A o PR h o ol ow o owed

The following facts describe the effect of the coproduct A on the filtration Fpck; this will
be useful later.

Proposition 2.5. We have
A(Eg,) = Eg, ® Kg, + Y _ cxX(0,0,58}) ® X (0, g, s§) + 1 @ Ep,
k

with ht(X(0,0,s},)) < ht(B;) and ht(X (0, uy,sy)) < ht(8;) for all k, and ¢ € C(g). Simi-
larly
A(Fﬁj) = Fﬁj ®1+ deX(t;q, Vi, 0) & X(t%, 0, 0) + K_ﬁj (4 Fﬁj
k

with ht (X (t}, vk, 0)) < ht(8;) and ht(X(t{,0,0)) < ht(8;) for all k, and di € C(q).
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Proof. Let

Ugni)a = {z € Uy(ny) |Vv € P, KoK, ' = q(”)‘)aﬁ}
which is the space of vectors in Uy(ny) with weight A € P for the adjoint action of U,. Due
to (5) we have Eg, € Uy(ny)p;. By [Jan96, Lem 4.12] (see also [Krd03, Prop. 1] for the exact
statement used here) there exist elements z} € Ug(ny )., and zj € Uy(ny)g,_,, with v € Q
satisfying 0 < v; < B; such that

A(Eg) =Eg ® Kg + Y _ 2j®a]K,, +1® Eg,.
7

Since the monomials X (0,0,s) form a basis of Uy(ny) we can rewrite this as

A(Eg,) = Eg, ® Kg, + Y cxX(0,0,5}) ® X (0, g, s§) + 1 @ Ep,
k

where for all k: ¢ € C(q), X(0,0,s;) € Uy(ny)y, and X (0, uy,sy) € Uy(ny)g,—p, for some
pe € Q such that 0 <y < ;. Write sj, = (s 4, ..., 5} y) and note by (B that

K,X(0,0, S;C)Ky_l _ q(V’S;c,lﬁl+"'+3;,NBN)X(O’ 0, ng)
for all v € P. Hence s;%lﬁl +...+ sﬁchﬁN = ug and we get

ht(X(0,0,s},)) = ht(s), 181 + ... + s nBn) = ht(ux) < ht(ur) + ht(8; — ) = ht(5)).

We obtain similarly that ht (X (0, ug, s’k')) < ht(B;). The proof for Fp, is completely analogous.
O

Corollary 2.6. For all m € N*¥ ! ye have A(Fty) C Fity @ Fitx.
Proof. By Proposition and by definition of the degree d and of the order < on N*V*! we
(B )\ %> d(Fs.)\ %2
have A(Eg;) € <]~'D(CI§J)> and A(Fp,) € <fD((inj)> . Hence
A(X (6, 1,8)) = A(Fay )™ . AlFs ) A A(Egy ) ... A )"
N tid(Fp)+s;d(Es, ) &> ®2
c <]:§C?K1 jd(Fp;)+s5d( ﬁ])> _ (Fggl((t7u75)))

and the result follows. O

2.5. Categorical completion U; and R-matrix. The quantum group Ugd(g) is not qua-
sitriangular in the usual sense. We quickly recall from [BR22] how to overcome this issue.
Let C = C4(g) be the full subcategory of type 1 finite-dimensional modules in U;d-mod (see

e.g. [CP94, §10.1.A] or [BG02, §1.6.12]). Note that C is equivalent to the full subcategory of
type 1 finite-dimensional Ujz-modules.

The categorical completion of U;d is the subalgebra Ugd of [[yec Endg(g) (V) consisting of
the sequences (ay )yec which satisfy f oay = ayr o f for any f € Home(V, V'), i.e. natural
transformations a : U = U where U : C — Vectc(y) is the forgetful functor. It admits a
“generalized” Hopf algebra structure such that the map

(9) L UR = U2 he (hy)vee

is a morphism of Hopf algebras, where hy is the representation of A on V. The morphism ¢
is known to be injective and thus Ugd can be seen as a Hopf subalgebra of Ugd. If moreover
we let Uy = Ugd Rc(q) C(g"/") be the extension of scalars to C(¢"/?), then ¢ can be extended

to an embedding of the simply connected quantum group:

t: Uy — Uy
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There is an analogous notion of categorical completion of U, ® Uy, denoted by U, ® Uy, see
[BR22, §2, §3.2]. The R-matrix lives in U, ® Uy; this means that it is a family of C(g)-linear
maps

(10) R = (RV’W:V(X)W—)V@W)V,WGC

which is natural (i.e. it commutes with the Uj,-morphisms of the form f ® g). The definition
of R is derived from the R-matrix of Uy (g) [CP94, Th. 8.3.9]: we have R = OR, where
o forall VVIW € C,if v € V and w € W are weight vectors of weights p and v we put
(11) O w) = ¢"»v o w.
Since any module in C has a basis of weight vectors, this defines a linear map Oy, :
VoW =V a@W and © = (Oyw)v,wec is an element of [U?Z.
e R is written formally as Hf\i 1D meN zinEj, @ Fg , where the z;, are coefficients in
C(q) such that ;0 = 1 for all 4. Since the actions of Ej, and Fj, are nilpotent on any
finite-dimensional module, the action of these infinite sums on V ® W gives a well-
defined linear map Rv,w VoW = V@W forall V,W € C and R = (R\/,W)V,Wec
is an element of [U?Q.

Since Oy, € Endgg)(V @ W) = Endgg) (V) ® Endgg) (W), we can write Oy =
> @}/1) ZxX)@E/‘Q/) ;- From this observation we allow ourselves to use the notation © = 01)®0y),

which will be very convenient in later computations. Let v be a vector of weight p € P in
some V € C; then we have

(12) @(1)1)@@(2) =v® K,, @(1) ®@(2)1) =K, ®v.
Indeed, Oy, _ = (Gv,W VW -V W) Wwee 1S a family of linear maps indexed by W, so
by definition Oy, € End(V) ® U;. Thus Oyv ® Oy = Oy, (v®7?) € Ve U, Ifwe W

is a vector of weight v we have Oy (v @ w) = ¢* v @ w = v® K, w, which means that
Oy, (v®?) = v ® K, as desired. We also note that

(S®id)(0) = (id® S)(©) =671

and we allow ourselves to write these elements as S(6(1)) ® O () and (1) ® (O y)). Finally
it is obvious that

(13) K,0(1) ® O = 0(1) Ky, ® Oy), O1) ® KuB(2) = O(1) ® O9) K,
for all v € P.
Using the PBW basis @ to rewrite R, we get
(14) R = @(1) ® @(2) + Z 2k @(1)X(0, 0, Sk) (%9 @(Q)X(Sk, 0, 0)
E>1

where z;, € C(q) and for each k > 1 we have s # 0. This expression of R will be abridged

as a formal sum
R=> Ry ®Rpy).
(R)
Let R(1) ® R(2) be one of the summands in ; we see from and that
(15)  KyRa)® Ry = ¢"VRuK, © By Ry @ KRy = ¢V Ry @ Ry K,

for some v € Q4. In particular v = 0 if and only if R(;) ® R9) is the first summand of R,
namely O 1) ® O g).
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2.6. Quantized coordinate algebra O,(G). Recall that C = C,(g) is the full subcategory
of U;d—mod whose objects are the (finite-dimensional) modules of type 1. The subcategory
C contains the trivial module and is stable by tensor product and dual.

Let G be the connected, complex, semisimple algebraic group G with Lie algebra g. The
quantized coordinate algebra Oy = O4(G) is the subspace of (Uqad)o spanned over C(q) by the

family of all matrix coefficients of objects in C [BG02, Chap. 1.7]. Note that O, = (U;d)g
in the notations of and hence O, is a Hopf algebra. We denote by x the product in O,.
Since C is semisimple, O, is spanned over C(g) by the matrix coefficients of the irreducible

finite-dimensional U;d—modules of type 1.

Let O,(¢"/P) = 0, R®c(q) C(¢"/P) be the extension of scalars to C(¢'/"), where D € N is
defined in There is a non-degenerate pairing

(16) ()1 Og(q"P) @ Uy = C(q"/P), (v, (ax)xec) = wlayv)
which extends the evaluation pairing O, ® U;d — C(q).

For each o € Py let V), be the irreducible Uqad—module of type 1 with highest weight p.
We denote by C(p) the subspace of O, spanned by the matrix coefficients of V,,. We have
Oy = @ ,ep, C(pt). From the decomposition

V.oV, =V © @ N)LVa
A<pu+v
where the N, 2‘71, € N are multiplicities and A < K means that kK — A € @4, we deduce that
(17) Cp+xCw)=Cu+v)ae P 6,,C0
A<p+v

where 62‘7V is 0 or 1, depending if Nﬁ\,v =0or N;i\,u > 0.

3. THE HANDLE ALGEBRA L g

Let H be a quasitriangular Hopf algebra with an invertible antipode. In the first papers
on combinatorial quantization like [Ale94, [AGS95, BRI, the handle algebra L1 0(H) was
defined by matrix relations which describe the commutation relations in the algebra. Here
we give a more intrinsic definition, as a twist of Lo 1 (H)®2. The seminal definition of £1o(H)
based on matrix relations will be recovered in Proposition

3.1. Definition of £;o(H). Recall that an invertible element J € H®? satisfying
(J1D)(A®id)(J) =1 J)(id A)(J),
(e®id)(J) = (id®e)(J) = 1.
is called a twist for H. We can define a new Hopf algebra H;, called the twist of H by J,
which is H as an algebra but whose coproduct, counit and antipode are (for h € H)
Ag,(h) =JAg(R)J Y, en,(h) =en(h), Su,(h)=uSy(h)u?

with u =37y J1)S(J2)) if we write J =3~y Ji1) ® Jz). If (A,ma4, ) is a right H-module-
algebra we can define a right Hj-module-algebra Aj, called the twist of A by J, which is A
as a vector space and whose product is

(18) mAJ(:U®y)=ZmA(:r-J(1)®y-J(2))
(/)
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(where m 4 is the product in A). The right action - : Ay ® H; — Ay is equal to the original
action - : AQ H — A.

Following the conventions of [BR22, BR21] recalled in we write the R-matrix of H as
R= ZR(D & R(g) e H®2,
(R)
We first recall from [BR22) §4] the construction of the loop algebra Lo1(H) as a twist of the

restricted dual H® (see for the definition of H?). Denote by > and < the left and right
coregular actions of H on H° respectively:

(19) o= ouleE,T), e<T=> (pa),T)e@)
(¥) (¥)

where x € H, ¢ € H° and we use Sweedler’s notation Ago(p) = Z(@) (1) ® p2). Let
H ® HP? be endowed with the usual Hopf algebra structure on tensor products. Introduce

(20) F' = R3pRyp = Z (1® R%Q)Ré)) ® (R%l) ® R?l)) € (H @ HP)#2.

(RY),(R?)
Here we write R3o = Z(R) 1®@ Ry ®@ Ry ®@1 and Ry = Z(R) 1® Ry ® 1 ® Ry, which are
embeddings of R € H®? into (H ® HP)®? while R' and R* denote two copies of R. Tt is

straightforward to check that the element F is a twist for H ® HP, so we can consider the
twisted Hopf algebra (H @ HP)p, which we denote by Ag1(H).

Note that H® is a right (H ® HP)-module-algebra for the action
(21) - (zey)=Sy)>e<z (with o € H°, x € H, y € H*P).
Then Lo (H) is defined to be the twist (H°)p. Explicitly, it is the vector space H® with the
product
(22) e =Y (R%S(Rly) > @)+ (B > ¢ < Rl)
(RY),(R?)

where * is the usual product on H®, given by n v = (n ® ) o Ag. The formula is
derived from using the general definition of the twisted product in together with
the fact that S is an antimorphism of algebras and that (S ® S)(R) = R.

By construction, Lo1(H) is a right Ag;(H)-module-algebra for the action (21]). The co-
product A, viewed as a map H — Ao 1(H), is a morphism of Hopf algebras. It follows that
Lo.1(H) is a right H-module-algebra for the right coadjoint action, given by

(23) coad” (h)() = Y S(h) > @ < hgy).
(h)
In order to define £ o(H), let
v=RpRuRuRy = > (RES(RY) ® RiyRY) @ (R Ry @ Ry Ry)) € Ao (H)®?
(RY),...(R%)
where R!, ..., R* are four copies of R and we used that R™! = (S ® id)(R).
Lemma 3.1. The element v is a bicharacter of Ag1(H), which means that
(Aug (1) @1d)(7) = 23713, (Id ® Apy () (V) = 112713
where the subscripts denote embeddings of v € Ao,l(H)(X)2 into A071(H)®3. It follows that
Fr=1010701®1¢c Ag1(H)®? @ Ay (H)%?
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is a twist for Agq(H)®?.

Proof. The two equalities are obtained by straightforward computations using the definition
of the coproduct in D and the defining properties of the R-matrix given e.g. in [CP94) §4.2];
this is left to the reader. The last claim is an easy general fact. O

It follows that we have the twisted Hopf algebra (Ag 1 (H )®2)F, which we denote by A; o(H).

Definition 3.2. We define L1 0(H) as the twist by I' of the right Aoyl(H)®2—module—algebm
Lo (H)®?:
Lio(H) = (Lop(H) @ Lo (H))r.

(
Explicitly, £10(H) is the vector space Lo1(H) ® Lo,1(H) with the product
(24) (B®a)(f'®d) = }: B(RiyRiy> B <Ry RY) @ (R S(Riy)) > <Ry Ry ) o
(RY),....(R%)
where we used that (S ® S)(R) = R. In particular the maps

iA: ﬁo’l(H) — ﬁLo(H) iBZ £0,1(H) — EL(](H)

(25) Qo — 1l®a I5; — f®1

are embeddings of algebras and we have
(26) B®a=ip(B)ia(a).
The choice of the subscripts A and B to denote the embeddings will be explained below.

Lemma 3.3. The iterated coproduct A( U Z(h ) ® hay ® h(z) ® hyy, viewed as a
map H — Ay o(H), is a morphism of Hopf algebras.

Proof. Straightforward computations left to the reader. O

Since by definition £ o(H) is aright A; o(H)-module-algebra, the lemma implies that £ o(H)
is a right H-module-algebra with action

(27) coad” (h)(8 ® «) Z coad” (h ) ® Coadr(h@))(a)

where we use the coad” from . In partlcular the maps i4,ip in (25) are embeddings of
H-module-algebras.

We now recover the definition of £1 ¢(H ) by matrix relations, which is very helpful in certain
proofs. To introduce the notations, let us first recall the case of Ly 1(H), which has been
treated in [BR22, Prop. 4.6]. Let V be a finite-dimensional H-module, (v;) be a basis of V" and
(v') be its dual basis. Denote by Vd’;‘ the matrix coefficients in this basis: Vqﬁé(h) =o' (h-v;)
for h € H. Let E;; be the basis elements of End(V) given by Ej;(vy) = 0;,v;. We define

v .
(28) M =Y v¢)® Eij € Lo1(H) @ End(V)

i3

v
which can be seen as a matrix of size dim(V') with coefficients in Lo 1 (H). Note that M does
not depend on the choice of a basis in V. By its very definition, the collection of matrices M
satisfies naturality:

(29) (id e f)M = M(id ® f)
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for any H-linear morphism f : V — W. Consider the embeddings

j1: End(V) — End(V)® End(W) jo: End(W) — End(V)® End(W)
X — X ®idw ’ Y — idy @Y

where V and W are any finite-dimensional H-modules. We define

v V. W w
My = (id®j1) (M), Mz = (id® j2)(M) € Lo1(H) ® End(V) ® End(W).
Vew
Note that A can be viewed as an element of Ly ;(H) ® End(V) ® End(W) since End(V ®
W) = End(V) ® End(W). Finally v denotes the representation of some x € H®? on
V @ W and we implicitly identify =y with 1@ 2y € Lo1(H) ® End(V) ® End(W). Then

v
Lo,1(H) is spanned by the coefficients of the matrices M for all V in H-mod and is
equivalent to the set of all fusion relations :

vew v W

(30) M =M (R)vw M2 (R)yy

where R’ = Z(R) R(3) ® R(1). Thanks to the braiding in H-mod and naturality , it is
equivalent to

VoW 1 w 1%
(31) M = Ryyy, M Ryw M.

1%
From the fusion relation one can check that M is invertible, see e.g. [Fai20bl Prop. 3.3].
Moreover, the equivalence of and gives the so-called reflection equation:

Voo w w v
(32) Ryw My (R)v,w Mo = My Ryw M1(R')v,w.
For L1,0(H), consider the matrices

\%4 %4 \%4 \%
A= (iA X id) (M), B = (iB X ld)(M) S ﬁl,o(H) & End(V)
1% 1% 1% % 1%
Since the matrix M is invertible, so are A and B. In mathematical physics, A and B are seen
as quantum holonomy matrices associated to the usual generators a,b of the fundamental
group of the torus with an open disk removed.

Proposition 3.4. The following relations hold true for any finite-dimensional H-modules
Vv, W:

Vew \%4 W 1

A 1(R)vw A2 (R)yyy  (fusion relation)
Vew v , w N1

B Bi (R)v,w B2 (R)yy,  (fusion relation)

Vv w w Vv
Ryw B1 (R)vw A2 = Ay Ryw By R(/}W (exchange relation)
where R’ = Z(R) Rioy®@R1y. These matriz equalities entirely describe the product in L1 o(H ).
Proof. We see from and that the product in £y o(H) is entirely described by the

following formulas:

ia(p)ia(v) = ialey),

in(p)ip(¥) =ipley),

ia(e)ip(®) = > ip(RlyRY) > < RiyRY))ia(RY S(Ry) > ¢ < Ry Ry).
(RY),...,(R%)

(33)
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Assume that ¢, 9 are matrix coefficients ngbé, Wgzﬁf in some bases of V' and W. We have

already recalled above that the product in Lo 1(H) for matrix coefficients is equivalent to

(30). Hence the two first equalities in for matrix coeflicients are equivalent to the
\% \%4

fusion relations for the matrices A and B. The exchange relation is equivalent to the third
equality in for matrix coefficients, as we now show. Note that by the very definition of
a representation we have

Z(h >y ) © By = qubé- ® (Eij hy), Z(Vﬁbé <h)® Eij = Z Vs @ (hy Eij)

1] 1,5 1,J 1,7

where hy € End(V) is the representation of h € H on V. Hence

w v . . .
A3 Br = ialwe))i(ve)) ® Eij @ By
i,5,k,l
= D iRy Ry > ve) Ry RY) ia (Rl S(RYy) & wop < By Rly) @ By © B

i’j’k’l
(RY),....(RY)

= Y isve)ialwel) @ (Rly)y (RYy)y By (Rly)y (Rhy)y
oy

(02 ® (Riy)w (Biy)w Bu (Riy)w S (Riy)w

= R} R? B (R R} R? R} VX R} S(R}
- Z ( (1))\/1 ( (1))V1 1 ( (2))\/1 ( (1))\/1 ( (2))W2 ( (1))W2 2 ( (2))W2 ( (2))W2
(R1)7...,(R4)

1% W
= Z (R(l))m Rvw Bi (R')vw A2 Ryw S(R(Q))WQ-
(R)

Using that 3 1) (g2) R%l)R%l) ® S(R?z))R(12) =1®1, we get
1% 14% W Vv w 1%
Ry B (R)vw Az = 3 (R1))yy A2 Bi (Rez))y, Ry = A2 Rvw Bi Ry,
(R)

as claimed.

As a result the equalities in , which determine the product in £;9(H), are equivalent
to the matrix equalities when ¢ and @ are matrix coefficients. But the matrix coefficients
span Lo 1(H) as a vector space, so if we know the formulas for matrix coefficients we
can actually deduce the product in £ ¢(H ), which proves the last claim. ]

We will need the following result when discussing the quantum moment maps (see Section
. Assume now H has a ribbon element v. For every finite-dimensional H-module V define
matrices in £ 9(H) @ End(V') by:

v vv v vV
(34) X = vaA , Y = UvB A

where vy € End(V) is the representation of v on V' and is identified with 1., ;) ® vv.

V.V vv. L Vvv_ v v o ‘ ‘
Lemma 3.5. The matrices X, Y, and XY = vi;yBA™" B~ A satisfy the fusion relation .

Proof. Recall first that v is central. It follows that vy is a H-linear endomorphism so by

Vv Vv
naturality we have vy M = Mwvy. Moreover (vy )1 zy,w = zv,w (vy)1 and (vw )2 zv,w =
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v
zyw (vw)e for all x € H ®2 " Let us show the claim for X; explanations are below the
computation:

Vew ) , wo W -1 %1
X = (ov)1(vw)2 (RR)VWB1 (R)V,WB2(R)V,W(R)V,WA2 (R)vw A
—1 /\—1 / w W—l /\—1 V—l
= (ov )1 (UW)2va(R) B, (R)vw Bz Ay~ (R Ay

w \4
= (vv)1 (vw)2 Ry B2 Ryw 31 RVW AN (R AL
\%

= (Uy)l (Uw)z R\;}/V BQ A;l RV,W Bl AIl
—1 W v v / W /N —1
== RV,W X2 RV"WX]_ == X]_ RV,W X2 (R )V,W'

For the first equality we used and the fusion relations for the matrices B and A, for the
third equality we used a variant of , for the fourth equality we used the exchange relation
in Proposition [3.4] for the fifth equality we used the remarks made at the begining of the
proof and for the sixth equahty we used the equivalence of (31} and .

The same arguments apply to Y In order to prove the claim for X Y we first show that X

and Y satisfy the exchange relation

v oW W Vo
Rvw X1 Ryy, Yo =YoRyw X1 Ry
By the remarks made at the begining of the proof it is equivalent to
W 1 W—IW %4 V_1 1
RVW BlA RVW A2 2 A2 RV,W B1A1 RV,W'
Now, by using again and the exchange relation in Proposition we get

V1 p-1 W S N e 1
Ryw B1A] " Ryy, By A2 = Ryw Bi Ry By (Ryw)™ Ay Ry Ao

)

W v Vo
= B, RV,WBIRVW( vav) AT Ry Az

W—l / V—l —1
=B, Rvw Bl Ry w A2 Rvw A7 Ry,
w w

-1 v -1 V—l —1
B3 As Ryw By Ryw Rvw A Ryw

71W 1% Vﬁ1 1
2" As Ryw BiAT Ry,

I
W=

We can now deduce that )V( }‘i satisfies the fusion relation:
VoW Vew vV w 14 w
X Y =Xi1RywXo(R)ywY1Ryw Yo (R
% % w w
= X1 Ry (R)yhy Y1 Rl Xa (R Ruw Y (R)yY,
vV Vv W W
= X1Y1 Ry X2 YVa (R O

3.2. Morphism L o(H) — H(H°). Since the left coregular action endows H® with a
structure of H-module-algebra, we can consider the smash product H°# H, which is denoted
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by H(H?) and is called the Heisenberg double of H° [Mon93, §4.1.10]. Explicitly, the algebra
H(H®) is the vector space H° ® H with the product

(35) (p#x)(P#y) = Zw 1) DY) #z o)y

where we write ¢ # x for the element ¢ ® z € H° ® H and « is the usual product in H°.

Consider the following right action of H on H(H®), which will be used in Proposition
below:

(h)
Lemma 3.6. The action endows H(H®) with a structure of right H-module-algebra.

Proof. We compute:
Z((%O #x)-hay) (V#y) - he)
(h)
= Y (S(h) > ¢ < hggy # S(hay)whay) (S(he) > ¢ < hay # S(h))yhs))
(h)
= ) (Slhe) e ahg)* (Sha)azahwmSihe) > b <)

N
Di(hiay) # S(h1)) @)@ ) 2)S (h(s))yh(s)

= Y (S(he) > 0 Dh) * (S(h)za)hs)S(he) > ¥ < hg)
(@),(r) # S(h(1y)x2)he)S(hr)yhao)

= D (S(h) > hey) * (S(he)z) > ¥ < hs)) # S (hy)z@yh)
(z),(h)
= > Slhe) > (o (@) > ) <he # Sha)eeyha = (e #2) (@ #y)) - h
(z),(h)
We used the properties of the antipode S and for the last step we used that both > and <
are H-module-algebra structures on H°. O

Recall the map (see [BR22, Th. 4.3] and the references therein)
@071 : Loyl(H) — H
(37) o (peI)([RR) = Y (p Ry Ry, RiyRY,
(RY),(R?)

where R', R? denote two copies of R € H®2. The map ®p 1 is a morphism of H-module-
algebras when Lo ;(H) is endowed with the action coad” in and H is endowed with
the right adjoint action ad”(h)(z) = >_ ) S(h(1))zh(z). Moreover it take values in H', the
subspace of locally finite elements for ad".

The morphism relates Lo1(H) and H. We now discuss a morphism which relates
L10(H) and H(H®). Let

(38) H(H®)" = {v e H(H°) |dim(v  H) < oo}

be the subspace of locally finite elements for the action . If H is finite-dimensional, we
obviously have H(H®) = H(H°®); but we will see later in the case of H = U;d that H(H°)"
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is in general a strict subspace. The map ® ¢ in the next proposition has been introduced (in
a different form) in [Ale94) §5].

Proposition 3.7. We have a morphism of right H-module-algebras

D10: Lio(H) — H(H®)
Boa — 3 (RiyRy e 8<RyRY)) # (Rl R)P0.()
(R, (F2), (1)

where R, R?, R® are three copies of R € H®? and H(H®) is endowed with the action .
The morphism ®1 o actually takes values in H(H®)!.

Proof. Let us first show that ®; is a morphism of right H-modules. Due to it is
enough to show that ®; goig and ®¢oip are H-linear morphisms Lo (H) — H(H®). Since
P19 (iA(a)) = 1o # ®o,1 (), we use that ®¢; intertwines coad” and ad” to get:

Py 0(coad” (h)(ia(a))) = P10 0ia(coad” (h)(@)) = 1go # Po,1 (coad” (h)(a)

)
= 1o #S(h)) o1 (a)h) = (Lo # Bo(a)) - h.
(h)

For ip(8) we compute:

@1 0(coad” (h)(ip(B))) = 1,0 0 ip(coad” (h)(B))

o (R;R?’) (h )(R%Q)R%Q)S(h@)) > B ahoy Ry Riy) # By iy

— 1 QZ: ’ (R( )R(Q)S(h(4)) >4 < h(g)R?l)R%l)) # S(h(1))h(2)R?Q)R%l)S(h(E)))h(G)
(RY),(R?),(R3),(h)

= 1 22: ! (R%Q)S(h(@)R%Q) >4 < R?l)h R(1)) # S (h )R(Q)h( )S(h(4))R(21)h(6)
(RY),(R2),(R3),(h)

) (B ( R2§):(R3),(h)(S(h(g)s_l(Rb))) &P R3 )#S( )i (Z)R% )

— Z (S(h(z))R( y > 6 R(l)R ys) ) # S (R )R:(s )R% )
(RY),(R?),(R3),(h)

)
=®10(i(B)) - h.

We simply used that RAy = A% R and that (id® S~')(R) = R~
The simplest way to show that ®; is a morphism of algebras uses the description of the

product in £ o(H) based on the matrices Zl, l‘é (Proposition ; see [Ale94] (with different
conventions), and [Fail9al Prop 4.6] where this is done in detail in the present setup.

The last claim is due to the fact that all the elements of £ o(H) are locally finite. To see
this, recall first that all the elements in Lo ;(H) are locally finite. Indeed, for each finite
dimensional H-module V', the (finite dimensional) subspace C(V) C H° spanned by the
matrix coefficients of V' is stable by coad”. Any element v € Lo ;(H) being a finite sum of
matrix coefficients, it is contained in some C(V;) + ...+ C(V,,) and we have the claim. Now
by , any element in £y (H) can be written as ) ,ip(8;)ia(a;), with oy, 8; € Lo (H).
Since i4,ip are H-linear, ig(f;) and ia(cy) are locally finite for each 4, and since £ o(H) is
a H-module-algebra the product ip(5;)ia(c;) is locally finite as well. O
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3.3. The case H = U;d(g). Recall from that U, = U,(g) and U;‘d = U;d(g) denote
respectively the simply connected and adjoint quantum groups, which are Hopf algebra over
C(q) and where ¢ is an indeterminate. The previous definitions of Lo 1(H) and £; o(H) must
be adapted when H = U;d because this Hopf algebra is not quasitriangular in the usual
sense. Indeed, as explained in the R-matrix lives in the categorical completion U;@Q. We
can overcome this issue thanks to the pairing and the fact that for any ¢ € O,

(39) > (¢, Ra)) Ry €U, and Y (o, Ra)) Ry € Uy
(R) (R)

(note that a priori these elements are in Uy).

As in we denote by Oq(ql/D) the extension of scalars to C(g"/?) of Oy = 04(G).
Using we extend the left and right coregular actions of U;d on O, to left and right
coregular actions of U, on O,(¢"/P). Hence O,(¢*/P) is a right (U, ® U;°P)-module-algebra

for the action (21)). Recall from i that R € U;@Q has coefficients in C(ql/ D). thus the same
is true for the twist I defined in (20)). We have the twisted Hopf algebra Ag1 = (U, @ Ug*P) p

and the twisted module-algebra O,(¢'/P)p. The latter is the C(¢'/?)-vector space O, (¢*/P)
with the product , which makes sense due to . In [BR22, Prop. 4.1] it is shown that

restricting the product of (’)q(ql/ Dyp on the C(g)-subspace O, gives a C(q)-subalgebra. So
we can define

Definition 3.8. Lo 1(g) is the C(q)-vector space Oy endowed with the product (22)).

We simply write £1 when g has been fixed.
Let I € Ag’f be the twist which has been introduced in Lemma We have the twisted
Hopf algebra A; g = (A(?E)p and since Oy (¢"/P)r® O,(¢"/P) is a right Ag%%—module-algebra,

we can define

Definition 3.9. £ (g) is the twist (Oq(ql/D)F ® Oq(ql/D)F)F.

We simply write £19 when g has been fixed. Explicitly, £10(g) is the C(ql/D)—Vector space

Oy (¢*P) 20,4 (¢"/P) endowed with the product ([24). Note that contrarily to the case of Lo,
O, ® Oy is not a C(g)-subalgebra so we are forced to work over C(g"/P). This is because
the terms coming from the O factors of the R-matrices (see §2.5)), which have coefficients in
(C(ql/ b ), do not compensate each other in the exchange relation of Proposition Actually
(Oq(qg/D) ® Oq(qg/D))F is a C(¢*/P)-subalgebra of L1 ; for g = sly we have D = 2, so in
this special case we can work over C(q).

By construction L ; is a right Ag 1-module-algebra and £, o is a right A p-module-algebra.
Specializing the results of we have morphisms of Hopf algebras

Ay ag)

Uq —q> AOJ and Uq —q> AI,O

where AI(US ) is the iterated coproduct (see Lemma . Combining this with the morphism
9]

q
of Hopf algebras ¢ : U; — U, introduced below (9), we obtain that £ and L are right
U,-module-algebras for the actions coad” in and respectively.

Using the pairing from and the embedding ¢ : U; — Uy, we get a pairing
() 04(a"P) © Uy(d"'P) = C(a"P)
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where U,(¢"/P) = U, ®c(q) C(q"/P) is the extension of scalars to C(¢"/P). It follows that

the left (and right) coregular action of U, (q*/?) on O,(¢"/P) is well-defined and allows us to
define the Heisenberg double H, = H4(g) as the smash product

Hy = Oq(q"/P) # Uy(g"'P).

Explicitly, it is the C(g'/P)-vector space O,(¢*/P) @ U, (¢"/P) endowed with the product (35).
For simplicity of notation we often do not write the extension of scalars to C(ql/ b ).

Proposition 3.10. The algebra H, does not have non-trivial zero divisors.

Proof. Recall from §2| the filtration (Fprg)menzn+1 of Uy which is based on the PBW basis.
By Corollary the family of subspaces (Oq#]-"f)“CK)m crent1 1S a filtration of the algebra
Hy. Indeed, if o # 2 € Oy # Fpek and Y #y € Oy # Fpck we have

(p#x)(W#y) = Zw 1) DY) #xoyy € Og # FLGE

The associated graded algebra is
groq#]‘—DCK (HQ) = Oq # gr}—DCK (Uq)

Let us explain this equality more precisely. Recall from that vgbé denote the matrix
coefficients of finite-dimensional U;d modules, and assume that for each V' we use a basis
of weight vectors (v;) with weights (e;). Oy is generated by such matrix coefﬁcients. For
simplicity, write v ¢%, Eg,, Fjs,, K, instead of the cosets (ngZ #1)+ Oy # F, DCK, (e# Eg,)+
Oq #]:<d(EBi)v (e # Fp,)+O4 # F <d(FB , (e# Ku)+0, #]:DCK * in 8rO#Fpck (Hq). Thanks
to Proposition [2.5] we get

Ef'gkvﬁ - V(b; Eiﬁk’ Fiﬁk‘“ﬁ; = qi(ﬁk’ej)vﬁb; Tm, Fyvgb; — q(u,ej)v¢§fy

It follows from these relations and that 8rO,#Fpex (Hq) is a quasi-polynomial ring over

Oy, generated over O, by Eg,, Fs., K, (with 1 <i < N, p € P). Since O, does not have
non-trivial zero divisors [BG02, Th. 1.8.9], it follows from a general result (see e.g. [MCRO1,
§1.2.9]) that gro, 47, (Hg) does not have non-trivial zero divisors. By Lemma H, does
not have non-trivial zero divisors as well. g

It follows from that the formulas of the maps ®p; and ®1 in are well-defined
and give morphisms of right U;-module-algebras

(I)(),l : [,071 — Uq, @1,0 : £170 — Hq

where the action on Lo and L is coad” in and , the action on Uy is the right
adjoint action ad”(h)(x ) > S(h(1))zh(2) and the action on H, is (36). It is known that

®g 1 affords an isomorphism of U, module—algebras Lo1 — U;f, where Ucllf is the subspace of
locally finite elements for ad” [BauOO, Th. 3] (also see [BR22, Th 4.3] for this statement in
the present framework). We now prove an analogous statement for ®; 9. Denote by ’H}lf the
subspace of locally finite elements (see (38))).

Theorem 3.11. 1. The morphism ®1 : L1, — Hq 15 injective.
2. The algebra L1 does not have non-trivial zero divisors.
3. The image of ®1 is H}If.
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Proof. For simplicity we write U, and O, instead of Uq(ql/ Dy and O,( /D).
1. Recall first that @1,0(5 ® a) = <I>1,0(iB(5) iA(a)) = @170(13(@) (10(1#@)0’1(04)). For
A, 0 € P, consider

MO ={p €O, |VveP K, > p=q"Vpand p < K, = ¢}

and note that O, is the direct sum of all these subspaces. It follows that

Lio= @ iB(A\(Og)s) ia(Lo), Hq= @ AOq)o # Uy

A\oEP A\oEP
By (15 ,ifﬁeA (Oq)s we have

K, > (R{y R}y >B<R 1)R(l)) # RY, R(l) = ¢ (R, )R(Q) > B < RY) Ry ) # Ry Ry
(Riy Ry > 8 < RY) R < K () # Ry Ry = 07779 (Rly) Ry, > 6 < Ry Ry # R?2>R(1>

for some 1,792,735 € Q4. As a result (I>1’0(1B( ) € @xon<(r0) ¥ (Og)or # Ug, Where < is
the partial order on P? defined by (X, 0’) < (X, 0) if and only if \— X € Q4 and 0 —¢’ € Q..
Hence thanks to the expression of R in we see that

©10(i8(B))€ (00 > B<10%,00)) #0500+ P »(0)s #U,
(Vo)< (Ao)
= MB# Ko+ P M0 #U,

(N,o")<(N\o)

where the second equality is due to (and ©1, O3, O3 denote three copies of ©). We
are now in position to show our result. Let z € L1 be a non-zero element and write it as

T =33 oecp ZieIM iB(Bro,i)ia(one,i) with By 5 € A(Oq)s for all i € I) , and such that for
each A, o the elements (’BAvgvi)iel,\
order < such that there exists at least one i € I - with By, # 0 and ) »; # 0. Then using

one obtains
010(2) € qN D Broi # KnroPor(onei) + D (Og)e #Us

ey (Vo)A (\o)

(40)

are linearly independent. Take a (A, o) maximal for the

The morphism ®; is injective (see the comments before the theorem); moreover Ky, is
invertible, so there exists at least one i € Iy, with Ky;,®o1(ars;) # 0 and since the
elements 3 ,; are linearly independent we conclude that ®q(x) # 0.

2. Follows from Proposition and item 1.

3. We already know from Proposition that im(®1,) C 7—[};. Let us prove the converse
inclusion. Let O, ® U, be the tensor product of the right modules (Oq, coadr) and (Uq, ad’”),
i.e. the right action is

(41) 90 ® :L' ~h = Z S |> ©p < h( 1) ® S(h(3))xh(4)

As recalled above the theorem, ®; provides an isomorphism of Uj-modules ((’)q, coad”) =
(Uéf, ad’“). Hence we have an isomorphism of Uz-modules

D1 ®id: O,0U; — Uy @ U,

and we see that (Oq ® Uq)lf = (U;f ® Uq) C (UyeU )1f U1f U;f where the last equality
is due to [KLNY20, Th. 2]. The converse inclusion being 0bv1ous, we conclude that (O ®
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U q)lf =0, ® Uéf. Now consider the map

I: H, — O,0U,
oH#r — > S(RiyRE)) >0 SRR @ S(Rly Rz
(RY),(R?),(R?)
It is an isomorphism of U,-modules, thanks to a straightforward computation which uses
RA = A°PR to pass from the action to the action . Another computation which
uses (id ® S™1)(R) = R™! reveals that

(42) To®19(B®a)=> B ®Po1(Be))

B)
where Z(ﬁ) B1)®B(2) is the coproduct of 5 in O, and B(z)a is the product of f(2) and avin Lo 1.
We need one more fact: there is a map Sg,, : Lo1 — Lo,1 such that Z(¢) ©1)Sceq(P2)) =
e(p)1g,, for all p € Lo1; it is given by

Sﬁ01 ZSOq DSDQR(Q) )

where So, is the antipode of Oy and u = >~ gy S(R(2))R(1) is the Drinfeld element, which

satisfies S?(z) = wau™! for all x € U,. In fact, Lo is isomorphic to a coend [Fai20al
Prop. 6.3] which has a natural structure of a Hopf algebra, and Sg,, is the antipode for

this structure. We are finally ready to conclude. Take ¢y ® y € (O; ® Uq)lf. By the above

discussion we know that y € Uéf, so there exists 7 € Lo such that y = ®¢ (7). By and
the property of S, , we find

IO(I)lo(zlﬁ ® Sroq (¥ ) Z¢ ® Po,1 (V(2)Sco, (Y(3))Y) =¥ @y
()

which proves that im(I o @1 ) = (O, ® U,)"". Since I is an isomorphism of U,-modules the
result follows. O

Note that H}Zf is a strict subspace of H,. Observe for instance that the action is such
that (1o, #z) - h = 1o, #ad"(h)(z). Thus if x € U, is not locally finite then 1o, # x ¢ ’H}If.

For instance one can take x = K;.

3.4. Noetherianity of L. The strategy is to construct a filtration on £ and to show
that the associated graded algebra satisfies the relations in Lemma First we need to
recall and adapt a filtration of Lo ; taken from [VY20].

For € P, and A € P we define
AC {SOGC,LL)‘VVEP, KVDSO:q()\7V)Q0},
CMAZ{wecu)\VueP, g0<]KV:q()‘7V)(P}

where C(u) is the subspace of matrix coefficients of V), the irreducible U;d—module with
highest weight p. Consider the ordered abelian monoid

(43) A ={(u,A) € Py x P|Xis a weight of V,}

for the order < defined by (u/, \') < (u, A) if and only if u' < p and ' < X, where the order
=< on P is defined in §2.3] Note that < is well-founded on A (although it is not on Py x P)
and satisfies condition (|4))
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It is not difficult to show that
AWCWC)= @ «CW)
(vR) 2 (ptp/, A+X)
in Lo1 (see [VY20, §3.14.4], but with a slightly different product), and similarly for the

subspaces C'(u)y. By the general discussion of it follows that we have filtrations Fy, F,
of the algebra Lo 1 given by

Fr= @ vC@) and Fr= P CO)x
(W A= (A) (1 N) =2 (1)
for all (u, A\) € A. The filtration Fy has been used in [BR21} §3] where it was denoted by Fa.

For x € {¢,r}, let grz (Lo,1) be the graded algebra associated to F, (see §2.2). The vector
space grr, (Lo,1) can be identified with Oy: we identify ¢ € \C(p) (resp. ¢ € C(u)y) with

+ ]:;“’)‘ (resp. ¢ + F#A). We denote by o, the product on O, obtained through this
identification.

We introduce some notations in order to describe the product o,. For ,u € P,, denote by

el,..., el a basis of weight vectors of V. Let e € P be the weight of e’ and assume that

the vectors are numbered in such a way that €' 1mphes 1< J. Let e be the
dual basis and let qu] T e (:U e; ) be the assomated matrix coefficients. Note that

(44) Kybugb;»:qy’ej)u Loand ¢l <K, = ¢ ¢

or in other words u‘b; € »C(p) and uqb; € C(p)e». We use similar notations for a basis
J 7
el,... e} of V. Finally for ¢ € C(p) and ¢ € C(v), we put

pFY = T (9 x ¢)
where « is the usual product in Oy and 7,4, : C(u) x C(v) — C(u + v) is the projection
defined by .
The following facts were proved in [VY20, pp. 177-178] for the filtration F; (but note that
in [VY20] the product in Lo is slightly different from ours). We give a proof of these facts
for the filtration F,.

Lemma 3.12. For x € {{,r} and with the notations just introduced, we have

m -1
; k BN ik ikl i — k- ikl
1 u¢§' Oz n = q(ej @ 6k)u¢;*n¢l + Z Za?t uPs * @i, with az” € C(q).
s=j+1 t=1

Moreover aijt'kl = 0 unless € < eg and €] = ¢. It follows in particular that u¢§‘ oy nqbf =

,ugbz Oy ngb;g
2. uf o ol = ¢! TE U0l w el + D Zﬁz%’“ln¢swl, with B € C(q).

s=i+1 t=1
Moreover B2 = 0 unless € < €' and €] - €.
S It follows that

m 1 m k-1
k i Ket el —ell 1 k ikl
n¢l Og }L¢; = q(el G ),ugb; Og n¢l + Z Z Z Z ]tuv n¢u T ,ud)t

(45) s=j t=1 u=i+1v=1

m -1
ikl i k
+ Z Z%ﬁ @ 0z ndy

s=j+1 t=1

ijkl
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with 89 Ak ¢ C(q). Moreover 6% = 0 unless e = el el =€ el < el e] = ¢ and
igkl n o
Vi = 0 unless € < ej,et €.

Proof. 1. We show the equality for o,. We use the formula (22| giving the product in Lo .
If we take two summands R( 1) ® R(Q) and R(1) ® R(Q) in the expression (14) for R, we see by

. and . that
<(Rg2)5(R§2)> > 60) (B2 & it < R%l))> <K,
12 EH 6777 7
= ¢TI (RY) S(Rly)) B u6h) * (RYy) ™ 40f < Ryy)
for some 1 € Q4. Hence, by definition of grz (£o,1) and by (5],

u®j orndt =) _(RS(0() & ) % (R > ) <1 0())
(R)

— q—(eg‘,e;’) Z(R(Q) > u¢;) * (R(l) > nqbf)

(R)
where the second equality uses . Again by , we have
(K, > (R > u‘z’})) * ( > ndf) = g2 (Re2) u‘z’}) * (R &> W7,
(Re) & u8j) * (Ko > (R n¢z 1)) = a7 (R & u05) * (R B )

for some v2 € Q4. Hence
2 i\ (P2 k i =k i+ ok
(R(z) > u0%) * (R(l) > 07 € span (@l * oy )egj#e?tsy C span(, ¢, *n¢t)52j7 t<i

where the inclusion is due to the particular numbering of the basis vectors. Thanks to the
expression ((14) for R, we obtain more precisely

m -1
w85 0ot =0T (O) & u0) F (O & ef) + Y. D all ol 7 ot

s=j+1t=1

m -1
BTy ikl i —
= q(eg € Ek)#% * n(ﬁf + Z Z ag” g *nqbf.
s=j+1t=1
2. Using the relation RA = A°P’R, we see that the formula for the product in £y can
be rewritten as follows:

1 2
(RY),(R?)
To obtain the desired equalities in the claim, it suffices to repeat a proof like in item 1 but
with this alternative formula for the product in Lo 1.
3. Each of the formulas in items 1 and 2 allows one to express the product % in terms of the

product o, (using induction). We get the result by comparing the two resulting expressions
for %; for more details see [VY20, pp. 177-178]. O

Recall that wq,...,w, denote the fundamental weights of the semisimple Lie algebra g.
Any irreducible Uqad—module V), is a direct summand of some tensor product of the modules
Veors ooy Vo, (see e.g. [BGO2l §1.6.12]). Hence the matrix coefficients wrgb;- generate O, as
an algebra, and there is of course a finite number of such elements. From item 1 of Lemma
one can deduce that these matrix coefficients generate grz (Lo,1) as well (see [VY20,
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pp. 178]). We form an ordered list (uq,...,up) containing all the elements ngb; such that
for any up = quﬁ; and u, = o, ¢f the following condition is satisfied:
(46) "< or (67" =er* and e < e?s)} = b<a.
With this choice of numbering, the formula can be rewritten as
b—1 p
(47) Vi<b<a<np, uaoxub:qabuboxua+22a§fusoxut
s=1 t=1

for certain scalars ¢ € C(g)* and a® € C(g). It follows that grz (Lo,1) is Noetherian by
Lemma [2.2) and hence Ly ; is Noetherian by Lemma

We are now ready to study the Noetherianity for £1 . Consider
(48) FHRAMR — FHA g FPC Lig for (u,A),(n,k) € A

Here we use that £y is (’)q(ql/ b )®2 as a vector space and we implicitly extend the scalars
of .7-"9’;’)‘ to (C(ql/D). On the indexing set A x A of the family F of spaces F*MPF | we put
the product order, again denoted by =<, namely (¢, N,n',x') < (u,\,n, k) if and only if
(', X) = (n, A) and (',5") = (n, &)

Lemma 3.13. F is a filtration of the algebra L1 .

Proof. Take B®a € C(u)\®,C(n) and '@’ € C(i' )y ®,C(n') and recall that the product

in L1 is described in . By , we have
N =y —
ayy BBl P ByRly) < Ky = TR RY, o 59 By Ry)
K, 1> (RY)S(Rly) > a <t REy Riy)) = ¢“* 1) (RE) S(Ry) > o < Ry, RY,))

for some ~y1,72,73 € @4+. In other words:
Riy Ry > ' <A Ry Ry € FIYN, RY S(Rly)) > o <t RYy Ry € F*
Since F; and F,. are filtrations of the algebra L1 we thus have
B(Riy R}y > ' < Ry RYy)) € FEHHATY 1 (RE, S(Ry) > a < Ry Ry )l € FJHTte
which gives the claim by the definition of F. O

We identify grz(L1) with (9(1(q1/D)®2 as a vector space: f® a € C(u)y ® C(n) is
identified with S ® « +.7:<(“”\’77’”). We denote by o the resulting product on Oy (q*/P)®2. Let
B eC(u)yand « € C( ); then (14) and ([49) yield

(50) iA OlB ZlB @(1 > ,6 <10 1)@( )) OlA(@?Q)S(G%Q)) >ad @%Q)R(l))

where O, ©2, ©3 are three copies of ©.
Theorem 3.14. The algebra L1 is Noetherian.

Proof. We use the notations and assumptions introduced just before Lemma for basis
elements and matrix coefficients. We are going to show that grz(Ly) is Noetherian. The
first task is to simplify the formula When a = ngzﬁl and 8 = qu’ are matrix coefficients
of some irreducible modules V,, and V By (15]) and ., we have

(K, > (Rigy > 40%)) @ (46F < Ray) = 49 (Rgy > 40%) ® (n0F < Rpyy)
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(R2) > u¢§‘) ® (01 < Ry)) < K,)) = q(u,eZ—V)(R(z) > uﬁbé‘) ® (ydf < Ry)

for some v € Q4. Hence
(R(Z) > u?b;) ® (ndy < R(l)) € Span{u(ﬁ; ® n(b;}sl;je;%’ €1<el - span{ﬂqbzs ® n¢;}52j7t2k

where the inclusion is due to the assumption on the numbering of the basis vectors. Using
the expression (14)) we obtain more precisely

> _(Be) > 48)) ® (61 < Ryy) € () > 46)) ® (61 < O)) + span{udy @ n6i} o et
®

e
] K

u¢y © 0 + span{ .o} ®n¢f}ef;<e;,e?«2'
We can now simplify :

i4(y01) © 15 (u05)

= ip(R@)0f) > ue) <0(,)07) 0ia(0%)S(0(y) > ¢ < 07 Ra))

(51 en—e ) (€] e ZlB ,u@b;) OiA(nqs;g <]R(1))

= g fﬁﬁk%B( ) o ia(yef) + Z Z A ip(udh) o ta(yeh)

s=j+1t=k+1

for some 7% e C(¢'/P) such that 7% = 0 unless e < e’ and ¢ < €.

Recall from above the finite sequence of elements (u;) which generate grz (Lo1).
Since ip (]—"ﬁ’)‘) = FrA00 and iy (.7-"[7’”) = FOOm~E the linear maps ig and i4 are morphisms
of algebras grz (Lo,1) — grr(L10) and grz, (Lo1) — gre(L10). Moreover, we have ip(3) o
is(a) = B®a. It follows that the algebra grz(L1) is generated by the elements ip(uy) and
ia(ug). We organize them in a sequence (x1,...,z2,) by

z1 =1ig(u1),...,xp =iB(up), Tpp1 =ia(wr),...,xep = ia(up).
Thanks to relations and we have:

b—1 p
Vi<b<a<p, xaoa:b:qaba:boa;a—i—ZZagfooxt
s=1 t=1
b—1 p
Vp+1<b<a<2p, 0w =(qurp0Ta+ » Y 0%z,0x;
s=1t=1
b—1 p
(52) Vi<b<p<a<?2p, xaoxb:q(’lbxboxa—i—ZZ/\gfxsoxt
s=1 t=1

for certain scalars gap, ¢’y € C(¢/P)* and a®, A% e C(¢*/P). These three relations cover all
the possible cases for the indices a and b, and they all have the form required by Lemma [2.2]
It follows that gr#(L1 ) is Noetherian, and that £; o is Noetherian as well thanks to Lemma

21 O
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4. THE GRAPH ALGEBRA Lg,

Following the definition of £y ,(H) in [BR22|, we will define L, ,,(H) as a twist of the tensor
product of g copies of L1 o(H) and n copies of Ly 1(H) and then explain the equivalence with
the other constructions based on matrix relations |Ale94, [AGS95, BR95] or braided tensor
product [AS96D]. See also [MW21] for a construction based on twisting; in their work L ,,(H)
corresponds to Af‘g,w where I'y ,, is the “daisy” graph.

The definition of L4, (H) in works for any quasitriangular Hopf algebra H. The
general definition is adapted to H = U;d(g) in Our main results are in and

4.1. Definition of L, ,(H). Let H be a quasitriangular Hopf algebra with an invertible
antipode. As in [BR22, §6.1] we will use twisted tensor products, so let us recall a few facts
about this operation. For two Hopf algebras A and B, a bicharacter is an invertible element
X € B® A such that

(Ap ®ida)(x) = x23 x13, (idp ® Aa)(x) = x12 x13,

where the subscripts describe embeddings in B ® B ® A and B ® A ® A respectively; for
instance yo3 = Z(x) 1p ® X(1) ® X(2)- For such a x, the element X =14 ® x ® 1p is a twist
for A ® B (recall the definition of a twist in §3.1). The twisted Hopf algebra (A ® B)x is
denoted by A ®X B and is called the twisted tensor product of A and B by x. If M is a
A-module-algebra and N is a B-module-algebra, then M ® N is a (A ® B)-module-algebra;
the twist (M ® N)x is denoted by M ®X N and is called the twisted tensor product of M and
N by x.

Example 4.1. 1. The element R’ = > (r) R2) ® Ry is a bicharacter (with A= B = H).

2. An easy computation reveals that the Hopf algebra Ao 1(H), which was defined as a twist

in section can actually be written as H @™ H.
3. The Hopf algebra Ay o(H) from section has been defined as Ao1(H) ®" Ao1(H) (see
Lemma([3.1) and L19(H) is Lo1(H) @7 Lo1(H).

Let fa: H— A and fp: H — B be morphisms of Hopf algebras and denote fa ® fg =
(fA &® fB)A Then
(1) (fB @ fa)(R)) is a bicharacter,
(2) fa ® fp is a morphism of Hopf algebras H — A B&fA)(F) B

The twisted tensor product allows us to iterate the twist operation, as follows. Recall
from §3.1that Lo,1(H) and £1,0(H) are module-algebras over the Hopf algebras Ag1(H) and
Ay o(H) respectively. Let us put by convention Ago(H) = Lo0(H) = k (the base field of H).
For n > 0 we define

Agns1(H) = Aon(H) @' Ag1(H) with J, = (A @ A”")(R)
Lops1(H) = Lon(H) @™ Lo (H)
where A®? = ¢ and A®" = A®»~1) & A. For g > 0 we define
Agr10(H) = Ago(H) @5 Ay o(H) with K, = (A® @ (A®)29)(R))
Lor10(H) = Lgo(H) @9 L1,9(H)
where A®) = (A ® A)A is the third iterated coproduct, (A®))® = ¢ and (A®)®9 =

(ABGHYO=D & AG) To see that J, (resp. K,) is a bicharacter, recall that A : H — Ag1(H)

(resp. A®) . H — A10(H)) is a morphism of Hopf algebras and make an induction from
items 1 and 2 above.
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In general we put
Agn(H) = Ago(H) @0 Ao (H)  with Fy, = (A" @ (A®)®9) (R)
and
Definition 4.2. The graph algebra is Ly, (H) = Ly o(H) @70 Lo, (H).
By construction Ly, (H) is a (right) Ay, (H)-module-algebra. As vectors spaces
Agn(H) = H?UIH2) and £y, (H) = (H°)®ot)
and the right action is given by
(P1®...@Pagin) (T1®. . .@Tagian) = (S(22)>01<21) ®. .. ® (S(Tagton) > P2g4n <Tdgton—1)-
Thanks to the morphism of Hopf algebras (A®)®9 @ A®" = Alg+2n=1) . g _, Agn(H), we
obtain a right H-module-algebra structure on L, (H), denoted by coad”:
coad” (h) (01 ® ... ® Pagin) = (91 @ ... ® Pagin) - AT ()

(53) = "coad" (h))(¢1) @ ... ® coad” (hagn) ) (P2g+n)

(h)
where the right action coad” in the second line is defined in . In other words, L, ,,(H) is
£071(H)®(2g+”) as a H-module.

We now reformulate the definition of L, (H) as a braided tensor product, which will
be more convenient in order to describe the product. Let Mod-H be the category of right
H-modules; it is braided, with braiding:

cuy UV — VU
uRv  —> Z(U'R(l))®(U'R(2)) .
(R)

Let (M,mps,15) and (N, mpy,1y) be H-module-algebras (i.e. algebras in Mod-H) and
define

Mysy: (M@N)® (Me N

1M®N =1y ®1nN.
This endows M ® N with a structure of (right) H-module-algebra, denoted by M ® N and
called the braided tensor product of M and N [Maj92, Lem. 9.2.12]. It is easy to see that ®

is associative. We often write a pure tensor m®@n € M @ N as m ®@n to stress that we use
the braided product in M ® N. Explicitly:

(54) (m&n)(m'@n') = m(m'- R)) ® (n- Ry’
(R)

id 7 ®id
) M ®cn v @idy MeMaNeN ma @mpy M®N,

The embeddings of k-vector spaces
jvy: M — M®N jy: N — M®N

(55) m — m®l n — 1®n

are morphisms of H-module-algebras and we have

(56) ju(m)jn(n) =men,

(57) Jn(n)jm(m) = ZjM(m “Rey)in(n- Ry)-
(R)

Proposition 4.3. £, ,(H) = £1,0(H)®g ® £071(H)®” as right H-module-algebras.
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Proof. Note that K, = (A(3)®A(49_1)) (R'); then by definition of the multiplication ML, o(H)
in Lgy10(H) (recall and the definition of the twisted tensor product) we have for
u,v € Lgo(H) and z,y € L10(H):

ML yt1,0(H) ((u ®z)® (e y))
= mg, o (W (v (Ko@) @me, o (- (Kq)ay) @ y)
(Kq)

g
= mg, o (u® (v- ATV (R)))) @ me, o (2 AP (R)) @)
@

=D mg, o (u® coad” (Ry) (v) @ mg, oy (coad” (Reg))(z) @ y) = (u@ ) (v @y).
(R)

For the third equality we used (53). Hence Ly11,0(H) = Lg0(H)® L1,0(H) and it follows that

Lyo(H) = L10(H)®. One shows similarly that Lo,,(H) = Lo1(H)®" and that £, o(H)®"

,Co’n(H) = £g70(H) ®E07n(H) ]
Thanks to Propositionand we see that there are embeddings of H-module-algebras

Ji: L1o(H) = Lgn(H) for 1 <i<gandj;: Lo1(H) = Lyn(H) for g+1 < i< g+n, given

by

(58) jilw) =150 G 3§18

where 1 is the unit of £19(H) (i.e. e ®¢€) or of Lo1(H) (i.e. €) depending on the position.

Recall the embeddings i4,ip from ; we denote

ig) =Jiola, gy =Jiocip for1<i<g,

i@ =7i forg+1<i<g+n

which are all embeddings Lo 1(H) — L4, (H). Then from and (26)) we find

(59)

i) (p1)ia@)(¥2) - - - iB(g) (P20-1) ia(g) (P29) s (g1 1) (P2g+1) - - - Inr(gn) (P2g+n)
(60) =J1(p1 ® 92) . . . Gg(P2g-1 ® P2g) Jg+1(P2g+1) - - - Jg4n(P2g+n)
= (p1 ® ¢2) Q... (9029—1 ® 4,029) ® P2g+1 ®...0 P2g+n
and any element in £, ,,(H) is a linear combination of such elements.
Proposition 4.4. The product in L, ,(H) is entirely determined by the following equalities:
ix (i) (¢) ix@) (V) = ix (0Y)
i) (@) ipu (¥) = Z in() (Rioy RYy > ¢ < REyREY) ag (Ry S(Ri)) & ¢ < Rl R(y)

(RY),.(RY)
iy() (@) ixm@) = Y ix@(SRY R > ¥ <Ry RY)) iy () (S(Rg Ry ¢ < RYy Riy)
(RY),....(R%)

for all v, € Lo1(H), where 1 <i < j <g+mn and X(i) (resp. Y (j)) is indifferently A(i),
B(i) or M(i) (resp. A(4), B(j) or M(5)) and R, ..., R* are four copies of R € H®?.

Proof. 1t is clear that these formulas determine the product since they allow us to compute
the product of any two elements from (60). The first formula simply expresses the fact
that ix(;) is a morphism of algebras. The second formula is obtained from and
thanks to the algebra embedding j; : £19(H) — Lgn(H). Let us prove the third formula.
Assume for instance that ¢ < j < g. Using Proposition and the associativity of ® we
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can write Ly, (H) = Lio(H)® Ly—in(H); let Jeio(e) and je, . (m) be the corresponding
H-module-algebra embeddings (see (55))). It is easy to see that

(gn) _ :(4,0) (gm) _ . (g—in)
1)?(1) JLio(H) © X () 1yg(g) JLg in(H)© ‘15](3 i)

where 1()?(7)), 1&1((01)) and 1&(1)’71) are the H-module-algebra embeddings from for Lg(H),

Lio(H) and Ly_;,(H) respectively. Hence we have
WO ) = e, i (5575 (0)) .ot () ()
= ij:i,o(H) <CO&dT(R(1)) (19((01)) (¢))> JLgesm(H) (CO&dT(R(z)) (1§§(]Z TZL)) (@)))

= Y e (S0 (S(RBw)@) & v 9 (Ra)w))
(R). (R (Rez) . i
O X JL i (H) (1§Vg(] ,)) (S(R2))(2)) > ¥ < (R(Z))(l)))

_ i) 3 4 2 ) ilen) 2 pid
= 2 W (S(RYRY) b v < By Ry W (S(Rly Rly) & 0 < By Riy).
(RY),...,(R%)
For the second equality we used . for the third equality we used the H-linearity of i ? )),

1§f( b r.L)) and the definition of the H-action on L 1(H), and for the last equality we used

that (A ® A)(R) = R14R13R24R23, which follows from the axioms of a R-matrix. The other
cases for ¢ and j are treated similarly. O

14
Recall the notations introduced before Proposition in particular the matrix M €
Lo.1(H) ® End(V) for any finite-dimensional H-module V. Let

\% \% 14 Vv
(61) A(i) = (iap) ®1d) (M), B(i) = (igp) ®1id)(M) for1<i<yg
\%4 |4
M(i) = (ip) ®id) (M) forg+1<i<g+n
which are elements in £, ,(H)®@End(V), or in other words matrices of size dim (V') with coef-
Vv Vv VvV
ficients in £, ,(H). In mathematical physics A(¢), B(i), M (i) are seen as quantum holonomy

matrices associated to the usual generators a;, b;, m; of the fundamental group of the surface
>4,n With an open disk removed.

Proposition 4.5. The following relations hold true for any finite-dimensional H-modules
V,W:

VeWw 1%
X03) = X1 (Ryvw X2 ()7l for1<i<grn,

w 1%
Ryw B(z’)l (R)vw A(i) A(i)2 Ryw B(i)1 Ry, for1<i<g,
v. 1 W w. v -1 . .
Ryw X(i)1 Ry Y(5)2 = Y(j)2 Rvw X(i)1 Ry, for1<i<j<g+n,
where X (i) (resp. Y (j)) is indifferently A(i), B(i) or M(i) (resp. A(j), B(j) or M(j)).

These matriz equalities entirely describe the product in Eg,n( ).

Proof. This is completely parallel to the proof of Proposition By the same arguments we
already get that the first and second matrix relations are equivalent to the first and second
formulas in Proposition [£.4] It remains to show that the third matrix relation is equivalent
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to the third formula in Proposition [£.4} this is similar to the computation in the proof of
Proposition [3.4] and is left as an exercise for the reader. O

Remark 4.6. In many papers the matriz relations in Proposition[].5 are taken as a definition
for the product in Ly, (H).

4.2. The case H = U;d(g). Since Uqad(g) is not quasitriangular in the usual sense (, the
above definition of L, (H) must be slightly adapted. We use the notations from sections
and Let us put by convention Ago = E070(q1/D) = C(¢"/"). Recall from that Lo 1
and L1 are module-algebras over the Hopf algebras Ag; and Aq respectively. For n > 0
we define

Aopi1 = Aoy @™ Aoy with J,, = (Ay, ® AF")(R)
Loni1(¢"P) = Lon(g"P) @ Og(q"/P)r

where R’ =} ) R(2) ® R(y) is the flip of the R-matrix R € U?? For g > 0 let

Agi10=Ag0 @0 Mg with K, = (AY ® (AF)*7)(R))

K,
Lgr10=Lgo @ L1

In [BR22, Prop. 6.2] it is shown that restricting the product of Eom(ql/D) on the C(q)-

subspace L5 gives a C(q)-subalgebra, which is denoted by Lo ,. However, as we have seen

in section the algebra L1 (and hence L, ) can only be defined over C(g"/P). This forces
us to define the general case over C(¢'/?), as follows:

Agn = Ago ®" Ao, with Fyp = (AR @ (A[([i))@g )(R')
Lgn = Lgo@"m EO,n(ql/D)~

Explicitly, Lg,, is the C(q"/P)-vector space Oq(ql/ Dy®29+n) endowed with the product de-
scribed in Proposition [4.4]

By construction Lg,, is a right A, ,-module-algebra. As in we have a morphism of
Hopf algebras A%qg Fan=l) Uy, =+ Ag . Combining this with the morphism of Hopf algebras

v : Uy — Uy introduced below @D, we obtain that L, , is a right U;-module-algebra for the
action coad” in .

Note that the factorization of L, , as the braided tensor product E%g ® Egj’f (Prop.

holds true for H = U;d as well, though the whole category of U;d—modules (not necessarily
finite-dimensional) is not braided. This is because all the elements of Lo; and L1 are
locally-finite, and so the pairing and ensure that the formula for the product
in M ® N is well-defined when M = L, ,,, N = Ly, and the right action - is coad”.

Proposition 4.7. The algebra L, is finitely generated.

Proof. Recall the algebra grz, (Lo,1) from It is proved in [VY20) pp. 178] that gr £ (Lo,1)
is finitely generated, thanks to the first item in Lemma As a result Lo is finitely
generated, see Lemma Let x1,...,x, be the generators of Ly1. We deduce from
that the elements i) (7s), ia)(Ts), vy (7s) with 1 <k <g, g+1<I<g+n,1<s<m
generate Ly . U
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4.3. Noetherianity of L, ,. Here are the steps of the proof:

(1) we introduce a filtration G; of L, , whose graded algebra grg (Ly,) simplifies the
third relation in Proposition

(2) we construct a filtration Go of grg, (L£y,n) thanks to the filtrations on Lo; and on L1
from §3.4]

(3) using Lemma we show that grg, (grg, (Lg,n)) is Noetherian,

(4) it follows from Lemma [2.1) that grg (Lg ) is Noetherian and that L, is Noetherian.

We write Ly instead of Eo,l(ql/D) for simplicity of notation. For y,w € Py and A € P
consider the subspaces

(Lop)ur = {p € Clu }VV € P, coad” (K, Y (p) = ¢™) o},
(ﬁlo LA — {x € C ) w ‘VV c P7 Coadr(Kljl)(l') — q()\7y)x}

where coad” is defined in (23) for Lo and in for £y, and C(u) is the subspace of
matrix coeflicients of the irreducible U;d—module with highest weight p. For a finite sequence

([, X)), with [1] = (11, iagin) € (Po)%™ and [ = (A, .. Agan) € PP, we put
('Cgmu)[,u],[)\] = (£170)/—’«17#2,>\1 ®... (’Clao)ﬂ&gfl“u@gy)\g ® (‘CO 1)ﬂ2g+ly)\g+l ®...® (‘CU 1)#2g+n7Ag+n'

Recall the partial order < on P defined in For p, 1, w, w € Py and \,\ € P we erte
(W, X) = (u, A) (resp. (i, X) =< (u,w,k)) tO mean that ¢/ < g and X' < X (vesp. p' <
and ' <X w and X < X). We say that ([¢], [\']) <1 ([u], [A]) if and only if

(/’Lég—l-n’ )‘;]—&—n) (/-L2g+n7 )\ngn)
or ((/’LIQQ—H’L? )‘lg—f—n) (H2g-+ns Ag+n) and (,U/29+n—17 )\lg—f—n—l) < (M2g+n-1, )\g—&-n—l)) or ...

This defines a partial order <1 on (Py)?9™ x P9%" which is a block lexicographic order
starting from the right. For instance if g = 1 and n = 1 we have ([u], b, p5], [N, A5]) <1

([p1, p2, p3], [M1, Ao]) if and only if
(15, Ny) < (ps, A2) or ((ué,k’z) = (u3, A2) and (p7, ph, A7) < (u1,u2,A1)>.

Now let
== {([u),[N]) € (Pp)?*" x PIY™ | (L )3 # O}

Then (Z, <1) is an ordered abelian monoid and the order <; is well-founded on =. Moreover
=< satisfies the condition and it follows that

gy = ) (Lo vy (with ([W],[N]) € B)

(I LIND =1 ([N

defines a filtration G; of the vector space L;, indexed by E. For any 1 < k£ < g and
g+ 1 <1< g+ nitis convenient to use the obvious embeddings

(62) Sp:P2x P — PP x Pt G P x P— PP x pItn
which are such that

(63) (Lon)suuwn) = ((L10)pwn)s  (Lon)siwr) = 3((Lo1)un)
for p,w € P4, A € P, and where ji, j; are the embeddings from .

Lemma 4.8. Gy is a filtration of the algebra Lg,,.
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Proof. Let
Y1 @ @ Ygin = J1 (Y1) - - - Jgin(Ygtn) € (Lgmn) ), [v]

where by definition we have yr € (L1,0)u,  u a for 1 <k < gand y € (Lo 1)ul+l v
—1° k) ) g b

for g+ 1 <1 < g+mn. Take an element x € (Lo,1)ux; 50 Jm(7) € (Lgn)s,,(un for any
me{g+1,...,9+n} (see and (63)). By Proposition [4.3] and we have
Jm (@) j1(y1) - - - Gg+n(Yg+n)
= Z g1 (coadr(Rgl))(y1)> e Jm—1 (coad’”(R?ll)_l)(ym_l)>

(RY),..(Rm=1) . . . .
X Jm (Coad (R(lz) R(Q) )(x)ym) ]m-l—l(ym-i-l) tee ]g-i-n(yg—i-n)-

For any term in this sum and any v € P, the fact that Lo is a U;-module-algebras for coad”
together with gives

coad” (K1) <coadr (R%Q) . Rg;l) () ym>
= ¢ A =M == ¥m 1) eoad” (R%Q) . Rg)_l) () ym
for some v1,...,Ym-1 € Q4. Moreover due to and we have
coad” (R( 2Ry (@) ym € @Hjuﬂ/ﬁm C(k).
It follows from these two facts that jn,(x) j1(y1) - .. Jjg+n(Ygen) € gfm(““)“[”’]’[”) by defini-

tion of G1. If now x is an element in (L1,0) 40,1, Jm (%) € (Lgn) s, (uw,n) forany m € {1,..., g},
and we have an analogous proof. These two particular cases imply the result.

Let us identify grg, (£gn) and Ly, as vector spaces; namely x € (Lgn)(,,n 18 identified

with the coset = + g“ LA ¢ grg,(Lgn). Denote by e the resulting product on Lg .
Consider the canonical projections

W":@C(’{)—)C v M) @C = Cn)eCH)
K=n K=n
K=

which allow us to define the truncated product = on Ly and L o:
ey =T (ey) (TSP TTY = T wrer) (7Y))

for z € C(p) and y € C(i') (resp. z € C(p) ® C(w) and y € C(p') ® C(w')). We denote by
(Lo,1,~) and (L1,0,~) the vector spaces L1 and Ly endowed with the products = above.
The next lemma describes o thanks to the embeddmgs of vector spaces ji from (58] .

Lemma 4.9. Let k,l € {1,...,9+n}, p,w, i ,w’ € Py and \, N € P. Take x in (L1,0),0.
or (Lo,1 ), depending if k is < g or > g. Similarly, take y in (L1,0)u 0 07 (Lo1)w N s
depending if l is < g or > g. Then

gr(x) @ je(y) = jr(z~y)  for all k,

k() e uly) = je(@)iy) if k <l,

Jr(@) o jiy) = ¢ iy)in(e) if k> L
Proof. Let ~ be the identification grg, (£Lgn) ~ Lgn. Let us prove the first formula. Take
for instance k > ¢g. By assumption jk(.%') (Lgn)sy(uy and je(y) € (Lgn)s,(u,»)- Then
2y € D, < (Lo1)sa+x and we have

]k(x)']k(y) ~ ( ( )+g<1Sk A ) ( ( )+g<15k(ﬂ A)) _jk(xy)+g<13k(u+,u A+X) N]k;(xiy)
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The second formula is obtained similarly. For the third formula, recall the expression of R
in and its commutations rules with K, in ([15). Then from and the definition of G;
we get,

Jr(@) @ iw) = (x(@) + G750 ) () + 67450 ) = Gia)i(y) + g S IO
= > ji(coad” (R))(y)) jr (coad” (Rez)) (x)) + G Sk SN

= ji(coad” (01)) (1)) i (coad” (O z)) () + Gy *HHA A
= ¢ i(y)s() + GV o OX )y ()
Recall from the filtration Fy on Ly indexed by A (where A is defined in (43)) and

the filtration F on L1 indexed by A x A. Since we identified grg, (£,,,) with L’%g ® ,C%?Tf as
a vector space, we can consider the family of subspaces Go indexed by A2 and defined by

g#l,)\l,m,lﬂ, g AG MGG g +15Ag4 155 lbg+nsAgtn

— ‘/_.'/117)‘1»7717’{1 R...® ]I'Mg»Agangﬂ‘fg ® F;g+1’)\g+1 ®R...0 Féﬁngny)\ngn.
We endow P**2" with the partial order <5 given by
(P15 Pagran) S2 (D1, -+, Pigyon) = Vi, pi 2P}

which gives by restriction a partial order on A?™™ which satisfies and is well-founded.
Then G» becomes a filtration of the vector space grg, (Lgn)-

Lemma 4.10. G is a filtration of the algebra grg (Lgn).

Proof. Take ji(x1)...Jgen(Tgsn) € G5 and ji(y1) ... jgsn(Ygin) € G5 for some S, 5" €
A%9%7" where j is the embedding of vector spaces . We can assume that these elements
are homogeneous in grg, (£g,). Then according to Lemma

(jl (71) .. -jg+n(xg+n)) . (Jl (y1) - ~jg+n(yg+n)) = qul(ml Ty ~jg+n($g+nfyg+n)

for some N € (1/D)Z. It is easy to see that F and Fy are also filtrations of (£1,,~) and
(Lo1,™) respectively, which gives the result. O

For1<k<gand g+1<1<g+n we will use the obvious embeddings
Si: A% = (A?)9 x A", S A — (A%Y x A™.
Theorem 4.11. The algebra L, is Noetherian.

Proof. We are going to show that grg, (grgl([,g,n)) is Noetherian. Recall that grg (Lg,) is
identified with L, , endowed with the product e. To avoid confusion we do not identify again
grg, (grg1 ([,g,n)) with £y, as a vector space and instead we use cosets x + Qﬁs

Note first that thanks to the first formula in Lemma {4.9 . the linear maps i), iak)s iar(s) :
Lo1 — Ly from are morphisms of algebras

iBGk) L@ () * (Lot ™) = grgy (Lgm)-
It is easy to see that the filtration F, (x € {¢,r}) of Lo is also a filtration of (5071,7)
and that grz (Lo1, ™) = grz,(Lo1). If ¢ € Loy are such that ip(p) € FHA00 and
ia(y) € FOOmE we let

o~

ipr)(¢) = ipw)(¢) + G 2SrA00) ia(e) (V) = 4w (¥) + G 25k (00mk)



38 STEPHANE BASEILHAC, MATTHIEU FAITG, PHILIPPE ROCHE

for 1 < k < g. Similarly, forgoe}";”\cﬁo,l and g+ 1< s<g+n we let

Since {B(k)7{A(k)7{M(s) are morphisms of algebras and

{B(k) (]_—;y,)\) _ g;zsk(u,A,0,0)7 {A(k) (]_—;n,n) g<2Sk (0,0,n,x )7 {M(s) (]_-;u,/\) g<2S

we obtain morphisms of algebras

g 1 87, (Lo1. ™) = gry, (Lo1) — g1, (816, (Lan)),

~ ~

Aty tv(s) 1 817 (Lo, ™) = 8rr,(Lox) — grg, (816, (Lgn))-
Recall from §3.4| that grz (Lo,1) with x € {f,r} is generated by a finite number of ma-
trix coefficients u1,...,u,. Thanks to the second formula in Lemma H we deduce that
grg, (8rg,(Lyn)) is generated by the finite set of elements 1B(k) (uy), 1A( k) (ur), 1M(s) (u,) for
1<k<g,g+1<s<g+nandl<r<p. By applying the morphlsmTX(T) where X (r) is
indifferently A(r), B(r) or M(r) to (47), we obtain
b—1 p

VI<b<a<p, ixg)(Ua)ixe () = daixe) () ixe)(ua) + a2l iy (o () i o) ()
s=1 t=1

with certain scalars g, € (C(ql/ Pyx and a?f € (C(ql/ Py Similarly, it follows from that

b—1 p

V1<b<a<p, iap(ua)ine () = dhyie ) iam (ta) +ZZ>\st i3 () Tagr ()
s=1 t=1

for any 1 < r < g and with certain scalars ¢/, € C(¢"/P)* and A% € C(¢"/P). Finally, we
see from the third formula in Lemma [A.9] that
V1<a,b<p, iy (ta)ixe () = aly ix ) () iy (ta)

where r < s and X (r) (resp. Y (s)) is indifferently A(r), B(r) or M (r) (resp. A(s), B(s) or
M(s)) and gy, € C(q'/7)*.

We define a sequence (71, . .., %(2g4+n)p) by

B1 =iy (W), .-, Fp = ipa)(Up), Tpr1 = taqy (), - .., Bap = tagr)(up),

Ta(g-1)p+1 = 1B(g) (1), -+, Ta(g—1)p+p = 1B(g) (Up), Ta(g—1)ptpt1 = ta(g) (1), .- -, Tagp = ia(g) (up),
Togp+1 = g1y (W), -+ T2 1)p = tnr(g+1) (Up),

£(2g+n—1)p+1 1 M(g+n) (ul) ZU\(Qg—i—n)p = iM(g-i—n) (up)

The relations above show that the generators T satisfy the relations required by Lemma
It follows that grg, (grg1 (Lgn)) is Noetherian. Using Lemma two times, we obtain that
grg, (Lgn) is Noetherian and that L, is Noetherian. O

Remark 4.12. One can wonder why we did not use the simpler filtration by the subspaces
g?] = U[M]Engﬂgy]’[)‘] indexed by PIt™ with lexicographic order from the right, for which all
the above proofs seem simpler since the product = does not appear in gra, (Lgn). The problem
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is that the lezicographic order on P9 is not well-founded, hence Lemma does not apply
to grfgvl(ﬁg,n) and the last argument in the proof of Theorem becomes wronyg.

4.4. Noetherianity and finiteness of Egﬁl. The subalgebra of Ug-invariant elements is
Lot ={z € Lyn|Vh € Uy, coad” (h)(z) = e(h)z}
where the right action coad” was defined in . More generally if V' is a module over a Hopf
algebra H, the subspace of invariant elements is
VE={veV|VheH h-v=c(hw}
where ¢ is the counit of H.

We start with a general result about the structure of invariant elements in module-algebras;
it is just an abstract formulation of the discussion below Theorem 3.2 in [BR21], which is
itself inspired by [DCT70, Chap. 3, §1]. Denote by Z an additive abelian monoid endowed
with a partial order < such that
VieZ, 0<i
Vi,j,keZ, 1<j = 1+k<j+k.

We assume moreover that < is well-founded. For instance, Z = P} endowed with the order
= (see §2.3) satisfies these assumptions.

Theorem 4.13 (Hilbert—Nagata theorem for module-algebras). Let H be a Hopf algebra and
let A= @,;c1 Ai be a graded k-algebra which is a H-module-algebra. Assume that

e Ag=k1,

e A is Noetherian and finitely generated,

o for each i € I, A; is stable under the action of H and is a semisimple H-module.

(64)

Then the subalgebra A™ is Noetherian and finitely generated.

The proof resorts on three basic lemmas. Note that since A; is semisimple we can write
Ai= (A" & @B, Vin
where the V; ,, are some simple H-modules not isomorphic to the trivial module k. Projecting

along this decomposition gives a H-morphism R; : A; — (Al)H . Since each A; is H-stable
we have A” = @, 7(A4;)" and we can define

R=EPR:A4- A"
1€
The morphism fR is called the Reynolds operator.
Lemma 4.14. For z € A and y € A, it holds R(zy) = 2R(y) and R(yz) = R(y)z.

Proof. We can assume without loss of generality that = € (4;) and y € Aj. Consider the
map
My : Aj — Ai+j
y — 2y
It is H-linear:
hema(y) =h-(zy) =Y (hay-2)(he - y) =Y _(elha)z)(he) - y) = z(h-y) = ma(h-y).
(h) (h)

Let A; = (A;))T @ Vj and A;y; = (Aiy ;)™ @ Viy;, where the semisimple modules V; and Vi ;
do not have any direct summand isomorphic to the trivial module k. Then by Schur’s lemma

HOIDH(Aj, Ai-i-j) = Homk((Aj)H, (AH_J)H) ) HOIHH(V}', V;.,.j).
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It follows that if we write y = R(y) ® v € (4;)7 & V;, we have
zy = ma(y) = ma(R(y) ® v) = ma(R(y)) ® mo(v) = 2R(y) ® v € (Aiy)" & Vi,

But by definition of SR we also have xy = R(zxy) ® w, which gives the desired equality. The
second one is shown similarly. O

Lemma 4.15. Let A be a Noetherian algebra and X C A. There exists a finite subset
Xin C X such that AX = AXgqn, where AY denotes the left ideal generated by Y C A. The
same s true for right ideals.

Proof. Since A is Noetherian, AX is finitely generated. So there exists elements

0= . g =3 oM

iell ie[n

(where agj) €A, a;l(j) € X and [ is finite for each j) such that AX = Ag; + ...+ Ag,. Take
Xep = {:L‘El)}ieh Uu...u {:L‘En)}ign. Since Xg, is a (finite) subset of X, we have AXg, C AX.
On the other hand, since g1, ..., g, € AXgn, we have AX C A(AXg,) = AXgn. O

The last lemma is a well-known fact:

Lemma 4.16. Let A = @,;.7 Ai be a graded k-algebra such that Ag = k1. If A is Noetherian,
then it is finitely generated.

Proof. Let Ay = ®i€I\ {0y Ai- Since Ay is an ideal, it is finitely generated: there exists
g1, ---,0n such that A, = Agy + ...+ Ag,. We can assume that the elements g5 are homo-
geneous (i.e. gs € A;, with j, > 0). We will show that A; C k(g1,...,gn) by well-founded
induction on i. Firstly, Ag = k1 C k(g1,...,9n). Now assume that ,_; 4; C k{(g1,...,9n)
for some ¢ € 7\ {0} and take z € A;. Since A; C Ay we have x = > 7 | asg9s. The el-
ements x and gs; being homogeneous, the as; can be assumed to be homogeneous as well:
as € Aj,. Then js + s =i for all s, which implies [; < i due to the assumptions on <.
Hence a; € ®j<i Aj so that as € k{(g1,...,gn) by the induction hypothesis. It follows that
x € k{g1,...,9n), as desired. O

Proof of Theorem[{.13. Let I be a left ideal in A" we want to show that it is finitely gen-
erated. Lemma [4.15| gives us elements z1,...,x, € I such that Al = Axz1 + ...+ Ax,. We
have R(AI) = I. Indeed, the inclusion I C R(AI) is obvious since R(I) = I. Conversely,
take x = Y 1 aszs € AI. Applying Lemma [4.14] we get R(z) = Yo R(as)zs € I, so that
R(AI) C I. Now, using Lemma again, we find

I =R(AI) = R(Az; + ...+ Az,) = R(A)z1 + ... + R(A)z, = ALz + .. 4+ Az,

which means that I is generated by x1,...,%,. The same arguments show that right ideals
of A are finitely generated as well. Thus A is Noetherian. To show that the algebra A
is finitely generated, note that it is graded by Z if we define (A%); = (4;); hence Lemma

applies. O

We will now use Theorem to prove that the subalgebra Eg% is Noetherian and finitely

1/D)®(2g+n)

generated, which is our main result in this section. Recall that Lg,, is Oq4(q as a

vector space. For [u] = (1, .., Hag4n) € pingn let
C(p]) =C(p1) ® ... ® Cu2g4n) C Lygn

where C'(p;) is the subspace of matrix coefficients of the irreducible U;d—module with highest
weight p1;. We say that [p] < [u] if and only if g < py; for all 1 < i < 2g +n, where we recall
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that ) < u; means that u; — u; € D7'Q.. This gives an order on Pig+n which satisfies the
conditions and and is well-founded. We see from the formulas in Proposition and
that the subspaces

whl = @ ¢

[/ ]1=[p]

form a filtration W of the algebra L, ,, indexed by Pig+n. Let

(65) Ty @[quw C([]) = C([u])

be the canonical projection and put ™~y = m, () (vy) for z € C([u]), y € C([n]). Then
gryy(Lgn) is identified with the vector space L, endowed with the product ~.

Theorem 4.17. The algebra Eg‘% is Noetherian and finitely generated.

Proof. Recall the filtration Gy of L, that we used in We see that Gy is a filtration of
gryy(Lgn) as well and that

grg, (grw(Lgn)) = grg, (Lgn).

In the proof of Theorem we showed that grg, (grgl (Egm)) is Noetherian and finitely
generated. It follows from Lemmas and that grg (Ly,) also has these properties.
Using again these lemmas, we obtain that gryy (L) is Noetherian and finitely generated.
Since Ly is a Ug-module-algebra and the canonical projections 7, in are Ug-linear for
coad”, we see that gry,,(Ly.r) is a U;-module-algebra for coad”. It satisfies all the assumptions
of Theorem (recall that U,-mod is semisimple). Hence gryy(£,,)"? is Noetherian and
finitely generated. To conclude, let
W = (W% = wlkl s,  cgs,.

inv
Then Wiy is a filtration of Eg‘,% and we have

U
grw(ﬁg,n)U‘] = g, (ﬁgf;@)-

The result then follows from Lemma[2.1] for Noetherianity and from Lemma [2.3] for finiteness.
]

5. THE ALEKSEEV MORPHISM

Let H be a quasitriangular Hopf algebra with an invertible antipode S. Usually the
Alekseev morphism [Ale94] is expected to be a morphism of algebras

Lon(H) — H(H)® @ H®"

where H(H?) is the Heisenberg double (§3.2)). However, without further assumptions on H
(e.g. finite-dimensionality, as in [Fai20al) we have to introduce a bigger algebra than H(H®)
in order to make sense of the formulas given in [Ale94]; we call this algebra the two-sided
Heisenberg double. We construct it in and define the Alekseev morphism in The
case of finite-dimensional H is discussed in Then in §5.4] we focus on the quantum group
H = U;d(g) and we use the Alekseev morphism to prove that £, , (U;d(g)) does not have
non-trivial zero divisors.
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5.1. The two-sided Heisenberg double. This section does not use the R-matrix of H.
Recall that H°P is H with the opposite coproduct. The restricted dual H° endowed with its
usual product * is a left (H ® HP)-module-algebra for the action

(z@y) = p=a>¢0<S y).

As a result we can make the following definition:

Definition 5.1. The two-sided Heisenberg double is the smash product H°#(H @ HP). It
is an associative algebra which we denote by HH(H®).

By the general definition of a smash product (see e.g. [Mon93 Def. 4.1.3]), HH(H®) is
the vector space H° ® (H ® HP) endowed with the multiplication

(p#@ey)W#(Eet) = D ex (@@ 2 ) # @Yz
(z®y)
= Y eox(za) > a5 (y)) # (@ @ o).
():(y)

where we write ¢ # (z ® y) for the element ¢ ® (zr®y) € H° ® (H ® H). From this formula
we see that H°# (1® 1), e # (H ® 1) and £ # (1 ® H) are subalgebras of HH(H®) which are
canonically isomorphic to H°, H and H respectively. Moreover H°#(H ® 1) is a subalgebra
of HH(H®) which is canonically isomorphic to the Heisenberg double H(H®) from

We note that HH(H®) has a natural representation:

(66)

Proposition 5.2. There is a representation » of HH(H®) on H® given by
p# @Oy > =px(z>y<a5(y).

Proof. This is actually a general fact: for any left H-module-algebra A there is a repre-
sentation » of A# H on A defined by (a#h) » « = a(h - x). The proof of this claim is
straightforward. O

The representation of H(H®) on H° (obtained by restricting » to this subalgebra) is
known to be faithful [Mon93, Lem. 9.4.2]. In general this is not true for the represen-
tation of HH(H®) on H°. For instance if H is finite-dimensional we have H° = H* and
dim(HH(H")) = dim(H)? while dim (Endy(H")) = dim(H)?, which forces the representa-
tion morphism p : HH(H") — Endy(H") to have a non-zero kernel.

Finally, let us mention another construction of HH(H®). We know from §3.2|that H(H®) is
a right H-module-algebra; it follows that H(H®) is a left H“°P-module-algebra for the action

h-(p#x) = (p#z)- S (h)
where the - on the right-hand side is defined in . As a result we can consider the smash
product H(H®)#HP and this algebra is isomorphic to HH(H®):
H(HO)#HCOP ;> HH(HO)
(e#x)#y — D o# (vye) @ Sya)))
(v)

5.2. Definition of the Alekseev morphism. Recall that H is a quasitriangular Hopf
algebra with an invertible antipode S. We use the following notations in HH(H®):

e we write ¢ instead of o # (1 ® 1),
e we write / instead of e # (h ® 1),
e we write h instead of e # (1 ® h),
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where ¢ € H® and h € H. The multiplication in HH(H?) is then described by

(67) he = (hay> @) hey,  he=> (p<aS (b)) hay,  hg=gh

(h) (h)
for all ¢ € H° and h,g € H. In particular the Heisenberg double H(H®) is identified with
the subalgebra of elements of the form ). ¢; h;. We note also that by the very definition

gh = Gh. Finally, we endow HH(H®)®I @ H®™ with the usual multiplication on a tensor
product of algebras.

We will use the embeddings ji : £L10(H) = Lgn(H) for 1 < k < g and jgqq : Lo (H) —
Lyn(H) for 1 <1 <nfrom (p8) and the morphisms @ : Lo1(H) = H and @19 : L19(H) —
H(H®) C HH(H®) from (37) and Proposition [3.7 Let

Dgn: H — HH(H®)® @ H®"
heov= D hyhe) ® - @ hgo1) hag) © hagrn) @ - © higin)

which is a morphism of algebras. We use the convention Dy (h) = £(h). Note for further use
that

(68)  Dont1(h) =Y ha) ® Donlh), Dg+1,n( Z hay h2) ® Dgn(h(s)).
(h)

Theorem 5.3. There is a morphism of algebras

Dy Lon(H) = HH(H)® @ HE"

defined by
Dy (gri(e)) = Z 199 @ 190D @ &g 4 (coad” (R1))(¢)) ® Don-1(R2)
(R)
(I)g n(]k Z 1®(k 1 ® <I>1 o(coad (R(l)) ($)) X Dg—k:,n (R(Q))

(R)
forany ¢ € Lo1(H), 1 <1<n,zeLig(H), 1<k<g, and where coad” is defined in

and .
By the value of ®,, on general elements is
@Q,n(mléé éxgécplé @gpn)
=%yn (]1 (xl)) o Pgn (jg(xg))q)g,n (jg+1(901)) @y (ngrn(SDn))-

Note that for g > 0 the morphism @, , actually takes values in H(H®)QHH(H®)®0~H o H"
where H(H?) is identified with the subalgebra H° # (H ® 1) in HH(H®). This remark will
be important in the proof of Theorem [5.8 in §5.4] below.

The following lemma is the key point for the proof of Theorem

Lemma 5.4. For allh € H and x € Ly, (H) we have

Dy (h) @gn(x) = ®gn(coad” (S (hz))(x)) Dgn(hr))-
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Proof. The proof is by induction. First we prove the result for ®q, by induction on n. Then
we fix n and we prove the result for ®, , by induction on g. So let us consider the case g = 0.
Thanks to the relation RA = A°P’R we get for all h € H and ¢ € Ly 1(H)

h®o1(p) = Z @(R%nR%z)) hR%z)R?U
(RY),(R?)
—1 1 2 1 2
= > o(ST ' heha Rl RY) ) ho Rl R
(RY),(R?),(R)
—1 1 2 1 2
= Z 90(5 (h(3))R(1)R(2)h(2)) R Biyha
(RY),(R?),(R)
= Z (I)O,l (coadr (S_l(h(Q)))(tp)) h(l)
(h)

which is the desired formula for (g,n) = (0,1). Now assume that the formula is true for some
n > 1 (still with g = 0) and let 9 @ € Lo 11(H) = Lo1(H) @ Lon(H). We have in H®0+1)

Dont1(h)Pont1(e®x) = Y hay®oa(coad” (R)(¢)) ® Don(hz)Riz)) Pon(x)
(R),(h)
= Y ®oa(coad" (R)S™ (z))(#)) hr) @ Do (hiz Riz)) Pon(x)
(R),(h)
= Y ®gi(coad” (S (hez))R)) () a1y @ Do (R hz)) Po ()
(R),(h)
= D Pox(coad” (57 (h)) (1)) (#)) ha) @ Do (Bz)) o (coad” (57" (h(s))) (2)) Do (hz))
(R),(h)
= Z (I)O,n+1 (coadr (S_l(h/(Q))) (C,O é :L')) DO,n+1 (h(l))
(h)
For the first equality we used , for the second we used , for the third we used that
(S ®id)(R) = R™! together with R™'A°" = AR™!, for the fourth we used the induction
hypothesis and for the fifth we used , the definition of ®g,; and the definition of coad”

in (53). Now we treat the case g > 0. Observe first that for all h € H and 8 ®@ a € L1,0(H),
we have in HH(H®):

D1o(h)®1,0(8 ® ) = Y huhe (Rgg)Ré) > B < Rf’l)Rh)) RY) R? ®0,1(a)
(RY),(R2),(R®).(h)

= Z (h(g)R%Q)R(QQ) > ﬁ < R?I)R%I)S_l(h(g))> h(4)R?2)R%1)(I)[)71(OZ)h(1)
(RY),(R?),(R?),(h)

1 p2 -1 3 pl 3 P2 [
= Z (R(2)R(2)h(3) > /8 < S (h(4))R(1)R(1)> R(Q)R(l)h(z)q)071(a)h(1)
(RY),(R?),(R?),(h)

= Z <I>1,0 (coad’" (S_l(h(g))) (ﬂ) & 6) (I)O,l (coadr (S_l(h(g))) (Oé)) Dl,O(h(l))
(h)

=) @1 (coad” (S (h(2))) (B @ @)) Dro(hy)
(h)

which is the formula for the case (g,n) = (1,0). The first equality is the definition of ®1 ¢
(Proposition , the second equality uses @, the third equality uses RA = A°P’R three
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times, the fourth equality uses , the definition of ®1 ¢ and the definition of D and the
fifth equality uses the definition of ®; ¢ and . For the general case, fix n and make an
induction on g; this is completely similar to the computation for ®¢ 1 above, using
and the result for ®1 ¢ just proved. O

Proof of Theorem [5.3. We will obtain the result by the same type of induction as in the proof
of Lemma i.e. first one proves the result for ®¢ , by induction on n and then one fixes n
and proves the result for ®,,, by induction on g. Let us do for instance the second part, the
first part being completely similar and left to the reader. So assume that ®,,, is a morphism
of algebras and let # @ u,y ©v € Lyp10(H) = L1,0(H) ® Lgn(H). We have

Cyi1n((@Du)(y@v)) =D Pgr1n (@ coad” (Rr))(y) @ coad” (R(z))(u) v)
(R)

= Z P10 (coad” (R%l)) ( coad” (R%l))(y))) ® Dg’n(R%z)) Py (coad” (R%Q))(u) v)
(R),(R?)

- Z ®19(coad” (R(l))(x)) D9 (CO&dT(Rh)R%))(Z/))

(RY),(R?),(R3) ® Dyn(Riy Ry) ®gn(coad” (Ry)) (1)) ®gn(v)
= Z Qljo(coadr(R?U)(a:)) <I>170(coadr(Rél)R‘?DR‘(‘l))(y))

RY),(R?), r _

G © Dy (R%y)) @y (coad” (Rlyy S~ (RY))) () Dy (Riy) Bgun(v)
= Z P10 (coad” ( R( ))(x)) D (coadT(R‘(ll))( ) ® Dgn(R(Q)) n(u) ng(Ré)) Dy (v)

R2)7(R4
= @gi1n(r®@u) Pyi1n(y @0).

The first equality uses , the second uses the definition of ®4.1,, the third uses that
L1,0(H) is a module-algebra for coad” together with the formula (A ® id)(R) = Ri3Ra3 and
then uses that ®; 9 and ®,,, are morphisms of algebras (by Proposition and the induction
hypothesis), the fourth uses Lemma/[5.4) and the formula (id ® A)(R) = Ri3R12, the fifth uses
(id® S™H)(R) = R™! and the sixth uses the definition of ® ;1. O

v
For completeness let us provide an alternative definition of ®, ,, based on the matrices B(7),
v v
A(i), M(j) from . Let R™) = R and RO = (R/) = Z(R) 2) ® S(R(l)) and write as

usual R&) = Z( R(E) R%)®Rg)). Note that R(™) is also a R-matrix. For a finite-dimensional
H-module V' we define

= > Ry e (REJ) € H @ Endy(V)
(RE)

-3 RSE)) ® py (R§1)>) € HH(H®) ® Endy(V)
(R)
14 %
T=> v¢ ®Ei; € H @End(V)
irj
where py : H — Endg(V) is the representation morphism, ngz; cho— e'(h - e;) are the
matrix coeflicients of V' in some basis (e;) and Ejj(er) = d;xe;. These elements can be seen as
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matrices of size dim (V') with coefficients in ’H’H(H °). They satisfy various exchange relations;
for instance it is an exercise to show that (67]) implies

Vi (i) (+) (£) (i) Wl Vo te  rwm Ve
LTy = Byw, Ryw Ly To=To2Ly", Ly Ly =Ly Ly

1% vV v
where we use the notations introduced before Proposition Let M (resp. A, B) be the
matrix with coefficients in Lo 1 (H) (resp. in £; o(H)) introduced before Proposition We
have

|4 14 14 14 14 14 4 14 Vv
(70) Do (M) = LOLO @y 4(A) = LOLO @(B) = LB 7L

where ®g 1 (]\‘2 ) is viewed as a matrix with coefficients in H while ®; g (X) and @1 (E) are
viewed as matrices with coefficients in H(H?). Finally for 1 < k < g let J, : HH(H®) —
HH(H®)®I @ H®" and for g+1 <1 < g+nlet Jy4: H— HH(H®)® @ H®" be the obvious
embeddings. We define

14 |4
LE() = (J;®id) (LPF) for 1 <i<g+n,

|4 |4 1% v
LE (k) = (Jy®id) (LD)), T(k) = (J @id)(T) for1 <k <g.

A straightforward computation based on the axiom (id ® A)(R) = Ri3R12 reveals that
1% \%
() <1®g © 1% ® Do (R(z))> ® py (Ray) = L (g+n) .. .LH (g +1+1)

(R)
and similarly

> (1% @ Dykn(Ra) ) @ pv (Re)
(72) (R)

v v 1% v 1% v

=L (g+n)... L(+>(g + 1) L(QLD(g) ... LD (k+ 1)L (k +1).
Let us denote the matrices in ) and . 72) by Aon l and Ag k;n respectively, with the
convention Agg =1. A computatmn which combines ([70)) with (71]) and . 72)) yields

9+l) Aon- lL(+)( +1)L( )(9+l) A

<I>g,n(
Vi V
\%4
@y ( ) Ag- knL<+><k> T(k) LH(k) Ag Len
for 1 <l <nand 1<k <g. This is the matrix definition of ®,,.

4 4
Remark 5.5. Another possible definition of ®,4,, uses ‘I//(_), L) instead of E("'), L) o
define different conjugation matrices A, where the conjugation starts from the first tensorand
(here it starts from the last tensorand). See e.g. [Fai20al §3.3]. For g = 0 our definition here
agrees with the one in [BR22l §6.2], as can be seen from the first equality in .

5.3. Finite-dimensional case. Here we quickly discuss the case where H is finite-dimensional,
which is treated in detail in [Fai20a]. In this case one can use H(H°) instead of HH(H®).

Recall from the representation of %(H™*) on H*, which is faithful. Since dim(H(H")) =
dim (End,(H*)) the representation morphism p : H(H*) — End;(H*) is an isomorphism. For
h € H let Qy € H(H*) be defined by p(Qp)(1)) = ¢ < ST1(h) for all ¢y € H* (be aware that
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Qp, was denoted by h in [Fai20al). We have Qpny = Qp Qg so that {Qy | h € H} is a subalgebra
of H(H™) isomorphic to H. These elements obey the following commutation rules in H(H™):

(74) Qrne=> (<5 (h2) Qnyyr Qug=9Qn
(h)
for all p € H* and h,g € H. Let
Di* . H — H(H")® @ H"
heo—= D Qnoy ) ® - ® Qni, ) hag) ® hizginy @ - ® hizgin) -
(h)
which is a morphism of algebras and define

qsgj; cLgn(H) — H(H*)®I @ HE"

by the formulas of Theorem but with D instead of D. Thanks to , the proof of
Theorem remains valid with the elements @) instead of h and @22 is a morphism of
algebras.

Hence we have two possible different morphisms in the finite-dimensional case: ®,, and
<I>2f}l. They are related as follows. Let ry, : H — Endg(V;) be any representations of H for
1 <i<nandlet p: HH(H") — Endy(H*) be the representation from Proposition[5.2} which

by restriction gives the isomorphism H(H") = Endg(H™). Then the two representations of
Lyn(H)

(P @1y, ®...@ry,) 0@« Loyn(H) = Endy (H)® @V ®...0 V),
(PP @1y, ®...Q1y,) 0 Rgn: Lon(H) = Endi(H)® @ V1 ®... @ Vy)

are equal, simply because p(Qn) = p(h). This property is satisfying, as one of the main
applications of @, is to construct representations of Ly, (H).

When H is infinite dimensional we cannot define the elements Qp, € H(H®), because we do
not know if the representation morphism p : H(H*) — Endg(H?) is surjective. This is why

we introduced the bigger algebra HH(H®) in which the elements h exist by construction for
all A and are a substitute for Q.

5.4. The case H = Ugd(g). The left and right coregular actions of U; on O, allow us to
define the two-sided Heisenberg double H, = H,(g) as the smash product

Hy = Og# (Ug @ USP).
where the scalars are implicitly extended to C(¢"/”). It is the C(¢g"/")-vector space O ®

(Uq ® Uq) endowed with the product .

Let G be the connected, complex, semisimple algebraic group G with Lie algebra g. Recall
from §2f that Oy = Oy(G) is the subalgebra of U generated over C(g) by the family of all

matrix coefficients of the irreducible U;d(g)—modules of type 1.
Lemma 5.6. For all k > 1 the algebra Oq(G)®k does not have non-trivial zero divisors.

Proof. The direct product G*F is a connected, complex, semisimple algebraic group with
Lie algebra g®*. By definition, Oq(GXk) is generated over C(q) by the family of all matrix
coefficients of the irreducible U;d(g@k)—modules of type 1. Let us note that U;d(g@k) =
U ;d(g)®k as Hopf algebras. It is a general fact that given two algebras A and B the irreducible
(A ® B)-modules are all of the form V ® W where V' is an irreducible A-module and W is
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an irreducible B-module, see e.g. [E411, Th. 3.10.2]. Hence we have an isomorphism of
algebras

Oq(Gx‘k) . AN Oq(G)®k |
I R A SR o B R
where each V] is an irreducible U, ;d(g)—module of type 1, (vy;) is a basis of V; with dual basis

(v"7) and the ¢’s are the matrix coefficients in these bases. By [BG02, Th. 1.8.9] the algebra
O,(G**) has non-trivial zero divisors and we are done. O

Proposition 5.7. The algebra H’H(;@g ® U[;@” does not have non-trivial zero divisors.

Proof. We first introduce a filtration G on ‘HH, which straightforwardly generalizes the fil-
tration of H, used in the proof of Proposition It is defined by

GM™® = 0, # (Fbok @ Fpek)

for (m,n) € (N*¥*1)2 We endow the monoid (N*Y*1)? with the partial order defined by
(m,n) < (m’,n’) if and only if m < m’ and n < n’, where < on N***! is the lexicographic
order from the right . Thanks to formula for the product in HH, and to Corollary
we see that G is a filtration of HH,. We have

gl‘g (HH(]) = Oq # (gr]'—DCK (Uq) @ gr}—DCK (Uq)) .
Let us explain this equality more precisely. Let V¢§' Tx vi(aﬁ -v;) be the matrix coefficients

(see :i of a finite-dimensional Uqad-module V in a basis of weight vectors (v;) with weights
(€;). Write
vej Eg Fao Ku Eg, Fa, K,
instead of
V¢>§' + g<(00) Egs, + G<(d(Ep,),0) Fs, + G<(d(Fs,),0) K, + G<(0,0)

By, + G<OdEs) Ty g<OAER) | | 4 g<00)

in grg(HH,). Note that G<(0.0) — 0. The subalgebra generated by Eg,, Fs,, K, Eigk, Fzgk,

.f(vu for 1 <k < N and p € P is isomorphic to grz, .. (Uq)®2 and is thus a quasi-polynomial
ring (over C(q)). Moreover by Proposition and we get

Eg, v = vo; Eg,, Favdh =g O9ygi By, Kuvel = q#9vei K,
s, vy =q P Vve) Ba, Fa vey = ve; F,, Kuvés=q "y K,
for all ;1 € P. Hence grg(HH,) is a quasi-polynomial ring over (’)q(ql/ D), generated over
Oy(q*P) by Es,, Fs,, K, E\g/k, F\B; IA(; for 1 <k < N and pu € P.

(75)

Now for (my,ny,...,my,ny,p1,...,pn) € (NZVT1H)297 Jet
TR PLPr — QLR @ @ MR @ FRL © ... @ FBe, C HHDI @ U™
We endow the monoid (N2N+1)29+" with the direct product order:

/ / / / / /
(mlanla"'7mgangap17"'7pn) S (mlanla"‘7mg7ng7p17'"7pn)

It is clear that 7T is a filtration of ’H’HZI@Q ® U(;@n and that
grr(HHDI @ UP™) = grg(HHq)®? @ grr, oy (Ug) ™"
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We have seen that grg(HH,) is a quasipolynomial ring over Oq(ql/ Py and we know that
gz o (Ug) 18 a quasipolynomial ring over C(g) (§2.4). Hence ng(HHS@g ® Ufm) is a
quasipolynomial ring over Oq(ql/ Dy®g_ - Since (’)q(q1 DY®9 does not have non-trivial zero
divisors by Lemma it follows from a general result (see e.g. [MCROI, §1.2.9]) that
grr(HHSI ® ngm) does not have non-trivial zero divisors. The conclusion then follows from
Lemma U

Theorem 5.8. 1. The morphism ®g,, : Ly — ’H’H?g ® U(;@" 18 ingjective.
2. The algebra Ly, does not have non-trivial zero divisors.

Proof. 1. The proof is by induction. First we prove the result for ®q, by induction on n.
Then we fix n and we prove the result for ®,, by induction on g.

It has been shown in [Bau00, Th. 3] that the morphism ®g; is injective (see [BR22, Th 4.3]
for this statement in the present framework). Now assume that @, is injective for some n.
Let ad” be the right adjoint action of Uy on itself: ad”(h)(z) = >_,) S(hq))zh(). For A€ P
consider the subspaces

(Lo1)r = {cp € Loq ‘VV € P, coad"(K,)(p) = q(’\"’)go},
(Ugr = {z €Uy |Vv € P, ad"(K,)(2) = ¢™M)a}.
We have Lo1 = @ycp(Lo,1)x and Uy = B, p(Uy)a, thus

Lont1 =D (Lo1)xr & Lo, UL = P (Ug)r @ (Uy)*"
AeP AeP

where for the first equality we used that Lo ,+1 = Lo,1 ® Lo, (Prop. . Since
VheUg, V€ Loy, Poa(coad”(h)(v)) =ad”(h)(Po1(¢))
we have @0’1((50,1))\) C (Ug)a. Take ¢ € (Lo,1)x and x € Ly ,. By we have
coad”(O(1))(¢) ® O2) = ¢ @ K.
It follows from and the expression of R in that

(I)O,n—i-l ((p é l‘) = Z @0,1 (coadr (R(l)) (QO)) X DOW (R(g))q)()m (.’L‘)

(R)
€ 01 (coad” (91)) (#)) @ Don(O2)) Lom(z) + EP (U e
N<A
= D01 () © (Kx) " Pou(x) + €D (U, )"

N <A
where A < A means that A — )\ € Q4 \{0} and we used that K is grouplike for the last
equality. We are now in position to show our result. Let y € Lo ,4+1 be a non-zero element
and write it asy = >\ .p Zieh O ® xy; with oy ; € (Lo1)x for all i € I, and such that for
each A the elements (cp /\l)z cr, Are linearly independent over (C(ql/ Dy, Take a A maximal for
the order < on P such that there exists at least one ¢ € I, with ¢); # 0 and x; # 0. Then

Donr1(y) € Y Poa(pri) ® (Kn)® " Ron(2r:) + EP (Ug)a ® (Ug)®"
icly NN

By the induction hypothesis the morphism ®,, is injective so (K))®"®g,(zx:) # 0 (K
being invertible) for at least one i € Iy. Moreover the elements ¢, ; are linearly independent
so the elements ®q 1(py ;) are linearly independent as well and it follows that ®¢ ,41(y) # 0.
Let us now examine the case of ®,,. Recall first from Theorem that @1 is injective.
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We see easily from the formulas in Theorem that ®,, actually takes values in H, ®
’H”H?(g_l) ® U(‘?”. Recall the right action (36)) of U, on H, and consider the subspaces

(L10)r={z € L1g|Vv € P, coad"(K,)(z) = ¢M)z},
(Hl])/\ - {y S Hq ‘VV € P7 y . Kl/ e q(’\vy)y}

One sees easily that H,; = @, p(Hq)x and we obtain the decompositions

Losin=EP (L1002 @ Lgn, Hg@HHII RUS™ = @D (Hg)r @ HHS @ US™.
AEP AEP

Moreover by Proposition 3.7/ we have ®1((£1,0)x) C (Hq)x. After these preliminary remarks
the proof (by induction) of the injectivity of ®441, is completely similar to the proof for
®g ,+1 above and is thus left to the reader.

2. Follows from Proposition and item 1. O

6. TOPOLOGICAL INTERPRETATION OF L, (H)

Let H be a ribbon Hopf algebra with an invertible antipode. In this last section we show
that the algebra L, (H) is isomorphic to the stated skein algebra of a surface as defined in
[CKL]. If moreover H-mod is semisimple we show that the subalgebra of invariant elements
E;{n (H) is isomorphic to the skein algebra of the surface. Finally we explain why this last
property is false when H-mod is not semisimple.

6.1. Stated skein algebras of surfaces. In this subsection we recall the definitions of the
topological objects that we will use. For details, see [Lel8, [CL22, [CKL].

Denote by ¥, the compact closed oriented surface of genus g > 0, by ¥, , the surface
obtained from X, by removing n points, by EO the punctured bordered surface obtained
from ¥, by removing an open disk D, and then by ¥, the surface obtained from ¥, by
removing a point from the boundary component 6(207') Here is a picture of X7

1 g 1

The puncture on the boundary is represented by a big black dot (e) while the n inner punc-
tures are represented by the cross marks (x). For our purposes it is much more convenient to
use a less familiar view of 077 :

Let ¥ =37 x [0,1] be the thickening of Y- A point P € X is a couple (p, h) and the
number A is called the hezght of P. Recall from [Le187 §2.2] that a H-colored 0%- tangle is an
oriented, framed, compact, properly embedded 1-dimensional submanifold T C X such that

X3

(1) the framing is vertical at any point of 0T = T N 0%,
(2) the points of OT have distincts heights,
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(3) each connected component of T is colored (i.e. labelled) by a finite-dimensional H-
module.

Here we moreover allow the 0X-tangles to contain coupons, which are squares colored by
H-morphisms in the usual coherent way. The coupons are not allowed to intersect 9X. This
gives 0X-ribbon graphs, which are the generalization to surfaces of the homogeneous colored
directed ribbon graphs from [RT90].

An isotopy of 03-ribbon graphs is an isotopy which preserves all the properties listed
above. We represent a dX-ribbon graph T by its diagram, which is the projection of T
on E;:;. We use isotopy to ensure that the projection has at most double points, and at
double points we record the over/under-passing information as usual. Moreover, the height
information of the boundary points 0T must be recorded with the diagram; thanks to isotopy
it is enough to record the order of the boundary points with respect to the relation < defined
by (p,h) < (p/, k') if and only h < h'. Tt is customary to identify a 9%-ribbon graph with its
isotopy class.

Let o be an orientation of 9077, We say that a diagram of the 93-ribbon graph T is
o-ordered if the boundary points of T have increasing heights when one goes along 82;:;
according to o and starting from the point e. In a o-ordered diagram the height relation
< of the boundary points of T is given by o. Using isotopy it is clear that any 0X-ribbon
graph can be represented by a o-ordered diagram. Here is an example of such a diagram for

(g,n) = (1,1):

(77)

The colors (i.e. labels) U, V, W, X, Y are finite-dimensional H-modules and f: W@ V* — V|
g : U — Y are H-morphisms. With this choice of orientation of the boundary, the diagram
implicitly means that the heights of the boundary points labeled by U, W and Y respectively
form a strictly increasing sequence. In the sequel we always use ordered diagrams with respect
to this orientation.

Let T be a 0X-ribbon graph, let p1,...,p, be the boundary points of T and let V; be the
color of the strand to which belongs p; for each i. A state of T is a map which to each p;
associates an element of V; or V;*, depending if the orientation of the strand is incoming or
outcoming at p; respectively. In practice we label p; by an element of V; or V;* on the ribbon
graph diagram. Here is an example of a state for a ribbon graph like in :

U w vy
—— >
v Tw v
with uw € U, w € W, v € Y*; in this picture we just show T in a disk which intersects
the boundary. A 93-ribbon graph together with a state is called a stated ribbon graph. If

s = (s1,...,8;) is a state of the ribbon graph T (i.e. a labelling of the boundary points
ordered by increasing height), we denote by T® the ribbon graph T with the state s.

Denote by MIS}(E;::L) the vector space freely generated by the (isotopy classes of) stated
ribbon graphs, over the base field k of H. In M;}(E;:;L) we “multilinearize” the states, i.e we
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put the relations (51 ASiF#S;wn) — N(S108080) 4 uT(sl"“’s;""’S“) for all ¢, all A\, p € k
and any 0X-ribbon graph T which can be labelled with these states.

Let T be a stated ribbon graph which looks as follows in a disk D which intersects the
boundary:

81 Sl

o >
w - v
T
(78) wil o Wi

where m,l > 0 and T is any oriented and colored (m,)-ribbon graph in R3. We emphasize
that m or [ may be equal to 0. Each strand carries an orientation. For 1 <i <[let €(i) € {£}
be + (resp. —) if the orientation of the strand colored by V; points inward (resp. outward)

the surface at the boundary. Set V;" = V; and V,” = V;* so that s; € er(z). Similarly for
1 <j <mletn(j) € {£} be + (resp. —) if the strand colored by W; is outcoming (resp.
incoming) at the bottom of T" and set WjJr = W; and W, = W}. The Reshetikhin-Turaev
functor Frr [RT90] applied to T gives a linear map

FRT(T) : W{l(l) R...® ng(m) N ‘/16(1) 2.8 Vle(l),

Denote as usual (—, —) for the evaluation pairing: (p,v) = (v,¢) = p(v) for any v € V;,
v € V;*. We extend this pairing straightforwardly:

(r9) T (Ve oM e (Ve o) - &
—

(51®...08) R (11 ®...0x) (s1,21) ... (s, x7)

Let (w£’+)T be a basis of W; and (w{’_)r be its dual basis. Then we identify T® with the
following element of M%(E;:%):

Wk men(m)

o) Zm <31®...®51,FRT(T)(wginu>®_”wm<m))>, W1|m |‘;m)

We stress that the stated ribbon graphs appearing in the linear combination are equal
to T outside the disk D represented in . Such an identification is called a stated skein
relation.

Definition 6.1 ([CKL]). The stated skein algebra of 307, associated to H, which we denote

by SISL}(E;::L), is the quotient of MJSL}(E;’;@) by all the stated skein relations (80)).

Given two stated ribbon graphs T5, T% we can use isotopy to transform T into (T%)~ C
Ygn %[0, 5[ and Ty into (T4) T C $g:nx]3,1]. The disjoint union (T5)~U(T5)" is denoted by

¥+ T%. Each boundary point keeps its state in (T5)~ U (T5)" so that the result is naturally
a stated ribbon graph. This operation * defines an associative algebra structure on Mf}(E;’:;)
which descends to S?}(E;:;). The unit is the empty 0X-ribbon graph.

Here is an example of stated skein relation which we will use later:



UNRESTRICTED QUANTUM MODULI ALGEBRAS, III 53

)

v ® Y Lj

= v® @, cy,x+ (Y ® 27)
Yy O\X zjx ) Y] ‘X

R\ S(Rioy)v
.@( 1?) S(Re)) >

(81) (R) Y X

where v € X, ¢ € Y7, ¢ is the braiding in H-mod, (z;) is a basis of X, (y;) is a basis
of Y, (z'), (y’) are their dual bases and ¢(R(1)?) denotes the linear form on Y defined by
y = ¢(R1yy). The detail of the second equality is

> (vepaxmed)yer =3 (vop Rer’ @ Roy)y @

J (R),i,3
= > (@), S(R))v) (o, Raywi) v’ @ x5 = o(R1)?) @ S(Rz))v.
(R),i.j (R)
One proves similarly that
Ryw Ry
v w B (1) (2) >
(82) Y/ N\X (R) YT ]X

6.2. Isomorphism S5 (X57) = L, (H). This subsection is a generalization of [Fai20b, §5],
which dealt with the case H = U;d (sl2). The main ingredient in the definition of the isomor-
phism will be the holonomy map

hol : {9%-ribbon graphs} — {tensors with coefficients in L, (H)}

defined in [Fai20bl §4.1].

Let T* C %77 x [0,1] be a stated ribbon graph with state s = (s1,...,s;) which looks as

follows near the boundary:
S1 S]

‘/1| o . |‘/l

As before, let €(i) € {£} be + (resp. —) if the orientation of the strand colored by V; points
inward (resp. outward) the surface at the boundary, and set V,© = Vi, V.~ = V;* so that

s; € V=00 By definition T is the 9%-ribbon graph obtained from T* by forgetting the
states. Then the holonomy map gives an element

hol(T) € Lyu(H) 2 ViV ... 0 V.
Let (—,—) be the evaluation pairing as in (79). Then (s; ® ... ® s;,—) is a linear map
Vf(l) ®...® Vle(l) — k and we define

hol®(T*) = (idg, () @ (51 ® ... ® 51, —)) (hol(T)) € Ly n(H).

Extending linearly, this gives a map hol®" : Mf}(E;:;) — Lgn(H). It is immediate from the
definition of hol in [Fai20b] that hol®* is compatible with the stated skein relations, so it
descends to S§(357).

>

Definition 6.2. We call hol® : S?}(E;:;L) — Lgn(H) the stated holonomy map.

Proposition 6.3. The stated holonomy map is a morphism of algebras.
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Proof. This follows from one of the main properties of hol proven in [Fai20b]. Let T, T be
stated ribbon graphs and let

S t t
° 1 S| > ® 1 m

n="u - v e

>

be their boundary points and states. By definition of the product of stated ribbon graphs
and of an ordered 9X-ribbon graph diagram, the boundary points of T x T are arranged
as follows:

S1 Si tl tm

= "ul - vom] - W

>

Let Ty, T be the 0%-ribbon graphs without states and write hol(Tq) = ), 2;®v;, hol(Ty) =
Sy @ wy with 24, y; € Lon(H), vi € ViV @ .. @ VW and w; e Wi @ ..o wiam),
where the €’s and 7’s are signs as above. We know from [Fai20bl, Th. 4.4] that hol(T; *T2) =
Zi’j ziy; ® v; ® w;. Hence:

hol*' (T + TY) = (idg, (g @ (51 @ ... ® 5 @11 @ ... & tym, —)) (hol(Ty * Ty))
= 2y (510 Q 8, Vi) (1 @ ... ® by, W;) = hol™'(T5) hol™(Th). O
,L'7j

We now define what will be a right inverse to hol®*. Recall that H® is spanned by the
matrix coefficients quq{ of finite-dimensional H-modules and that £, ,(H) is (H °)®(2g+n) as
a vector space. We define a linear map &, , : £g7n(H) — 8}}(2;:;) by

Eon (0203 @ viol & 0,00 @ vl @ wal, @ .. © Wb, )

e1 w fiowv .6y ug fg vy L wy ...y Wy,

Uy \ Vi Uy \ v, w1 W

Lemma 6.4. The linear map &g : Lgn(H) — S;}(E;;,'l) is surjective.

Proof. Due to the stated skein relations in S?}(E;’;L) we see that every element is equal
to a linear combination of “standard” stated tangles of the form

In this picture each strand carries some orientation and color and s = (s1,...,sy) is some
state. We put the crossings in view of the definition ; it is clear that we can always add
such crossings since they correspond to the braiding isomorphism through the Reshetikhin—
Turaev functor. Now we observe that the stated skein relations imply an orientation reversal
relation:
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where (—,v) : ¢ — p(v) and f(g71-?) : z — f(g~' - z) with g € H the pivotal element. We
similarly have an all-in-one relation:

fi---fn ’L)n...’Ul> fi-..fn Un...1)1> i®...Q f, ’U1®...®’UE>
V1¢ ¢Vn VnT TVl Vi®..0V
[ id | [ id* ]
— VI®...QVn =

In these pictures the handle represents either one of the handles or one of the punctured
half-disks in . As a result the “standard” stated tangles above can be rewritten as the
ones in (83)), which by definition span the image of &g,. g

Theorem 6.5. The stated holonomy map hol®" : S;}(Z;:;) — Ly n(H) is an isomorphism of
algebras.

Proof. We already know from Proposition that hol®® is a morphism of algebras. It is
immediate from the definition of hol in [Fai20b] that hol* o ¢, ,, = id Lo (i) (the role of the
crossings in the definition of &, is precisely to obtain this equality). This implies that
the linear map &, ,, is injective. It follows from Lemma that &, , is an isomorphism of

vector spaces. Hence hol®® = &, 711 is an isomorphism as well. ]
b

A corollary of the previous proof is that &, is a morphism of algebras. It is nevertheless
worthwile to mention that the direct proof (i.e. without resorting on hol®) of this fact
allows one to recover the product in L, ,(H) by means of stated skein relations, thus giving
a topological flavour to the formulas in Proposition We explain this for S;}(ES;) and
SH(E70)-

So let us first discuss the case of {1 : Lo1(H) — S;}(ESI) It is useful to note that

(84) hsvel =vel | vel ah=yelt?

where we recall that > and < are the left and right coregular actions of H on H°, see (19)).
We then have the following stated skein computation, which recovers the formula for the
product in Lo 1 (H):
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Foo il ow f Z(Rgl)?) R?l)w R%Q)S(R%Q))v

\% 4

€01 (vol) Eoa(woly) = = >

_ Vew é_ ¢f®l(R(1) )
(RY),(R?)

(RY),(

)Z: ( )S(Riz) > vel) « (R 1> wl, < R%l))> .

The first equality is by definition of the product in SJSL}(ESZI), the second equality uses the
stated skein relations and , the third equality uses the all-in-one relation (see the
proof of Lemma [6.4)), the fourth equality is the definition of £y 1 and the last equality uses

and (3.

Let us now consider & o : £10(H) — S5 (2] ’0)- Recall that the product in Ly o(H) is fully
described by the formulas . Let us write

&=E&00iR, &a=E&001a

which are morphisms of algebras Lo1(H) — S?}(Ecl’za), and we recall that ip and ig are
defined in (25). Then the definition of & ¢ in is such that

(85) £10(8 ®@ @) = &(B) Lula).

We have two natural morphisms of algebras ey, ¢q @ Sij(Zg 1) = Si p1 10) defined by

Tl OIS

(we use that every element of Sy 0 1) can be written as a linear combination of such stated
tangles, see the proof of Lemma 6.4 E They satisfy & = e, 0 0,1, {a = ¢q © &o,1. Hence by the
previous computation for {1 we find

& () & (1) = e (€0,1(9) L0.1(¥)) = e (€0,1(0¥)) = &b(t))

and similarly for &,; these two equalities correspond to the first and second formulas of ([33).
Finally:



UNRESTRICTED QUANTUM MODULI ALGEBRAS, III 57

‘\

/g
/

Ea(wdl,) &(vel) =

R(I)U Z(R(2)R ) 3 R(Q)

= > 510(v¢ 4 (1) F?) ® wo fé)R?l)
(RY)...(RY) oty 2 2))w

= 2 & (Rly B o vol < Rl B ) (Bl S(Rly) & wl, < Ry R
(RY),...,(R%)

The first equality is by definition of the product in S?}(E‘fza), the second equality is a trick,
the third equality uses stated skein relations like and , the fourth equality uses the
definition of &1 o, the last equality uses and . This equality corresponds to the third
formula of .

For general g and n write

E; = &g © iB(i)a §a; = &g © iA(i)7 §mj =&gn © iM(j)-
forall1<i<g, g+1<j<g+n and observe that by definition of &, ,, (see (83)) we have

Egm (301 @...0 9029+”) = &b, (¢1) ar (2) - - -gbg (802971) gag (‘pg) gmg+1 (902g+1) .- 'gmg-‘,—n (@2g+n)-
As above One can show using the stated skein relations that the elements &, (¢), &, (¥),
Em; (@) € (ZO ) With ¢ € H® obey the same product than the elements i@ (#), ia@) (),
in((p) € Cg,n( ). The reader can treat the case (g,n) = (0,2) as an exercise.

The computations above reveal the topological relevance of the elements ig(;) (), i) (¥),
inr(j)(¢) and of the formulas in Proposition for their products.

6.3. Isomorphism Sy (X)) = Egn(H) for semisimple H-mod. This part is a general-
ization of [BR22, §8.2], which dealt with the case H = U;d(slg).
Recall that E;’n is the compact oriented surface of genus g with one boundary component

and n punctures not belonging to the boundary. Recall that Frr denotes the Reshetikhin—
Turaev functor [RT90], and & is the base field of H.

Definition 6.6. The skein algebra Sy (X gn) is the k-vector space generated by the isotopy
classes of ribbon links with coupons (i.e. ribbon graphs without boundary points) in 33; , x [0, 1],
modulo the skein relations:

(86)
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where \; € k and the T;’s are any ribbon graphs in [0, 1]3 having common colors on the
mcoming and outcoming strands. The sum on the left represents a linear combination of
ribbon links which are equal outside of some cube in E;’n x [0, 1] which is depicted in grey.

Note that up to introducing identity coupons, we can always assume that the incoming and
outcoming strands of T; have this orientation. Then Frr(7;) € Hompy (X 1®...0 X5, Y1 ®

.® Yl) The product in Sy (X2 is given by stacking (see after Definition

Recall that X7 is ¢ ,, with a puncture on the boundary. This puncture is irrelevant when
we restrict to rlbbon hnks so if L is the isotopy class of a ribbon link in %7, x [0, 1] we have
the corresponding isotopy class I(L) in 377, x [0,1]. Note that I(L) can be seen as a stated
ribbon graph without boundary points (and thus without states): I(L) € Sf(Zgm).

gn)

Lemma 6.7. The map L — I(L) induces a well-defined morphism of algebras I : Sy(¥y ,,) —
S0,

Proof. Let Ly, ..., Lg be links in 37 | x [0, 1] and L =}, \iL; € Su (X5 ,,). We have to show
thatif L =01is a skem relation in Su(Xy,) then I(L) = >, NI (L ) = 0 follows from the
stated skein relations in S?}(E;:;L) For notatlonal simplicity we take ribbon graphs T; which

have 2 incoming strands and 1 outcoming strand in . Using isotopy we can assume that
the cube in is very close to d(%; ). Therefore in S (X55,) we have

I(L) =)\

y; Mk g@)
. >
= Z A;evy o (idy* ®FRT(TZ'))(Z/ ®{L‘§€) ®£L'(2)) TY lX1 lX2 =0

i\4k
where all ribbon graphs are equal outside of the grey cube and (y;), (m,gl)), (xl(z)) are bases
of Y, X1, Xy with dual bases (), (x(l)’k), (m@)’l). For the second equality we used and
for the third equality we used that ), A; Frr(Z;) = 0 by assumption. It is clear that I is a
morphism of algebras since both products are by stacking. O

Note that since I(L) is a stated ribbon graph without boundary points (and thus without
states), hol™ (I(L)) is just an element of £, (H). Thus we can make the following definition:

Definition 6.8. The morphism W = hol* o I : Su(¥,,) = Lyn(H) is called the Wilson
loop map.

Recall that the subalgebra of H-invariant elements is
Ll (H) ={z € Lyn(H)|Vh € H, coad” (h)(z) = e(h)z}.

Theorem 6.9. If the ribbon Hopf algebra H has semisimple category H-mod, the Wilson loop
map takes values in ﬁg{n(H) and provides an isomorphism of algebras Su (¥ ) = EH W(H).

It is well-known that the ribbon category C of finite dimensional U;d(g)—modules of type 1

is semisimple. Therefore we can apply this theorem to H = U;d (g), meaning that the ribbon
links with coupons defining Sg (X ,,) are colored by objects and morphisms in C. Since C is
equivalent to the category of finite dimensional modules of type 1 over the simply connected
quantum group Ug,(g), we can indifferently take H = Ugy(g).

It is true that W takes values in EH o(H) even if H-mod is not semisimple, but in general
it is not an isomorphism. See § for more details on the non-semisimple case.
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In all the remaining of this section we assume that H-mod is semisimple. In order to prove
the theorem we first define two auxiliary maps £ and F.

Let Irr(H) be the set of irreducible finite-dimensional H-modules up to isomorphisms.
Since H-mod is semisimple the matrix coefficients of the modules in Irr(H) form a basis of

H®,i.e. H® = @ xer(m) C(X). Hence
(87) LaH)= D CX1)©0(X2)@... 0 C(Xagtn)
Xelrr(H)29+m

where X = (X1,..., Xo44n). For any such X € Irr(H)*%" | let
&x : Homy, (®29+"X ® X} k) 5 0(X1) ® ... @ C(Xagin)
(Homy, denotes the space of all linear maps) be the isomorphism of vector spaces defined by

= Y (@0 e. 0l @) ol @@ x0
’L, ,7,
Jiin

where N = 2g+n, (.T}Sll)) is a basis of X; with dual basis (:r(l)’jl) and qﬁzll denotes the matrix
coefficients of X; in this basis. When f is H-linear, it is useful to represent the element Ex (f)

by using the diagrammatic calculus of [Fai20bl, §3] as follows:

(88)
|

B(1) g+1 M(g+n)

Lemma 6.10. By restriction to H-linear maps, the k-linear isomorphism Ex gives an iso-
morphism of vector spaces Homp <®29+n X, @ X7, k) AN (C(Xl) R...0 C(ng+n))H. It
follows that we have an isomorphism of vector spaces

2g+n
£ @ HomH<® Xz‘®Xi*,k> L)ﬁgn(H)'

Xelrr(H)29+m =1

Proof. Let act” be the right action of H on Homy, (®2g+n X; @ X7 k:) defined by

act”(h)(f)(11@01®...@zn@en) = Y f(ha) 11®he) 018, . @hey_1) TNy @h@N) @N)
(h)
for all z; € X, ¢; € X[, where N = 2¢g+n and h € H. Then Ex intertwines the right actions

act” and coad”. This is due to the definition of coad” (see and (23))) and to the following
formulas, which come from :

Z(h > Xl¢§ll) ® i, @) = Zxﬁﬁéll ®z;, ® ST'(h) - 2,

i1 i1

(89) Z . i |
D (ad ah) @y @a¥ =3 X0y @ hay © .
ilv]l ilvjl

For the first formula we used that if V' is a H-module, then the action of h € H on ¢ € V*
is defined by (h-1,v) = (¢, S(h)-v) for all v € V. The lemma follows from this intertwining
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property because
f € Homy (@1" X, @ X k) <= VheH, act’ (h)(f) ==(h)f. O
Now, for X = (X1,..., Xogin) € Trr(H)?9T™ et
Fx : Homp (@29+" X ® X} k:) — Su(%2,)
defined by

)

Fx(f) = | X1 F)ﬁ Xa2g-1 ( @ @l

The map Fx is k-linear thanks to the skein relations . Let

2g+n
F: @ Homy ( Q) Xi @ X7, k) — Su(Zg,)
Xelrr(H)29+m i=1

be the sum of the linear maps Fx.
Lemma 6.11. The linear map F is surjective.

Proof. As in the proof of Lemma we observe that every element of Sy (X7 ,,) is a linear

)
g,TL
combination of links of the form

Tx

where T is some oriented and colored (4g + 2n,0)-ribbon graph in [0,1]3. We can assume
that the colors X = (X1, ..., Xog4n) are irreducible. Indeed, if a strand is colored by a non-
irreducible module V, then write V' = €, S; where the S; are irreducible. We can introduce
coupons containing the injections I; : S; — V and projections m; : V. — ) thanks to the
relation idy = ), [; o m. By sliding these coupons along the strand we get a sum of links
where the strands under consideration are colored by the modules S;j.

Thanks to the skein relations we can replace the ribbon graph Tx by a coupon colored

by Frr(Tx) € Hompy (®29+" X ® X, k) and it follows that Lx = Fx (Fir(Tx)). O

Proof of Theorem[6.9 By definition of hol [Fai20D|, Def. 4.2] and (88), we have a commutative
diagram

. £
@XGII‘I‘( 2g+n HOmH <®29+TL X X X I{;) I ﬁgn(H)

| |

Su (%) Lon(H)

g,n
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The surjectivity of F (Lemma j implies that W takes values in E;{n(H ). Since & is
an isomorphism (Lemma [6.10]), F is necessarily injective, so it is an isomorphism of vector
spaces. It follows that W is an isomorphism between Sy (3] ,,) and E;{n(H ) O

Recall the map I introduced before Lemmal6.7] Our results imply the following important
fact, which is not obvious despite seeming completely natural:

Corollary 6.12. Assume that H-mod is semisimple. Then the morphism of algebras I :
Su(X%5,,) — Si(Egn) is injective.

Proof. By the definition of W (Definition , Theorem and Theorem we have a
commutative diagram where the rows are isomorphisms:

SHH(S) ——— e Ly (H)
I O J (subalgebra)
Si(55,,) ——— 11 (H)
It immediately follows that I is injective. U

This corollary means that the skein algebra Sg (3 gn) is isomorphic to the subalgebra of
ribbon links (with coupons) in the stated skein algebra S3 (357

6.4. Remarks on semisimplicity. If the category H-mod is not semisimple:
e the matrix coefficients of irreducible modules do not form a generating family of H®,
e the matrix coefficients of indecomposable modules form a generating family of H°
but not a free family (even if one restricts to projective modules).
Hence H® =} ycipq(m) C(X), where Ind(H) denotes the set of indecomposable H-
modules up to isomorphisms.
Consequently the decomposition is no longer true, and instead one has
Lon(H)= Y CX1)RC(X2)®...®C(Xagin)-
Xelnd(H)29+n
So there is a surjection Pxera(m)zo+n Homg <®29+n X ® X/ k) — L4, (H) and a commu-
tative diagram

®X61nd(H)29+n HomH <®29+” X & X* k) *5> ,C;{n(H)

’

SH<E?],71)

— Lyn(H)

Moreover F is still surjective, thus W takes values in £g (H). But in general nothing can be
said about the surjectivity of £. So when H is not semisimple, Theorem [6.9] will in general
not be true:
im(W) ¢ L2 ().

Non-semisimplicity arises notably at roots of unity. For instance take (g,n) = (0,1) and
H = U. = U.(sly), the restricted quantum group of sl(2) at ¢ = €™/P with p > 2 (see
e.g. [FGSTO06, §3]). We have L’gj =~ Z(U,) (see e.g. [Fail9a, Th. 3.7]) and it is known
that dim(Z(U.)) = 3p — 1 [EGST06, Prop. 4.4.4]. On the other hand one can check that
dim (im(W)) = 2p, showing that the inclusion is indeed strict.
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In [Fai20bl §4.4] a generalization of Wilson loops was defined in order to produce more H-
invariant elements. The idea is roughly to use other symmetric linear forms than the traces;
for 3¢ ; these generalized Wilson loops recover the whole of 55{1 (H).

Another interesting situation where non-semisimplicity arises is when working over the ring
A = C[¢"P, ¢ /P] and specializing ¢ to a root of unity. To define an integral version Eﬁn
of Ly, defined over A, such that Eﬁn ®4 (C(ql/D) = Lgn, one considers Lusztig’s restricted

quantum group U*(g) C U;d(g), which is defined over A := C[g, ¢~ }], and its restricted dual
OA(G), associated to the category C4 of finite rank Ux®(g)-modules of type 1. The algebra
E;‘,n in the case g = 0 is described in [BR22].

7. THE CASE OF SURFACES WITHOUT BOUNDARY

By Theorem we know that if the ribbon Hopf algebra H has semisimple category
H-mod, the Wilson loop map provides an isomorphism of algebras Sy (3 ,,) = E;{n(H ). Here
we address the question of defining algebras which are related to the surface ¥, obtained
by closing X ,,, and derived from Sy(Xy,) and £§{n(H ) respectively. We stress that the

g,n?
construction and results presented below works for any n > 0, including in particular the

closed surface of genus g.

7.1. Quantum moment maps and quantum reduction. Let H be a Hopf algebra over
a field k, and H' C H a subalgebra and right H-coideal (so A(H') ¢ H' ® H). On H we
have the right adjoint action,

adr(h)(g) = Zs(h(l))gh@)a (hag € H)')
(h)

and we assume that H' is a stable subspace under this action. Let A be a left H-module
algebra. We denote by » the action of H on A.

Definition 7.1. A morphism of algebras p: H — A is a quantum moment map (QMM) if
for every a € A and ' € H' it satisfies

> (g > a)u(hfy) = u(h')a.
)

This definition is implicit in [Lu93|, and explicit in [VV10, Section 1.5] (we use an opposite
coproduct, which is suited to our conventions). The following facts follow readily from the
definitions and are properties we can expect of a quantum analog of moment map (see [Lu93],
Theorem 3.10).

Lemma 7.2. Assume we are given a QMM p: H — A. Then:
(i) (Equivariance) For every h € H and h' € H' we have
plad” (W) () = S(h) » ().

(ii) (Recovering the action) For every a € A and h € H such that (S®id)A(h) € H @ H’
(eg. when H' = H ), we have

> m) 1(S(hqy))ap(hz)) = S(h)»a.
Given a morphism of algebras x: H — k, put
(90) Iy := Ap(Ker(x)).

This is a left ideal of A (but in general not a two-sided ideal). Since Ker(x) = {h'—x(h')1,1" €
H'}, and A is a H-module algebra and H’ is stable under ad”, () in the lemma implies that I,
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is H'-stable. Therefore we can consider the left (A/I,)-submodule (A/IX)H/ C A/I, formed
by the H'-invariant elements. Define the map ¢,: H — H, b/ — 2 X(h’(l))h’(2), and
denote by &) H " — k the restriction of the counit of H.

Proposition 7.3. The product of A descends to the space (A/IX)H/ and gives it a structure
of algebra. Moreover, if Im(py) C H' and ¢ (Ker(x)) = Ker(e|g/), then the algebra (A/IX)H/
is isomorphic to End(A/I,).

Both claims follow from arguments in Proposition 1.5.2 of [VV10], to which we refer.
The first claim is also detailed in Proposition 3.12 of [GJS19]. For completeness let us
explain it. The point is to observe that a coset a + I, € A/I, is H'-invariant if and only
if Ker(e|p/)»a C I But Ker(e|yr) obviously contains the elements X(h’(l))h’(z) € H,
where h' € Ker(), and

Z X(hl(l))hl(z) >a = Z(h/@) > a)(ﬂ(h/u))) + Z(hl(g) > a)(X(hl(l)) — /(1)))
(h") ) (r')

= Z(h,@) >a)u(h'(1)) modulo I,
(h")

= u(h)a modulo I,.

The third equality follows from the QMM equation in Definition Therefore, for every
h' e Ker(x), u(h')a € Ker(ejg)»a+ I, C I, whence Iya C I, which shows I, is stable
under right multiplication by elements which are H'-invariant modulo I,. It follows that the
product of A descends to (A/IX)H,.

From [VV10] we take:

Definition 7.4. The algebra A\ H' = (A/IX)HI is the quantum reduction of A by the
character x.

By the defining property of p, it is immediate that given an A-module V' the subspace
VX = {v e V,u(h') v = x(h)v,Vh' € H'}
is a (A//yH')-module. Therefore we have a functor A-Mod— (4, H')-Mod.

Let us observe the following fact in the case of the quantum reduction by the counit e,
which will be important in Section Consider the canonical quotient map of H-modules,
p: A— A/I.. The restriction 7 of p to A? " has image contained in A/.H', and as explained
after Proposition it is a morphism of algebras

(91) AT ALH
Denote by Z(H') the center of H'.

Definition 7.5. We will say that Z(H') separates the simple types if the following prop-
erty holds: for any finite collection of non isomorphic and non trivial simple H-modules
X1,..., X}, there exists an element z € Z(H') such that e(z) = 0 and z2»v = z;v for every
v € X, where z; € k satisfy z; # z; fori # j.

Lemma 7.6. Assume that the H-module A is completely reducible and Z(H') separates the
sitmple types. Then the map 7 is surjective.
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Proof. Let a + I. € AJ.H'. By definition we have h'»a — e(h')a € I, for every ' € H'.
Since A is completely reducible, we can decompose a in the form a = Z?:o a; with a; the

isotypical component of a of type X;, i € {1,...,k}, and ag the isotypical component of a of
trivial type, ie. the H-invariant component of a. Then
k
h'wa—e(h)a= Z(h’ »a; —e(h)a;).
i=1

Let us apply this to an element z € Z(H'), separating the components of type X; as in
Definition For every integer s > 1 we have
k
28w a—e(2%)a = Z zia;.
i=1
Therefore Zle zfa; € I for every s > 1, with z; # z; for ¢ # j. Because the Vandermonde
matrix (z;) is invertible for 1 < s < k, we find a; € I, for every ¢ € {1,...,k}. Therefore

1
a+ I. = ag + 1., showing that 7 is surjective. O

7.2. A quantum moment map for L, ,(H). Let H be a ribbon Hopf algebra with an
invertible antipode; we denote the ribbon element of H by v.

Assumption: the morphism ®g 1 : Lo1(H) = H from is injective.
When @ is an isomorphism, H is called factorizable. In general, let H' be the image of
the morphism ®q ;. Then H' is a subalgebra of H such that H' C H ¥ The quantum group
U;d(g) satisfies the above assumption, up to a slight adaptation: in that case H' = U,(g)"
by [Bau00, Th. 3].

Let us quote the following well-known fact:

Lemma 7.7. H' is a right coideal (i.e. A(H') C H ® H) and is stable by the right adjoint
action ad” of H.

Proof. By definition an element of H' has the form E( RY),(R2) go(R%l)R%Q))Ré)R%l) for some
@ € H°. Let us compute the coproduct of such an element:

>, p(RinRy)) (Rig)) ) (Rhy) 1) ® (Rig) @) (R
(RY),(R?),(R{y):(RE})
= D> (R RY Ry RYy) By Rl © R R,
(RY),....(RY)
= Z ©(1) (R%l)) P(3) (Ré)) ‘I’oJ(QO(g)) (=) R%Z)R?l) cH ®H.
(RY),(R%),()
The first equality is by quasi-triangularity of H while the second is by definition of ®¢ ; and of

the coproduct in H°. The last claim of the lemma is obvious, since ®g 1 : (L£o,1(H),coad”) —
(H,ad") is H-linear. O

Remark 7.8. For any Hopf algebra H, the subalgebra HY is always a right coideal subalgebra
of H (see [KLNY20], Theorem 1).

vV Vv 1%
Recall the matrices B(i), A(i), M(j) € Lg(H) ® End(V) from (61), where 1 < i < g and
g+1<j<g+mnandV is any finite-dimensional H-module. Let

(92) g’(i) = v} %(i)‘f/l(i)_lﬁ(i)_ljé/l(i)
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where v¥ € End(V) is the representation of v* on V. It is well-known that the matrices
v v Vv
B(i), A(i), M(j) are invertible (see e.g. [Fail9b, Lem. 6.1.2]), so this formula makes sense.

v v
Denote by y¢f € H° the matrix coefficients of V and by C(i)F the coefficients of C(i),
both taken in some basis of V. Consider the linear map given by

p@ H' — Lgn(H)
) i Clik
01(,0f) — C(i)
for all V, k and . It is well-defined since by assumption ®q; is injective.

Lemma 7.9. ,u(i) is a morphism of algebras.

Proof. This follows from the definition of Lo1(H) (see (30)), the fact that ®¢; is a morphism
of algebras, and finally Lemma [3.5 O

Remark 7.10. By its proof, Lemma[7.9 is equivalent to the set of fusion relations

Vew v ) w .
(93) C(i) = Ci)y (R)vw C(i)y (B)y -
Similar relations are satisfied for any collection of matrices which like C (i) “lifts” in a suitable
sense a simple closed curve in ¥4,\D. For complete details on this we refer to [Fail9bl, Prop.
5.3.14] (see also the seminal work [AS96al, §9.1], but with different conventions). As shows

the proof of Lemma the definition of such a lift needs a normalization factor which is a
suitable power of vy .

Definition 7.11. For any finite-dimensional H-module V, we define

1% |4 |4 |4 Vv
C=C(1)...C(g)M(g+1)...M(g+n)
g n
=% T 1B, AG)™) [] Mlg+7) € Lo(H) @ End(V).
i=1 j=1

Note that if b;, a;, m; (1 <i < g, g+1 < j < g+n) are the standard generators of 71 (3g,,\D),

1%
then 0(X4,\D) = blal_lbl_lal .. .bga!;lb;lag Mg+1 - .- Mgpn. S0 the matrices C' are in some
sense a “lift” of 9(3,,\D).

Consider the linear map given by
e H' — Lgn(H)
(94) ) v,
for all V| k and [. In a component-free form, p is given by
v
1 p2 1 p2
(95) > u(RiyRY) @ (RyyRey), = C.
(RY),(R?)

Lemma 7.12. p is a morphism of algebras.
Proof. Since ®¢; is a morphism of algebras it suffices to show that the collection of matrices

1% %
C satisfies the fusion relation (30). For ease of notation let us write C(j) = M(j) for
% v
g+1<j<g+mn,sothat C = C(1)...C(g+n). We saw in (93) that the collection of
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v
matrices C'(i) satisfies the fusion relation for all 1 < i < g+ n. Straightforward computations
using Proposition [4.5 reveal that we also have

v . 1 w W v . 1 . .
Ryw C(j)1 Ry Ci)2 = C(i)2 Ruw C(j 1 Ry, for 1< j<i<g+n.

v
The fusion relation for C follows from all these relations, arguing like in Lemma g

The following commutation relations (written with the notations introduced before Propo-
\%
sition i for the collection of matrices C' will play a key role in the proof of the next
theorem:

W wow
Lemma 7.13. Let V,W be finite-dimensional H-modules and let X (i) be B(i), A(i) or M ().

We have

Voo W W Voo
Ryw C1 (R)vw X (i)2 = X (i)2 Rvw C1 (R)v,w
in Lg,(H)®End(V) @ End(W).

1% 1%
Proof. Recall the notation C(j) = M(j) for g+1 < j < g+n from the proof of Lemma [7.12
Straightforward computations using Proposition reveal that

NI / W W Nl Y / .
(B)yw COn (R)vw X(i)2 = X(i)2 (R CUN (R)vw for1<i<j<g+n,
14 w w 14
(96) RV,W C(i)l (R/)V,W X(Z)Q = X(Z)Q RV,W C(i)l (R/)V,W for1<i<g+n

v . -1 W W v . -1 . .
Ryw C(j)1 Ryy X(i)2 = X(i)2 Rv,w C(j)1 Ry for1<j<i<g+n.

The result easily follows. O
Let us define a left action » of H on L, (H) by
hw»x = coad” (S_l(h)) (x)

for h € H, v € Ly,(H) and coad” is defined in (53). Since S is an anti-morphism
of bialgebras, » endows L, ,(H) with the structure of H“P-module-algebra: h» (zy) =

v v v Vv
>y (h)» ) (h1y»y). If X(i) is one of the matrices B(i), A(z), M (i) we define the matrix
|4 14 |4
hw» X (i) in the obvious way on coefficients: (h»X(i));C = h» (X(z);“) for all 1 < k,1 <
dim(V). One checks easily that

(97) B X(i ZS (h() v X(i i) (hy)v-

\% %4
Clearly, this applies also to the matrix C, because h» X (i)_1 is given by the same formula.
Theorem 7.14. The morphism p: H — Ly ,(H) is a quantum moment map:
p(h')x = Z (h/(2) > ) M(hl(l))
(h")
for allW € H and z € L,,(H).
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Proof. Note first that, since (R)vw = > g (R))via(Ra))wz and 32 g1y 2 R%l)Rﬁl) ®
R%Q)S (R%Q)) = 1® 1, the commutation relations of Lemma can be rewritten as:

VoW LW v
(98) C1X(i)2 = Z(R(l))W,2 Ry X(i)2 Rvw Cr(R)vw S(R2)y,
(R)

= R RS). X (i) (RS R S(R%)RY), O (RiyS(R!
= > ((BlyEY)y X6 (B Ry ) ((S(BE) By O (B S(RY))y ) -
(RY),....,(R*%)
For the second equality we split all the R-matrices and we used obvious commutation relations
to rearrange the terms; also recall that R™' = (S ® id)(R). To prove the theorem we can

assume that h' is a coefficient of some matrix Do (RY).(R2) R(IQ)R?I) ® (Rél)R(QQ))V € H'®End(V)

W w W
and that x is a coefficient of some matrix X (i) € L, ,(H) ® End(W) which is B(i), A(i) or

W
M (i). This reduces the proof to a matrix computation in L, (H)® End(V) ® End(WW) based
on . Starting from the right-hand side of the desired formula we get:

w
> (BB o X6)), (Bl B ) © (Bl Ry ).
(RY),(R?),(RL, R?))

w
= > (R%2>R?1> > X (i))2 (“(Ré)R?l)) @ (Rpy) Ry Riy, R?2)>v) .

w \4
= > ((BhyRly)w X6) (B Ry ), ((S(RL)ER), C (RS (Bly))y),

w w
=i X(i)2= Y (u(BlyEY) © (BL)EY), ) X

For the first equality we used the quasi-triangularity of R, for the second equality we used
the definition of u, for the third equality we used and the quasi-triangularity of R, for
the fourth equality we used that S is an anti-morphism and that (S ® S)(R) = R, for the
fifth equality we used and for the last equality we used the definition of y in . O

Remark 7.15. In the case g = gl,,(C) and (g,n) = (1,0), quantum moment maps have been
obtained in [VV10], Section 1.8, and [Jorl4]. In that situation, Theorem[7.1]] is Proposition
7.21 of [Jor14], and Definition 7.25 of [Jorld|] provides the extension to any (g,n) by external
tensor product. The proof in that paper uses a matriz R, which in our notations is (Id®.S)(R)
evaluated in the fundamental representation of gl,,(C).

7.3. The quantum reduction of £, ,(H) at the character ¢. In this section we assume
the following hypothesis hold for L, (H):
e H is a ribbon Hopf algebra over a field k, with an invertible antipode.
e The algebra morphism ®q; : Lo1(H) — H is injective.
Denoting by H' is the image of ®¢ 1, we thus have the quantum moment map defined
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n (©4),
pw: H — Ly ,(H).

e The H-module L, ,,(H) is completely reducible.
e Z(H') separates the simple types.

o LI (H)=rl (H).
In particular, Lemma and the results of Section apply. Denote by ngn(H ) the quantum

reduction L, (H)/cH' = (ﬁg’n(H)/Ie)H/ associated to the counit & (see Definition .
Denote

w
Cyn(H) := Vecty, the matrix coefficients of the matrices C' —idy |
for all finite dimensional H-modules W

From and we see that I. is the left ideal of £, ,(H) of the form
(99) I. = Lyn(H)Cyn(H).

By Lemma and the hypothesis E;{;(H ) = E;{n(H ), we have a surjective morphism of
algebras

T Eg{n(H) - L (H).
It follows:

Proposition 7.16. Under the above hypothesis, if [,gn(H) 1s a Noetherian algebra, then

Ly, (H) is a Noetherian algebra, and if .an(H) is a finitely generated algebra over k, then
LI (H) is a finitely generated algebra over k.

Recall the Reynolds operator R: L, ,(H) — Egn(H). Note that R(I;) is a two-sided ideal
of E;{n(H), thanks to Lemma m

Proposition 7.17. We have Ker(w) = I. N EH o(H) = R(I:). Therefore m factors to an
isomorphism L’WL( )/R(:) = (Lgn(H )/ )

Proof. The first equality and the inclusion I. N £gn(H ) C MR(I.) are immediate, by the
definitions of m and R respectively. For the converse inclusion, it is enough to show that
R(I;) C I.. Tt follows from the remark below that &, ,(H) is an H-submodule. Since
Lyn(H) is an H-module algebra, I. = L,,(H)€;,(H) is an H-submodule too. Because
Ly n(H) is completely reducible, I. is also completely reducible. Because R is the projection
onto the isotypical components of trivial type, we obtain R(I.) C I.. O

Before continuing, we begin with a few simple observations. Let V be a finite dimensional
H-module. We say that a tensor
dim V
t= Z a; @ v; Gﬁg,n(H)@)V
i=1
is equivariant if for every h € H we have
dimV dimV

Z coad”(h)(a;) @ v; = Z a; @ hy (v;)
where we recall that coad” is defined in and hv is the representation of h on V. A main
W
example of equivariant tensor is provided by the matrix X € L, ,(H) ® End(W) which is
wow W W
B(i), A(i), M (i) or any product of them and their inverses, like C, taking V = End(W) =
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W ® W*. Indeed, expanding X Do X ¢ @ w; ® w’ where (w;) is a basis of V with dual
basis (w’), we have by (89),

W
> coad" (X%) @ (w; @w!) = > Xl ) Wi @ hgy - wd).
2 (h)isj
Note also the following easy but crucial fact. Assume the H-module A is completely reducible,

and denote by R: A — A the Reynolds operator (i.e. the projection on the submodule of
H-invariant elements). With V' and an equivariant tensor ¢ as above, we have

(100) (R@idy)(t) = (id® P)(t)

where P: V — V is the projector onto the isotypical component of trivial type, so Im(P) =
V. The proof is immediate by taking a basis (v;) adapted to the decomposition V =

Im(P) @ Ker(P). Also, given another finite dimensional H-module V' with a basis (v}), and

. ’
an equivariant tensor t’ = Z?;Hllv a; @ v, € A® V', the tensor

tity = Zaia; RuQu; € ARV V'
,J
is equivariant.

In the next statement we use the graphical calculus of [Fai20bl, §3]. It proves the definition
of the ideal Z¢ in [BNRO2, p. 10] in the case of g = sl.

Proposition 7.18. The vector space Ker(r) is generated by the elements of the form

B) A Mg+1) MEg+n) C
|
B(1) A(1) B(g) M(g+1) g—I—n

for all X;,Y € Ire(H) and f € HomH((®29+" X; ® X*) QY ®Y* k)

Proof. To simplify notations and diagrams we give the details in the case (g,n) = (1,1).
Y
Because of (99) and Ker(7) = 9R(I.), it is enough to show that ifiE(C—ldy) withz € £41(H)

satisfies R(z (C’ 1dy) ) = x(g' 1dy) then it is of the form required. Without loss of
generality, by linearity we can assume = € C(X;) ® C(X2) ® C(X3) for some simple modules
X1, X9, X3. Let S C C(X;1)®C(X2) ® C(X3) be the submodule generated by x under coad”.
We thus have an isomorphism f: coad”(H)(z) — S. We can view S as a submodule (a direct
summand) of ®?:1 X; ® X;. Denote by pg: ®§’:1 X; ® X — S the associated projection.
Define the tensor t, € £11(H) ® S by
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lS
| Ps |
X3 Xo X3
B(1) A(1) M(2)

Letting (xx,) and (zz") be dual basis of X} and X}, this reads

X, X5 X3
ty = Z B @ A1)} @ M(2) @ ps (174 ® 12° @ 221, ® 23" @ 32 ® 327").

a,bk,l,mmn

By construction t, is an equivariant tensor. Let (s,) be a basis of S, chosen so that f(z) = s1.

Y
Then it is immediate that (id ® s')(t,) = 2. It follows that (t,)1(C —idy)s € L11(H)® S ®
Y ® Y™ is equivariant, and therefore

(R id)((%)l(gY —idy)s) = (id® P)((tmh(é —idy)2)

where P: SQY ®Y* — S®Y ®Y™" is the projection onto the subspace of invariant elements.
Letting (ys) and (y") be dual basis of Y and Y*, denote by 7: S ® Y ® Y* — k the linear
form such that n(s, ® ys ® yt) = 0r,105,0¢,j. Then we have

Y . i . Y .
z(C —idy); = (id @) ((t2)1(C —idy)2),

and

(4@ (10 P))((t2)1(C — idy)a) = (R @ 1) ((t2)1 (C — idy)o)

= %(w(é —idy)}) = m(é —idy )’

The map no P: S®Y ® Y* — k is H-linear, and the left-hand side of the identity is the
element of the form

| nolP | | nolP
5 v 5 ]
| ps | | ps |
X Xo X3 — X1 X2 X3
NNy Sen
B(1) A1) M(2) C B(1) A(1) M(2)
This concludes the proof. ]

Finally, note that the hypothesis stated at the beginning of the section are satisfied by
H = Uqad = U;d(g). Indeed, the only ones that remain to be checked are the last two.

As already mentioned, we have H' = Uéf by [Bau00, Th. 3]. Also we have the following
decomposition [JLI2] :

U, = 1708 (1/T
where T' C U, is the multiplicative Abelian group formed by the elements Ky, A € P, and
we denote by 1o C T the subgroup formed by the elements Ky, A € 2P, and by T5_ C Tb
the set formed by the elements Ky, A € 2P,. As a result

1f
ZUN = 2(U,) and Lg% = L5,
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Finally, there is an algebra isomorphism Z: Z(U,) — C(q) [K;Ewll, e ,K;;N]W, where W is

acting by the shifted Weyl group action (see eg. [VY20], Section 3.13). Then let Xi,..., Xg
be non trivial and non isomorphic simple type 1 finite dimensional U;-modules. They are

highest weight modules, of non-zero dominant weights Ay, ..., Ay lying in disjoint W-orbits.
Therefore, there exists an element P € C(q) [Kziwl,l, e ,KZiml,N]W such that P(0) = 0 and

P(\;) # P()\)) for i # j. Taking z = = !(P) provides an element satisfying the separation
property of Definition

By Proposition and Theorem we get:
Corollary 7.19. The algebra L7, (g) is Noetherian and finitely generated.

7.4. Topological interpretation of the quantum reduction L{ (H). Let us call 0-
mowve the transformation shown in the picture below; this picture represents a neighborhood
of the boundary of ¥ ., and the strand represents the projection on ¥, of a portion of
some H-colored ribbon link with coupons in %7, x [0,1].

n

0(55,)
D >

As usual we consider such links up to isotopy. We say that two linear combinations of
links L1 and Lo are J-equivalent, denoted by L; ~g Lo, if their diagrams on E;,n can be
related by a finite sequence of 0-moves. Because the skein relations are local, the relation ~g
is compatible with skein equivalence, in the sense that if L1 ~gy Lo and if L; (resp. Lg) is
skein equivalent to L} (resp. to Lj), then L} ~g L. Also, ~p is compatible with the product
in Sy (X ,,), which we recall is given by stacking. Hence Sy (% ,,)/ ~o is an algebra.

For the same reason the inclusion %7, C ¥, yields a well-defined, surjective morphism of
algebras Sy (X ,,) — Su(¥yn), and skein classes of d-equivalent H-colored ribbon links have
the same image. Since (diagrams of) isotopic links in ¥, can be related by finite sequences

of 0-moves and isotopies in the subsurface E;’ n, 1t factors into an isomorphism
b

9(Xgn)

SH(E;,n)/ ~o i* SH(Eg,n)-
Below we will identify Sg(X7,,)/ ~o and Sp(¥yn) by using this isomorphism.

Recall the Wilson loop morphism W : Sy (%] ;) — Lgn(H) (Definition as explained
thereafter, W takes values in an(H)), and recall that 7: Egn(H) — LJ,(H) denotes the
restriction to [,gn(H) of the canonical projection p : Lg,(H) — Lgn(H)/I (see (91))).

Proposition 7.20. If L1 ~y Lo then m o W(Ly) = mo W(Lg). It follows that there is a
morphism of algebras W : Sg(3y,) — L, (H) such that the diagram

(101) Su(=S,) — s £l (H)
’\‘ai iﬂ
SH(Eg,n) war ngn(H)

commutes.
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We do the proof for (g,n) = (1,1). The general case is similar except that it requires
to draw more cumbersome diagrams. The key-point is the following lemma, which uses the
graphical calculus from [Fai20bl §3].

Lemma 7.21. We have:

X
with the matriz C from Definition |7.11].

Proof. For ease of notation we did not put the colors on the matrices in the diagrams; namely
XeUeX
the first label in the left-hand side should actually be B(1) etc.

Note first that due to the diagram for the inverse of B(1) and A(1) [Fai20b, Prop. 3.3], the
X
matrix C(1) defined in can be written as

Then, using several times the diagrammatic commutation relations from [Fai20bl, Prop. 3.2
and 3.3], one shows that

Finally, it is an exercise to check that the matrix relation is equivalent to

sy

1 1

and the matrix relation in Lemma [7.13]is equivalent to the same diagrammatic identity but
with C' instead of C(i). From these facts one easily finishes the computation. 0

Proof of Proposition[7.20. Consider the following H-colored ribbon links in ¥ ; x [0, 1] which
are related by a 0-move:
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where T is some ribbon graph in [0,1]>. We denote them by Ly and Lg respectively and we
want to show that m o W(L%) = 7 o W(Ly). Recall that p: Ly, (H) — Ly, (H)/I. denotes
the canonical projection. If x =) . 2, @1, ®...®u; € Lyn(H)@ V1 ® ... ® V) is some
tensor, define p(x) = 32, p(#;) @ v1; @ ... ® vg,. Note that W (LY) is equal to the diagram
obtained by plugging the tangle T" atop the diagram at the left-hand side of Lemma[7.21] By

X
(©9) we have p(aC) = p(a) ® idx for all a € Lg,,(H), and hence

U 1% w X U v w \X_]
(SN nlenle/r) (e nle/nle/r)
B(1) A1) M(2) C B(1) A1) M(2)
Since the map  is just the restriction of p to E;{n(H ), applying this equality to the right-hand
side of Lemma we recover ™o W (Lr), as desired. O

Theorem 7.22. Assume the hypothesis of hold true. Then W Sy (Xgn) — LT, (H)
is an isomorphism of algebras.

Note that in particular this result applies to H = U;d(g), where as usual the ribbon links

are colored by the objects and morphisms from the category of finite-dimensional U;d(g)—
modules of type 1.

Proof. Under the hypothesis, W: Sp (%5 ,,) = E;{n (H) is an isomorphism of algebras (Theo-
rem mi and 7 : L’gn(H ) = Lg,(H) is surjective (Lemma . It follows from its definition
in (101)) that W9 is surjective. To have diagrams with a reasonable size, we prove injec-

tivity for (g,n) = (1,1); this is completely representative of the general situation. So let
L € Sy(X9 ;) and assume that m o W (L) = 0. Then by Proposition we can write

fX17X2,X3
X3 X2 X3
L): E )‘Xl,Xz,XS, U U U U
e W
X3,V

IX1,X0,X3,Y
wwwu

with X3, X9, X3,Y € Irr(H), only a finite number of coefficients AXI’Xz,X&Y € C are non-
zero and fx, x,.X5v € HomH(X1 RXI®..0X30X;0Y® Y*,k) where k is the trivial
H-module. Consider the following ribbon graphs in [0, 1]3:
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Y Y
IX1,X0, X3,

T(fX, X0, X0y ) = || > 1 | 1 )

¢X1 ¢X2 |X1 |X2 ¢X3 |X3

and using the notations L, L? introduced in the proof of Proposition define

! 0 o
L' = Z AX,X5,X3,Y (LT(fXLXz’X?”Y) — LT(fXLX%X&y)) € Su(X1)
X1,X2,X3,Y

Note that L' ~g 0, simply because LaT ~g L for any ribbon graph T'. Moreover, by definition

of W and by Lemma we have W (L) = W(L). It follows that L' = L since W is an
isomorphism (Theorem [6.9). Thus L ~p 0, which means that L = 0 in Sy (X1,1). O
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