Kawasaki dynamics beyond the uniqueness threshold - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2024

Kawasaki dynamics beyond the uniqueness threshold

Résumé

Glauber dynamics of the Ising model on a random regular graph is known to mix fast below the tree uniqueness threshold and exponentially slowly above it. We show that Kawasaki dynamics of the canonical ferromagnetic Ising model on a random $d$-regular graph mixes fast beyond the tree uniqueness threshold when $d$ is large enough (and conjecture that it mixes fast up to the tree reconstruction threshold for all $d\geq 3$). This result follows from a more general spectral condition for (modified) log-Sobolev inequalities for conservative dynamics of Ising models. The proof of this condition in fact extends to perturbations of distributions with log-concave generating polynomial.
Fichier principal
Vignette du fichier
rrg.pdf (312.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04236370 , version 1 (10-10-2023)

Identifiants

Citer

Roland Bauerschmidt, Thierry Bodineau, Benoît Dagallier. Kawasaki dynamics beyond the uniqueness threshold. Probability Theory and Related Fields, 2024, ⟨10.1007/s00440-024-01326-9⟩. ⟨hal-04236370⟩
59 Consultations
45 Téléchargements

Altmetric

Partager

More