Uniqueness and non-uniqueness for the asymptotic Plateau problem in hyperbolic space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Uniqueness and non-uniqueness for the asymptotic Plateau problem in hyperbolic space

Zheng Huang
  • Fonction : Auteur
Ben Lowe
  • Fonction : Auteur
Andrea Seppi
  • Fonction : Auteur

Résumé

We prove a number of results on the number of solutions to the asymptotic Plateau problem in H^3. In the direction of non-uniqueness, we construct an example of a quasicircle that is the asymptotic boundary of uncountably many pairwise distinct stable minimal disks. Moreover, we discuss criteria that ensure uniqueness. Given a Jordan curve Λ in the asymptotic boundary of H^3 , we show that uniqueness of the minimal surfaces with asymptotic boundary Λ is equivalent to uniqueness in the smaller class of stable minimal disks, and, when Λ is invariant by a Kleinian group, to uniqueness in the even smaller class of group invariant stable minimal disks. Finally, we show that if a quasicircle (or more generally, a Jordan curve of finite width) Λ is the asymptotic boundary of a minimal surface Σ with principal curvatures less than or equal to 1 in absolute value, then uniqueness holds. Contents
Fichier principal
Vignette du fichier
2309.00599 (1).pdf (700.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04235517 , version 1 (11-10-2023)

Identifiants

Citer

Zheng Huang, Ben Lowe, Andrea Seppi. Uniqueness and non-uniqueness for the asymptotic Plateau problem in hyperbolic space. 2023. ⟨hal-04235517⟩
16 Consultations
29 Téléchargements

Altmetric

Partager

More