ON A NON-HOMOGENEOUS PANTOGRAPH FUNCTIONAL DIFFERENTIAL EQUATION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

ON A NON-HOMOGENEOUS PANTOGRAPH FUNCTIONAL DIFFERENTIAL EQUATION

Huan Dai
  • Fonction : Auteur
  • PersonId : 1321720
  • IdHAL : 1291539

Résumé

This paper is devoted to the analytical study of the non-homogeneous functional differential equation y'(x)=ay(qx)+by(x)+1/x, where q is a constant in (0,1) and where a and b are two non-zero real or complex numbers. This equation represents a q-perturbation of the first-order ODE y'(x)=by(x)+1/x, that admits an irregular singular point at infinity in the complex plane. First, combing hypergeometric-type and q-hypergeometric-type power series yields solutions at zero and infinity. Next, using the Laplace transform allows us to convert this equation into a first-order linear q-difference equation. In this way, we express the above-mentioned power series-type solutions in terms of Laplace integrals involving the Jacobi theta functions. Finally, we get the connection formula between solutions at zero and infinity, which plays a crucial role in determining the asymptotic behavior of solutions at infinity.
Fichier principal
Vignette du fichier
DAI-JGA.pdf (495.96 Ko) Télécharger le fichier
DAI-Paper1.zip (788.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04232886 , version 1 (09-10-2023)
hal-04232886 , version 2 (08-12-2023)

Identifiants

  • HAL Id : hal-04232886 , version 2

Citer

Huan Dai. ON A NON-HOMOGENEOUS PANTOGRAPH FUNCTIONAL DIFFERENTIAL EQUATION. 2023. ⟨hal-04232886v2⟩

Collections

UNIV-LILLE
110 Consultations
73 Téléchargements

Partager

More