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Abstract

This paper is devoted to the analytical study of the non-homogeneous
functional differential equation y′(x) = ay(qx) + by(x) + 1

x
, where

q is a constant in (0, 1) and where a and b are two non-zero real or
complex numbers. This equation represents a q-perturbation of the first-
order ODE y′(x) = by(x) + 1

x
, that admits an irregular singular point

at infinity in the complex plane. First, combing hypergeometric-type and
q-hypergeometric-type power series yields solutions at zero and infinity.
Next, using the Laplace transform allows us to convert this equation
into a first-order linear q-difference equation. In this way, we express the
above-mentioned power series-type solutions in terms of Laplace inte-
grals involving the Jacobi theta functions. Finally, we get the connection
formula between solutions at zero and infinity, which plays a crucial
role in determining the asymptotic behavior of solutions at infinity.

Keywords: differential q-difference equation, Laplace transform, Jacobi
theta function, connection formula, asymptotic behavior.

1 Introduction

The functional differential equation

y′(x) = ay(qx) + by(x) (1.1)
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2 On a non-homogeneous pantograph equation

represents an idealized mathematical model derived from an industrial problem
concerning the wave motion of the overhead supply line in an electrified railway
system [1], where a, b are non-zero real numbers, and y is a real-valued function.
Equation (1.1) is often called the pantograph equation, as mentioned in [2],
the term “pantograph” comes from Ockendon and Tayler [3] and Iserles [4]. It
appears in applications in many areas: analytic number theory [5], nonlinear
dynamical systems [6], etc.

Several extensions of equation (1.1) had been widely studied [7–12]. For
instance, Carr and Dyson [9] analyzed the asymptotic behavior of solutions of
equation (1.1) with Re(b) = 0 but b ̸= 0. Kato and Mcleod [13] studied the
existence and uniqueness of solutions of (1.1) with y(0) = 1 and obtained the
asymptotic form of solutions as x→ ∞, where a is a possibly complex constant.
Shaldanbayev et al. [11] discussed the spectral properties of the associated
Cauchy problem to (1.1) with b = 0, they obtained that in the case of 0 <
q < 1, the Cauchy problem is always a Volterra problem; in the case of q > 1,
the problem is not solvable for all values of a. The series solutions at zero
of (1.1) belong to a family of hypergeometric-type and q-hypergeometric-type
series. See [14, p. 4, formula (1.2.22)] and [15, 16]. Note that Ismail and Zhang
applied a technique of integral representations for certain entire q-functions
to obtain the convergent asymptotic series expansion of the large zeros of the
Ramanujan entire function [17].

In addition to the research on the homogeneous equation (1.1), several stud-
ies have also been devoted to investigating its corresponding non-homogeneous
form. For example, Lim [18] studied the asymptotic bounds of solutions of the
non-homogeneous functional differential equation (for 0 < q < 1),

y′(x) = ay(qx) + by(x) + g(x), (1.2)

where g is a continuous function defined on [0,∞) such that g(x) = O(xα) for
x→ ∞.

In this paper, we shall study (1.2) from the point of view of analytic
approaches so that g will be some analytic function. To simplify, we suppose
that g is a rational function, leading to the classification of three distinct cases:

Case 1: g is a polynomial;
Case 2: g is of the form 1

xm , m > 0;
Case 3: g is of the form 1

(x−c)m , m > 0 and c ̸= 0.

For Case 1, if g is a polynomial, then equation (1.2) has a unique polynomial
solution of the same degree as g. The treatment of Case 3, being more complex,
is left for future work. In this paper, we only treat Case 2. Initially, a unique
polynomial transformation exists, allowing us to convert equation (1.2) with
g(x) = 1

xm into an equation with g(x) = 1
x (see Proposition 2.1). Therefore,

we are led to the study of a non-homogeneous functional differential equation

y′(x) = ay(qx) + by(x) +
1

x
, (1.3)
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where a, b are non-zero complex numbers. The boundary-value problem with
y(0) = 1 is “well-posed” if 0 < q < 1, but not if q > 1 (see [13]). Consequently,
this paper will only deal with the case 0 < q < 1.

Furthermore, for equation (1.3), it suffices only to consider the case where
b = −1 or b = 0, as we will always assume that x belongs to C∗ or to the

Riemann surface C̃∗ of the logarithm function. Indeed, if b ̸= 0, by making
x = − t

b and u(t) = y(x) = y(− t
b ), one gets u

′(t) = − 1
by

′(− t
b ). Letting x = − t

b
into (1.3) gives that

u′(t) = αu(qt)− u(t) + f(t),

where α = −a
b ̸= 0 and f(t) = − 1

b g(−
t
b ) =

1
t . This is to say, we shall consider

the equation given by the following:

y′(x) = αy(qx)− y(x) +
1

x
. (1.4)

On the one hand, the corresponding homogeneous equation associated with
(1.4) is:

y′(x) = αy(qx)− y(x). (1.5)

Zhang [19] proved that if y(0) = 1, the unique power series solution can be
expressed by a linear combination of all the elements of a system of fundamen-
tal solutions at ∞ in the complex plane. Termed as the connection formula
between solutions at 0 and ∞, this formula plays an important role in deter-
mining the asymptotic behavior of the solution of this Cauchy problem. Note
that the difference between two solutions of equation (1.4) is a solution of
equation (1.5). This simple observation will play a key role in our study.

On the other hand, if α = 0 in equation (1.4), the corresponding non-
homogeneous ODE is the well-known Euler differential equation, whose power
series solution at ∞ is simply the divergent series

∑
n≥0 n!x

−n−1 (see Mal-
grange [20] and Ramis [21]). Even in this simple case, solutions of equation
(1.4) include some complex properties!

The present paper aims to study the asymptotic behavior of solutions
of (1.4). Hence, we first study the connection formula between solutions of
equation (1.4) at 0 and ∞. Because the theory of elliptic functions is closely
related to the analytic theory of linear functional q-difference equations [22–26],
we use the Jacobi theta function to express solutions of (1.4).

The paper is organized as follows. In Section 2, we will construct solutions
at 0 and ∞ by means of convergent power series and the logarithm function. In
Section 3, equation (1.4) is transformed into a linear q-difference equation by
means of the Laplace transform. This gives two integral solutions, whose rela-
tionship is obtained by using the associated q-difference equation. In Section
4, it is shown that one of these two integral solutions can be identified with a
distinguished solution whose behavior near zero depends of the so-called crit-
ical value “γ0”, the other one being the power series solution at infinity. In
Section 5, the connection formula between solutions near zero and infinity is
obtained by combining the results from Sections 3 and 4. In this way, we obtain
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the asymptotic behaviors at infinity over the right half-plane for all the solu-
tions of (1.4) that can be expressed in terms of power series and the logarithm
function. Notice that this is done using the above-mentioned critical value γ0,
which depends on the Euler’s constant. Finally, we will note how to interpret
our results by means of that obtained in the paper [18].

We first introduce some notations. Denote C̃∗ = C∗∪{∞} as the Riemann
surface of the logarithm function, and log as the principal branch value of
the logarithm function defined over C̃∗. Thus, xa = ea log x for all a ∈ C and
x ∈ C̃∗.

For any α ∈ C and n ≥ 1, we define (α)n and (α; q)n in the following form:

(α)n =

n−1∏
j=0

(α+ j) and (α; q)n =

n−1∏
j=0

(1− αqj),

and we denote usually (α; q)0 = (α)0 = 1. One can easily get that (α; q)n
and (α)n can be extended to (α; q)∞ and (α)∞ respectively, as n → ∞. It is
obvious to see that the following relation holds:

(αq−n; q)n = (−1)n
( q
α
; q

)
n

(α
q

)n
q−

n(n−1)
2 . (1.6)

The Jacobi theta function θ(q; x) is defined by

θ(q; x) =
∑
n∈Z

q
n(n−1)

2 xn;

we write it as θ(x) in the absence of ambiguity. It verifies the following
functional equation:

θ(qnx) = q−
n(n−1)

2 x−nθ(x), for n ∈ Z. (1.7)

Following [19], we define

F0(α; q, x) =
∑
n≥0

(−1)n(α; q)n
n!

xn, (1.8)

and we recall that F0(α; q, x) is the unique solution of homogeneous equation
(1.5) with the initial condition y(0) = 1. The following identities can be found
in [15, p. 490, Corollary 10.2.2 (a)-(b)], which will be used in this paper:

∑
n≥0

xn

(q; q)n
=

1

(x; q)∞
, |x| < 1, |q| < 1, (1.9)
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and ∑
n≥0

(−1)nq
n(n−1)

2 xn

(q; q)n
= (x; q)∞, |q| < 1. (1.10)

2 Solutions expressed in terms of power series

As stated in the Introduction, this paper is devoted to Case 2, where equation
(1.2) has the form g(x) = 1

xm . Notice that this can be converted into equation
(1.4) by a simple transformation using the following proposition. Therefore,
we will only consider equation (1.4) in the rest of this paper.

Proposition 2.1. Let m be an integer with m > 1. If α /∈ {q, q2, · · · , qm−1},

then there is a unique transformation of the form y(x) =

m−1∑
j=1

ajx
−j + dz(x),

where aj , d ∈ C∗, such that the equation y′(x) = αy(qx)−y(x)+ 1
xm is converted

to z′(x) = αz(qx)− z(x) + 1
x .

Proof By direct computation, one gets that, for j = 1, 2, · · · , m− 1,

aj = −(αq−m+1; q)m−j−1
(j − 1)!

(m− 1)!
, d =

(αq−m+1; q)m−1

(m− 1)!
.

□

Remark 2.1. If α = qk for some k ∈ {1, 2, · · · ,m − 1}, then there is a

transformation of the form y(x) =

m−1∑
j=k

ajx
−j+z(x), such that equation y′(x) =

αy(qx) − y(x) + 1
xm can be converted to the homogeneous equation z′(x) =

αz(qx)− z(x).

We now study solutions of equation (1.4) by means of power series at zero.
For this purpose, we need the following lemma.

Lemma 2.1. Let F0(α; q, x) be as in (1.8), and let u, v be two convergent
power series. The function

y(x) = u(x) log x+ v(x)

is a solution of equation (1.4) iff the two functions u(x) and v(x) satisfy the
following equations:

u′(x) = αu(qx)− u(x), u(0) = 1,

v′(x) = αv(qx)− v(x) + α ln q · u(qx)− u(x)
x + 1

x .
(2.1)

Hence, u(x) = F0(α; q, x).
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Proof By substituting y(x) = u(x) · log x+ v(x) into (1.4), we obtain that

log x[u′(x)− αu(qx) + u(x)] = 0,

v′(x) = αv(qx)− v(x) + α ln q · u(qx)− u(x)
x + 1

x ,
(2.2)

The first equation of (2.2) is equivalent to equation (1.5), hence u(x) = u0 F0(α; q, x),
where u0 = u(0). Furthermore, the second equation of (2.2) admits a power series
solution v only when u(0) = 1. So, we find the system given in (2.1). □

Lemma 2.2. Let y(x) be an analytic solution of equation (1.5) on an interval
(0, a) (a > 0). Then, y(x) = 0 for all x ∈ (0, a) iff lim

x→0
y(x) = 0.

Proof Set z(x) = y(x)ex for x ∈ (0, a). Then

z′(x) = (αy(qx)− y(x))ex + y(x)ex = αexy(qx) = αe(1−q)xz(qx).

If 0 < x0 < x < x1 < a, then, one has

z(x) = z(x0) + α

∫ x

x0

e(1−q)tz(qt)dt.

Hence, by taking x0 → 0, we obtain

z(x) = α

∫ x

0
e(1−q)tz(qt)dt,

which implies that, for all x ∈ (0, x1],

|z(x)| ≤ |α|x1e(1−q)x1 max
0<t≤qx1

|z(t)|.

Consequently, it follows that

|y(x)| ≤ |α|x1e−xe(1−q)x1 max
0<t≤qx1

|ety(t)| ≤ Cx1 max
0<t≤qx1

|y(t)|,

where C = |α|ex1 . Therefore,

max
x∈(0,x1]

|y(x)| ≤ Cx1 max
0<t≤qx1

|y(t)|;

and by iteration, we obtain

max
x∈(0,x1]

|y(x)| ≤ Cnqn(n−1)/2xn1 max
0<t≤qnx1

|y(t)|.

Finally, taking n→ +∞, one gets that max
0<x≤x1

|y(x)| = 0, which completes the proof.

□

As usual, we denote by Hn =

n∑
k=1

1

k
, the n-th harmonic number.

Theorem 2.1. Let α /∈ qZ≤0 . For any constant c0, we define

F (α; q, c0, x) = (c0 + log x)F0(α; q, x) + F1(α; q, x), (2.3)
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where F0(α; q, x) is as in (1.8) and where

F1(α; q, x) =
∑
n≥1

(
Hn +

n−1∑
k=0

αqk ln q

1− αqk
) (−1)n−1(α; q)n

n!
xn. (2.4)

Then the function F (α; q, c0, x) is a unique analytic solution on C̃∗ of equation
(1.4) with the initial asymptotic condition y(x) = log x + c0 + o(1) as x → 0
along a certain direction.

Proof Since F0(α; q, x) is an analytic solution of equation (1.5), substituting
F (α; q, c0, x) into equation (1.4), we see that the first equation in (2.1) is satisfied.
By taking v(x) = F1(α; q, x), the second equation in (2.1) is satisfied.

Since the sequence |1 + αqk−1(k ln q − 1)]| is convergent as k → ∞, then there
exists a constant C1 such that |1 + αqk−1(k ln q − 1)]| ≤ C1, for all k ≥ 1. Because
α ̸∈ q−N, there exists a constant C2 such that |1 − αqk−1| ≥ C2 for all k ≥ 1.
Therefore, for n ≥ 1,∣∣ n∑

k=1

(−1)n−1(α; q)n[1 + αqk−1(k ln q − 1)]

n!k(1− αqk−1)

∣∣ ≤ C1|(α; q)n|
C2(n− 1)!

.

Hence, the radius of convergence of F1(α; q, x) is ∞.
Furthermore, it is trivial that F (α; q, c0, x) = log x + c0 + o(1) as x → 0 along

any direction. From the analysis above, the function F (α; q, c0, x) is a solution of
equation (1.4) as described in the theorem.

For uniqueness, we can easily see that using a suitable change of variable, the
difference of two solutions with the given asymptotic initial condition satisfies the
conditions of Lemma 2.2. □

Next, we look for a power series solution at ∞.

Theorem 2.2. If α /∈ qZ>0 , then the following power series

G(α; q, x) = x−1
∑
n≥0

(−1)n+1α−(n+1)q(n+1)(n+2)/2n!

(α−1q; q)n+1
x−n (2.5)

represents the unique analytic solution of equation (1.4) in C∗ ∪ {∞} which
vanishes at infinity.

Proof We suppose y =
∑

n≥0 anx
−n−1 and substitute it into equation (1.4), then

−
∑
n≥0

(n+ 1)anx
−n−2 =

∑
n≥0

(αq−n−1 − 1)anx
−n−1 + x−1.

Comparing the coefficients of x−1, one obtains a0 = 1
1−αq−1 (for α ̸= q). By compar-

ing the coefficients of x−2, x−3, · · · , we have (αq−n−1 − 1)an = −nan−1 for n ≥ 1.
Therefore,

an =
n

1− αq−n−1
an−1 = · · · = (−1)nα−nqn(n+3)/2n!

(α−1q2; q)n
a0
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for α /∈ qZ>0 . Thus, the expression for an is unique. Since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1) qn+2

|α− qn| = 0 ,

the power series (in 1
x ) G(α; q, x) defined by (2.5) is the unique analytic solution of

equation (1.4) in Riemann sphere C∗ ∪ {∞}, such that lim
x→∞

G(α; q, x) = 0. □

Remark 2.2. When α ̸= 1, any analytic solution at infinity is null there. In
this case, G(α; q, x) is the unique analytic solution at infinity.

This comes from the fact that lim
x→∞

(y′(x) − 1
x ) = 0, which implies that

(α− 1) lim
x→∞

y(x) = 0.

The connection formula between F (α; q, c0, x) and G(α; q, x) will be given
in Section 5. In formula (2.5), one can notice that, for any α /∈ qZ>0 ,∣∣∣ α−(n+1)

(α−1q; q)n+1

∣∣∣ = 1

|(α− q)(α− q2) · · · (α− qn+1)|
≤ 1

ϵn+1
, (2.6)

where ϵ = min
k∈Z>0

|α− qk|. Furthermore, we have the following Remark.

Remark 2.3. The function F (α; q, c0, x) of Theorem 2.1 is analytic for α /∈
qZ≤0 , while the function G(α; q, x) of Theorem 2.2 is analytic for α /∈ qZ>0 .

Indeed, by using the uniform convergence theorem, one can see that
F0(α; q, x) and F1(α; q, x) are respectively analytic for (α, x) ∈ C×C and for
all (α, x) ∈ C × C such that αqk ̸= 1 for any k ∈ Z≥0. This implies the ana-
lyticity of F (α; q, c0, x) for (α, x) ∈

(
C \ qZ≤0

)
× C. In the same way, we get

the analyticity of G(α; q, x), by using (2.6).

3 Laplace integral solutions and the
relationship between them

In this section, we will look for solutions of (1.4) in the form of Laplace integral.
For the convergence of Laplace integral, we refer to [20, p. 216, Definition
A.2.3], whose main content is: Let f ∈ C2([0,+∞)). Suppose there are A,B >

0 such that |f(x)| ≤ AeBx, then the function ξ 7→
∫ +∞
0

f(x)e−xξdx converges
for Re(ξ) > B. It is denoted Lf , Laplace transform of f , which holomorphic
for Re(ξ) > B. We first give an elementary lemma as follows.

Lemma 3.1. Assume that d ∈ R, ϵ > 0, and h is an analytic function in the
open sector {t ∈ C̃∗

∣∣| arg(t) − d| < ϵ}, verifying h(t) = O(t) for t → 0, and

h(t) = O(eλ|t|) for t→ ∞ (λ ≥ 0). An integral of the form

y(x) =

∫ ∞eid

0

h(t)e−tx dt

t



On a non-homogeneous pantograph equation 9

is a solution of equation (1.4) in the domain

Sd
ϵ,λ =

⋃
δ∈(d−ϵ,d+ϵ)

{x ∈ C̃∗∣∣Re(xeiδ) > λ}

if and only if the function h(t) satisfies

αh(t) + (qt− 1)h(qt) = −qt. (3.1)

Proof One has
1

x
=

∫ ∞eid

0
te−tx dt

t
for Re(xeid) > 0, and y(x) can be extended into

an analytic function in Sd
ϵ,λ under the given conditions. Thus, we can obtain the

result by substituting y(x) in equation (1.4). □

3.1 Two types of Laplace integral solutions

Suppose ϕ(t) =
∑

n≥1 ϕnt
n and substisute it into equation (3.1). Comparing

the coefficients of tn, we obtain

ϕ1 =
1

1− αq−1
, and for n ≥ 2, ϕn =

1

1− αq−n
ϕn−1. (3.2)

Next, we use it to get an integral solution of equation (1.4), as shown in the
following lemma.

Lemma 3.2. Let α /∈ qZ>0 , d ∈ [0, 2π], and

ϕ(t) =
∑
n≥0

ϕn+1t
n+1 =

∑
n≥0

tn+1

(αq−n−1; q)n+1
. (3.3)

Then the integral L
[d]
1 (α; q, x) =

∫ ∞eid

0

ϕ(t)e−tx dt

t
is an analytic solution of

equation (1.4) for x in the Riemann surface C̃∗ such that arg(x) ∈ (−d −
π
2 ,−d+

π
2 ).

Consequently, glueing all the functions L
[d]
1 (α; q, x) (d ∈ [0, 2π]) gives rise

to an analytic solution of equation (1.4) in C∗ ∪ {∞}, which will be denoted
by L1(α; q, x).

Proof First, from (3.2) and (1.6), we have ϕn = O(α−nqn(n+1)/2), we get that ϕ(t) is
an entire function satisfying (3.1) and ϕ(0) = 0. According to Lemma 3.1, it suffices
to prove that ϕ(t) has at most exponential growth at ∞.

From [27, p. 59, Proposition 2.1], we obtain that∣∣∣ϕ(t)
t

∣∣∣ ≤ Ce−
(log |t/α√

q|)2
2 ln q , as |t| → +∞.
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Therefore, as t → ∞ in C, ϕ(t) = O(eλ|t|) for any λ > 0. Hence, the integral

L
[d]
1 (α; q, x) is well-defined in any direction d ∈ [0, 2π]. This is to say, there is no

singular direction. Thus, one obtains an analytic function on C∗ ∪ {∞}. □

Note that the proof above for Lemma 3.2 is based on a basic idea of the
Borel-Laplace summation theory (see [20, p. 216, Proposition A.2.3]).

Theorem 3.1. If α /∈ qZ>0 , then the relation

G(α; q, x) = L1(α; q, x) (3.4)

holds for x ∈ C∗ ∪ {∞}.

Proof By the definition in (2.5), one can get that

G(α; q, x) =
∑
n≥0

n!

(αq−n−1; q)n+1
x−n−1.

Given any direction d and x such that Re(xeid) > 0, by using dominated convergence
theorem, we have

L
[d]
1 (α; q, x) =

∫ ∞eid

0
e−txϕ(t)

dt

t
=

∑
n≥0

n!

(αq−n−1; q)n+1
x−n−1.

Then G(α; q, x) = L
[d]
1 (α; q, x). By the analytic continuation process, relation (3.4)

holds for all x ∈ C∗ ∪ {∞}. □

In the following, we will introduce another kind of integral solution.

Lemma 3.3. Let |α| < 1, d ∈ (0, 2π), and

ψ(t) = (α; q)∞
∑
n≥0

αn t

(q; q)n(qn − t)
. (3.5)

The integral

L
[d]
2 (α; q, x) =

∫ ∞eid

0

ψ(t)e−tx dt

t
(3.6)

is an analytic solution of equation (1.4) for x in the Riemann surface C̃∗ such
that arg(x) ∈ (−d− π

2 ,−d+
π
2 ).

Consequently, glueing all the functions L
[d]
2 (α; q, x) (d ∈ (0, 2π)) gives rise

to an analytic solution of equation (1.4) for arg(x) ∈ (− 5π
2 ,

π
2 ), which will be

denoted by L2(α; q, x).
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Proof To see that L
[d]
2 (α; q, x) is a solution of (1.4), we first prove that ψ(t) is a

solution of (3.1) (Lemma 3.1). Letting g(t) = ψ(t)/t, we only need to prove that g(t)
is a solution of

(1− t)g(t)− α

q
g(
t

q
) = 1. (3.7)

It can be proved by direct computation with the help of the following identity:

(α; q)∞
∑
n≥0

αn

(q; q)n
= 1.

Then ψ(t) is a solution of equation (3.1).
Next, we consider the growth of ψ(t) at infinity to prove the convergence of the

integral. Since

|ψ(t)| ≤|(α; q)∞|
∑
n≥0

|α|n(|qn|+ |t− qn|)
(q; q)n|qn − t|

=|(α; q)∞|
∑
n≥0

|α|nqn

(q; q)n|qn − t| + |(α; q)∞|
∑
n≥0

|α|n

(q; q)n
,

(3.8)

the function ψ(t) is bounded as t→ ∞ in any direction d ∈ (0, 2π). The result follows
by applying Lemma 3.1 (λ = 0, d = ϵ = π). □

The following theorem describes the Stokes phenomenon of L2(α; q, x).

Theorem 3.2. Let |α| < 1 and arg(x) ∈ (− 5π
2 ,−

3π
2 ), the following formula

holds:

L2(α; q, xe
2πi)− L2(α; q, x) = 2πi(α; q)∞

∑
n≥0

αne−qnx

(q; q)n
, (3.9)

the right-hand side of (3.9) is a solution of the homogenous equation (1.5).

Proof Let L be any smooth and anti-clockwise curve whose interior contains the set
{1, q, q2 · · · }. By the residue theorem,

L2(α; q, xe
2πi)− L2(α; q, x) =

∫
L
(α; q)∞

∑
n≥0

αn

(q; q)n(t− qn)
e−txdt

= 2πi(α; q)∞
∑
n≥0

αne−qnx

(q; q)n
,

which is (3.9). Since |α| < 1, the series in (3.9) is convergent for Re(x) > 0, which is
satisfied when arg(x) ∈ (− 5π

2 ,−
3π
2 ). By direct calculation, one can prove that the

right-hand side of (3.9) is a solution of equation (1.5). □

3.2 Relationship between the two Laplace integrals

We have established that L1(α; q, x) and L2(α; q, x) are solutions of equation
(1.4). Then L1(α; q, x)−L2(α; q, x) is a solution of the homogeneous equation
(1.5). We now study the link formula between L1(α; q, x) and L2(α; q, x), by
giving an explicit expression of L1(α; q, x) − L2(α; q, x). For doing this, we
should study the relation between the functions ϕ and ψ.
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Lemma 3.4. Let ψ(t) be as in Lemma 3.3. For |t| > 1, the following equation
holds:

ψ(t) = −
∑
n≥0

(α; q)n
(1
t

)n
.

Proof By using 1

1− qn

t

=
∑

m≥0(
qn

t )m for every fixed n, equation (3.5) becomes

ψ(t) = −(α; q)∞
∑

n≥0,m≥0

(αqm)n

(q; q)n

(1
t

)m
. (3.10)

For every fixed m, by applying equation (1.9), we obtain

(α; q)∞
∑
n≥0

(αqm)n

(q; q)n
=

(α; q)∞
(αqm; q)∞

= (α; q)m. (3.11)

Putting (3.11) into (3.10) allows us to complete the proof. □

The functions ϕ and ψ are solutions of (3.1), and ϕ is an entire function
while ψ has simple poles on the set qN. The homogeneous equation of (3.1)
has special solutions, for example,

H(t) =
θ(− q

α t)

( q
α ; q)∞( 1t ; q)∞

, (3.12)

who has the same poles as ψ. We will obtain the relationship between ϕ(t), ψ(t),
and H(t), as shown in Lemma 3.5. From (1.6), we have

ϕ(t) =
∑
n≥0

tn+1

(αq−n−1; q)n+1
=

∑
n≥0

q
n(n+1)

2

( q
α ; q)n+1

(
− qt

α

)n+1

. (3.13)

According to the definition of basic hypergeometric series in [14, p. 4, formula
(1.2.22)]:

rϕs(a1, a2, · · · , ar; b1, b2, · · · , bs; q, z)

=
∑
n≥0

(a1; q)n(a2; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)nq

n(n−1)
2

]1+s−r

zn,

the right-hand side of the series in (3.13) can be viewed as a basic hyperge-
ometic series, written as 1ϕ1(q;

q
α ; q,

qt
α )− 1. The connection formula for 2ϕ1

is proposed in [14, p. 117, formula (4.3.2)], and the following relationship can
also be regarded as the connection formula for 1ϕ1.

Lemma 3.5. Let ϕ(t) and ψ(t) be as in (3.3) and (3.5). For |t| > 1, the
following equation holds:

ϕ(t) = H(t) + ψ(t). (3.14)
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Proof Let c = − q
α , equation (3.12) can be rewritten as H(t) =

θ(ct)

(−c; q)∞( 1
t ; q)∞

. From

formula (1.9), we have, for |t| > 1,

1

( 1t ; q)∞
=

∑
k≥0

1

(q; q)k

(1
t

)k
.

Multiplying with the series θ(ct) =
∑

l∈Z q
l(l−1)

2 (ct)l, we obtain

H(t) =
1

(−c; q)∞

∑
k≥0

1

(q; q)k

(1
t

)k ∑
l∈Z

q
l(l−1)

2 (ct)l = H+(t) +H−(t),

where

H+(t) =
∑
k≥0

∑
l>k

clq
l(l−1)

2

(−c; q)∞(q; q)k
tl−k, H−(t) =

∑
k≥0

∑
l≤k

clq
l(l−1)

2

(−c; q)∞(q; q)k

(1
t

)k−l
.

Letting m = l − k and replacing l with k +m, it follows that

H+(t) =
∑

m>0,k≥0

(cqm)kq
k(k−1)

2 q
m(m−1)

2

(−c; q)∞(q; q)k
(ct)m.

By applying equation (1.10), for fixed m, we have
∑
k≥0

(cqm)kq
k(k−1)

2

(q; q)k
= (−cqm; q)∞.

Therefore,

H+(t) =
∑
m>0

(−cqm; q)∞
(−c; q)∞

q
m(m−1)

2 (ct)m =
∑
m>0

q
m(m−1)

2

( qα ; q)m
(− q

α
t)m = ϕ(t).

Next, letting n = k − l and replacing l with k − n, we have

H−(t) =
∑

n≥0,k≥0

ck−nq
(k−n)(k−n−1)

2

(−c; q)∞(q; q)k

(1
t

)n
.

Since
(k−n)(k−n−1)

2 =
k(k−1)

2 +
n(n+1)

2 − kn, by summing on k and using equation
(1.10), we obtain

H−(t) =
∑
n≥0

cn(
1

t
)n,

where

cn =
(− c

qn ; q)∞

(−c; q)∞
c−nq

n(n+1)
2 = (− c

qn
; q)nc

−nq
n(n+1)

2 .

By using formula (1.6), we have cn = (α; q)n. From Lemma 3.4, we can obtain that
H−(t) = −ψ(t), which completes the proof. □

Remark 3.1. We note that equation (3.14) is still valid for all t ∈ C∗\qN.
This property will be used in the sequel.

We obtain the link formula between the two integral solutions as follows.

Theorem 3.3. Let |α| < 1 and α /∈ qZ>0 . For any x verifying arg(x) ∈(
− 5π

2 ,
π
2

)
, there exists a direction d ∈ (0, 2π) such that the following relation

holds:

L1(α; q, x) = L2(α; q, x) +

∫ ∞eid

0

e−txH(t)
dt

t
. (3.15)
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Proof For any given such x, one can find a direction d ∈ (0, 2π) such that arg(x) ∈(
−d− π

2 ,−d+
π
2

)
, the theorem follows by using Lemma 3.5, Remark 3.1 and inte-

gration. □

4 Expression of integral solutions in terms of
series

This section focuses on exploring the relationship between series and integral
solutions, which is structured into the following aspects. By applying pertur-
bations of the equation, we derive an alternative expression for L2(α; q, x),
which is represented in terms of series expansions at zero. Finally, we establish
the link formula between F (α; q, c0, x) and L2(α; q, x) by using Theorem 3.1.

4.1 Perturbations of the parameter α

The idea of perturbations of the equation gives another representation of
L2(α; q, x). In the following, we consider α as a parameter close to zero.

If α = 0, then equation (1.4) becomes

y′(x) = −y(x) + 1

x
, (4.1)

which has the divergent series solution
∑

n≥0 n!(
1
x )

n+1. From the Definition

1.3.1.2 in [20]: We place ourselves in the plane of τ = 1
x .

∑ an

τn is Borel-
summable in U = {Re(τ) > 0}, of sum f , if:

∃C > 0, ∀n ∈ N, ∀τ ∈ U,
∣∣f(τ)− ∑

k<n

ak
τk

∣∣ ≤ Cn · n!
|τ |n

.

We obtain that, given any d ∈ (0, 2π), the corresponding Borel-sum in the
direction d is

E[d](x) =

∫ ∞eid

0

e−xt dt

1− t
,

for Re(xeid) > 0, i.e., arg(x) ∈ (−d− π
2 ,−d+

π
2 ). By the analytic continuation

process, it yields a function E(x), which is a solution of (4.1) for arg(x) ∈
(− 5π

2 ,
π
2 ) on C̃∗, for more details, see Ramis [21, p. 183, Definition 3.1] and

Malgrange [20, p. 217, Proposition A.2.4].
Since L2(α; q, x) is a solution of (1.4) with α ̸= 0 and E(x) is a solution of

(1.4) with α = 0 , equation (1.4) can be seen as the perturbation of equation
(4.1). We expect to expand L2(α; q, x) as a perturbation series related to E(x).



On a non-homogeneous pantograph equation 15

Proposition 4.1. Let α ̸= 0 and |α| < 1. For arg(x) ∈ (− 5π
2 ,

π
2 ) on C̃∗, the

following relation holds

L2(α; q, x) = (α; q)∞
∑
n≥0

αn

(q; q)n
E(qnx). (4.2)

Consequently, L2(α; q, x) → E(x) as α→ 0.

Proof For any given x with arg(x) ∈ (− 5π
2 ,

π
2 ), one can find a direction d ∈ (0, 2π)

such that arg(x) ∈
(
−d− π

2 ,−d+
π
2

)
. By the definition of L2(α; q, x), we have

L
[d]
2 (α; q, x) = (α; q)∞

∫ ∞eid

0

∑
n≥0

αn t

(q; q)n(qn − t)
e−tx dt

t
,

where the series under the integral verifies (3.8). Since∫ ∞eid

0

t

qn − t
e−tx dt

t
= E[d](qnx),

we can apply the dominated convergence theorem to obtain (4.2). □

Let α ̸= 0 and close to 0. Note that a function in the form y(x) =∑
n≥0 yn(x)α

n is a solution of equation (1.4) iff the functions yn(x) satisfy the
following system of differential equations:

y′0(x) + y0(x) =
1
x ,

y′n+1(x) + yn+1(x) = yn(qx), n ≥ 0.
(4.3)

By using equations (1.10) and (4.2), we obtain the following corollary, which
gives a particular solution to the above system.

Corollary 4.1. For arg(x) ∈ (− 5π
2 ,

π
2 ), a particular solution of system (4.3)

is given by the following

yn(x) =

n∑
k=0

(−1)kqk(k−1)/2

(q; q)k(q; q)n−k
E(qn−kx), for n ≥ 0.

4.2 Relationship between L2(α; q, x) and F (α; q, c0, x)

To derive the link formula between L2(α; q, x) and F (α; q, c0, x), we will
express L2(α; q, x) in terms of power series at 0. This is done by establishing
the relationship between E(x) and the series solution at 0 of equation (4.1),
because formula (4.2) indicates that L2(α; q, x) can be expressed in terms of
E(x), and E(x) is a solution of (4.1).



16 On a non-homogeneous pantograph equation

Lemma 4.1. Let γ = Γ′(1) be Euler’s constant ([28, p. 185, formula (10.8.1)])
and

wγ(x) = γe−x + e−x log(eiπx) +
∑
n≥1

n−1∑
k=0

(−1)k

(n− k)(n− k)! k!
xn. (4.4)

Then, for arg(x) ∈ (− 5π
2 ,

π
2 ), we have E(x) = wγ(x).

Proof Choose d = π for E[d](x). Given x such that arg(x) ∈ (− 3π
2 ,−

π
2 ), we have

Re(x) < 0, and

E[π](x) =

∫ ∞eiπ

0

e−tx

1− t
dt = −

∫ +∞

0

etx

1 + t
dt.

From [28, p. 276, formula (14.1.10)], we have the exponential integral

E1(z) :=

∫ ∞

1

e−zt

t
dt = −γ − Ln(z)−

∑
k≥1

(−1)kzk

k!k
,

where Re(z) > 0. If z = eiπx, then we have

E[π](x) = −e−xE1(e
iπx) = γe−x + e−x log(eiπx) + e−x

∑
k≥1

xk

k!k
,

One completes the proof by direct computation and analytic continuation. □

Remark 4.1. The series in (4.4) has another expression as follows

wγ(x) = γe−x + e−x log(eiπx) +
∑
n≥1

(−1)n−1Hn

n!
xn. (4.5)

By utilizing formula (4.2) and Lemma 4.1, we have the following corollary.

Corollary 4.2. Let |α| < 1 and arg(x) ∈ (− 5π
2 ,

π
2 ). The function L2(α; q, x)

can be expressed in terms of wγ(x) as follows:

L2(α; q, x) = (α; q)∞
∑
m≥0

αm

(q; q)m
wγ(q

mx). (4.6)

The following lemma presents a relation that will be used to study the
relationship between L2(α; q, x) and solutions at 0 of equation (1.4).

Lemma 4.2. For any |x| < 1, the following equation holds

∑
m≥0

mxm

(q; q)m
=

1

(x; q)∞

∑
k≥0

xqk

1− xqk
. (4.7)



On a non-homogeneous pantograph equation 17

Proof For any |x| < 1, by using (1.9), we have[ x

(x; q)∞

]′
=

[ ∑
m≥0

xm+1

(q; q)m

]′
=

∑
m≥0

(m+ 1)xm

(q; q)m
,

then ∑
m≥0

mxm

(q; q)m
=

[ x

(x; q)∞

]′
−

∑
m≥0

xm

(q; q)m

=
(x; q)∞ − x[(x; q)∞]′

(x; q)2∞
−

∑
m≥0

xm

(q; q)m
=

−x[(x; q)∞]′

(x; q)2∞
.

Since [(x; q)∞]′ = (x; q)∞
∑

k≥0
−qk

1−xqk
, equation (4.7) can be easily proved. □

We now examine the relationship between L2(α; q, x) and F (α; q, c0, x)
where the function F (α; q, c0, x) is defined in Theorem 2.1. For a special value
of c0, we have the following result.

Theorem 4.1. Let α /∈ qZ≤0 and arg(x) ∈ (− 5π
2 ,

π
2 ). The following relation

holds:
L2(α; q, x) = F (α; q, γ0, x), (4.8)

where

γ0 =
∑
k≥0

αqk ln q

1− αqk
+ γ + iπ. (4.9)

Proof According to Remark 2.3, the function F (α; q, γ0, x) is analytic for α /∈ qZ≤0 .
Thus, we need only to establish the validity of (4.8) for |α| < 1.

First, we have (see [19, p. 7, Proposition 2.1])

F0(α; q, x) = (α; q)∞
∑
m≥0

αme−qmx

(q; q)m
=

∑
m≥0

(−1)m(α; q)m
m!

xm.

Then, from (4.5) and (4.6), we obtain

L2(α; q, x) = (log(eiπx) + γ)F0(α; q, x) +A1 +A2,

where

A1 = (α; q)∞
∑
m≥0

αm

(q; q)m
(log(qm))e−qmx

and

A2 = (α; q)∞
∑
m≥0

αm

(q; q)m

∑
n≥1

n∑
k=1

(−1)n−1

n!k
qmnxn.

By using the exponential series and inversion of the summation order of convergent
power series, we get

A1 = (α; q)∞(ln q)
∑
m≥0

mαm

(q; q)m

∑
k≥0

(−qmx)k

k!

= (α; q)∞(ln q)
∑
k≥0

(−x)k

k!

∑
m≥0

m(αqk)m

(q; q)m
.
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By applying (3.11) and Lemma 4.2, we further have

A1 = (α; q)∞(ln q)
∑
k≥0

(−x)k

k!(αqk; q)∞

∑
m≥0

αqk+m

1− αqk+m

=
∑
n≥0

∑
k≥n

αqk ln q

1− αqk
(−1)n(α; q)n

n!
xn.

Together with (1.9), we get

A2 = (α; q)∞
∑
n≥1

n∑
k=1

( ∑
m≥0

αmqmn

(q; q)m

) (−1)n−1

n!

xn

k
=

∑
n≥1

(−1)n−1Hn

n!
(α; q)nx

n.

Hence,

A1 +A2 = F1(α; q, x) +
∑
k≥0

αqk ln q

1− αqk
F0(α; q, x)

Thus, the proof is complete. □

5 Connection formula and asymptotic behaviors

We recall that F (α; q, c0, x) and G(α; q, x) are as in (2.3) and (2.5). In this
section, we first introduce some lemmas about q-periodic functions. Then, we
present the connection formula between F (α; q, c0, x) and G(α; q, x) for a spe-
cial case c0 = γ0. The asymptotic behaviors of F (α; q, γ0, x) are obtained using
the connection formula. Finally, we draw conclusions about the connection
formula and the asymptotic behaviors at ∞ of solutions around zero for the
general case.

5.1 Two families of q-periodic functions

Let µ be a fixed complex number such that α = qµ and− π
| ln q| < Im(µ) ≤ π

| ln q| .

There are infinity numbers of µl = µ + iκl (l ∈ Z and κ = − 2π
ln q ), such that

qµl = α. All values of µl form a set, which we call Λα = {µl ∈ C : qµl = α}.

Lemma 5.1. Let α /∈ qZ. For arg(x) ∈ (− 5π
2 ,

π
2 ), the function

gn(α; q, x) =
∑

µl∈Λα

Γ(n+ µl)x
−µl

1− e2πiµl
, n ≥ 0 (5.1)

is an analytic solution of the equation y(x) = αy(qx).

Proof For µl ∈ Λα, we have∣∣x−µl
∣∣ = ∣∣e−(Re(µl)+iIm(µl))(log |x|+i arg(x))∣∣ = eIm(µl) arg(x)|x|−Re(µ). (5.2)

Therefore,

|1− e2πiµl | ≥ |1− |e2πiµl || = |1− e−2πImµe−2πκl|. (5.3)
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Since α /∈ qZ, we have µl /∈ Z ⊕ iκZ. By using Stirling’s formula for the Gamma
function (see [15, p. 21, Corollary 1.4.4]), it yields that

Γ(n+ µl) =
√
2π|Im(µl)|n+Re(µl)− 1

2 e−
π|Im(µl)|

2

(
1 +O

( 1

|Im(µl)|
))

(5.4)

as |Im(µl)| → +∞.
(i) If Im(µl) > 0 (l > 0), then for Im(µl) = Im(µ) + κl, we have

Γ(n+ µl) = O
(
ln+Re(µ)− 1

2 e−
πκl
2
)
, as l → +∞.

Together with equations (5.2) and (5.3), we obtain that∣∣∣ ∑
Im(µl)>0

Γ(n+ µl)x
−µl

1− e2πiµl

∣∣∣
≤ CeIm(µ) arg(x)

∑
l∈Z>0

ln+Re(µ)− 1
2 eκl(arg(x)−

π
2 )

1− e−2πIm(µ)−2πκl
|x|−Re(µ).

(5.5)

The series of the right-hand side of (5.5) is convergent if the ratio of two consecutive
terms tends to a limit smaller than 1, that is to say:

lim
l→+∞

∣∣(1 + 1

l

)n+Re(µ)− 1
2
(1− e−2πImµ−2πκl)eκ(arg(x)−

π
2 )

1− e−2πImµ−2πκ(l+1)

∣∣ = eκ(arg(x)−
π
2 ) < 1,

i.e. arg(x) < π
2 .

(ii) If Im(µl) < 0 (l < 0), then equation (5.4) becomes

Γ(n+ µl) = O
(
(−Im(µl))

n+Re(µ)− 1
2 e

πIm(µl)

2
)
, as Im(µl) → −∞.

By taking m = −l, we have

Γ(n− µm) = O
(
(−m)n+Re(µ)− 1

2 e−
πκm

2
)
, as m→ +∞.

Equation (5.2) becomes
∣∣x−µl

∣∣ = e(Im(µ)−κm) arg(x)|x|−Re(µ). Therefore, we have∣∣∣ ∑
Im(µl)<0

Γ(n+ µl)x
−µl

1− e2πiµl

∣∣∣
≤ CeIm(µ) arg(x)

∑
m∈Z>0

mn+Re(µ)− 1
2 e−κm(arg(x)+π

2 )

e−2πIm(µ)+2πκm − 1
|x|−Re(µ).

(5.6)

The series of the right-hand side of (5.6) is convergent if

lim
m→+∞

∣∣(1 + 1

m

)n+Re(µ)− 1
2
(1− e−2πImµ+2πκm)e−κ(arg(x)+π

2 )

1− e−2πImµ+2πκ(m+1)

∣∣
= e−κ(arg(x)+ 5π

2 ) < 1,

i.e. arg(x) > − 5π
2 .

To sum up, the Laurent series in (5.1) is convergent if the series of the right-
hand side of (5.5) and (5.6) are convergent. Therefore, the function gn(α; q, x) is
well-defined and analytic for arg(x) ∈ (− 5π

2 ,
π
2 ).

Finally, it is obvious that gn(α; q, x) satisfies αy(qx) = y(x) by direct computa-
tion. □
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Remark 5.1. For arg(x) ∈ (−π
2 ,

π
2 ), let

hn(α; q, x) = gn(α; q, x)− gn(α; q, xe
−2πi).

Then, we have hn(α; q, x) =
∑

µl∈Λα

Γ(n+ µl)x
−µl .

Lemma 5.2. For any fixed n, the functions ĝn(α; q, x) = xµgn(α; q, x) and

ĥn(α; q, x) = xµhn(α; q, x) are q-periodic functions and bounded as x→ ∞ in
any direction d ∈ (− 5π

2 ,
π
2 ) and d ∈ (−π

2 ,
π
2 ) respectively.

Proof Both gn(α; q, x) and hn(α; q, x) are solutions of equation y(x) = αy(qx), it is
easy to verify that ĝn and ĥn are q-periodic functions, i.e., satisfying ŷ(qx) = ŷ(x).
We only need to prove that ĝn satisfies |ĝn(α; q, x)| ≤ C as x→ ∞ in any direction
arg(x) ∈ (− 5π

2 ,
π
2 ), for ĥn, we change the direction to arg(x) ∈ (−π

2 ,
π
2 ).

For any d ∈ (− 5π
2 ,

π
2 ) and x ∈ [ 1q e

id, 1
q2
eid], ŷ(x) = ŷ(qx), where qx ∈ [eid, 1q e

id].

Therefore, using the continuity and taking C = max
x∈[eid, 1q e

id]
|ŷ(x)|, we have |ŷ(x)| ≤ C

for all x = teid with t ≥ 1. □

5.2 The connection formula for the critical value c0 = γ0

In this section, we will present the connection formula between F (α; q, γ0, x)
and G(α; q, x). We first introduce a lemma that will be used later.

Define e(q; x) = e−
log2 x√

q

2 ln q . One can get that both e(q; x) and θ(q; x) satisfy
equation xy(qx) = y(x). Let q∗ = e−2πκ and x∗ = x−iκ. From [15, p. 498,
(10.4.2)] and [19, p. 12, (4.2)], we have

θ(q; eiπx) =
√
κ e(q; eiπx)θ(q∗; eiπx∗), (5.7)

and from [19, p. 12, Lemma 4.1], we have

θ(q; − qµx)

θ(q; − x)
= q−µ(µ−1)/2(eiπ)−µ θ(q

∗; − e2πiµx∗)

θ(q∗; − x∗)
. (5.8)

Lemma 5.3. Let µ ∈ C \ Z. The following relation holds:

θ(q; − qµ

t )

( 1t ; q)∞
=
κ(qµ, q1−µ; q)∞

i(q; q)∞

∑
n≥0

∑
l∈Z

(−1)nqn(n+1)/2tn+µ+iκl

(q; q)n(1− e2πi(µ+iκl))
(5.9)

for arg(t) ∈ (0, 2π).

Proof Let x = 1
t . Since arg(t) ∈ (0, 2π), we have arg(x) ∈ (−2π, 0). Then

|x∗| = eκ arg(x) ∈ (e−2κπ, 1) = (q∗, 1).
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From [15, p. 502, (10.5.3)]: for |q| < 1 and |ba−1| < 1,∑
l∈Z

(a; q)l
(b; q)l

xl =
(ax; q)∞(q/ax; q)∞(q; q)∞(b/a; q)∞
(x; q)∞(b/ax; q)∞(b; q)∞(q/a; q)∞

,

letting q = q∗, x = x∗, a = e2πiµ and b = q∗e2πiµ yields that

θ(q∗; − e2πiµx∗)
θ(q∗; − x∗)

=
θ(q∗; − e2πiµ)

(q∗, q∗)3∞

∑
l∈Z

x∗l

1− e2πiµq∗l
. (5.10)

From (5.8) and (5.10), we have

θ(q; − qµx)

θ(q; − x)
= q−µ(µ−1)/2(eiπ)−µ θ(q

∗; − e2πiµ)

(q∗, q∗)3∞

∑
l∈Z

x∗l

1− e2πiµq∗l
.

By using (5.7) to θ(q∗; − e2πiµ) and (q∗; q∗)∞ = q1/24√
κ
eκπ/12(q; q)∞, it yields that

θ(q; − qµx)

(x; q)∞
=
κ(qµ, q1−µ; q)∞

i(q; q)∞
(
q

x
; q)∞

∑
l∈Z

x−(µ+iκl)

1− e2πi(µ+iκl)

=
κ(qµ, q1−µ; q)∞

i(q; q)∞

∑
n≥0

(−1)nqn(n+1)/2x−n

(q; q)n

∑
l∈Z

x−(µ+iκl)

1− e2πi(µ+iκl)
,

the series in the right-hand side is normally convergent on any compact of {x| arg(x) ∈
(−2π, 0)} (|x∗| < 1). The proof is completed by replacing x with 1

t . □

Theorem 5.1. Let α /∈ qZ and γ0 be as in (4.9). The following relation holds

for any x ∈ C̃∗ with arg(x) ∈ (− 5π
2 ,

π
2 ) :

F (α; q, γ0, x) = G(α; q, x) +
iκ(α; q)∞
(q; q)∞

∑
n≥0

(−1)nqn(n+1)/2

(q; q)n
gn(α; q, x)x

−n.

Proof From equations (3.4), (3.15) and (4.8), letting d = π, we have, for arg(x) ∈
(− 3π

2 ,
π
2 ),

F (α; q, γ0, x) = G(α; q, x)−
∫ ∞eiπ

0

e−tx θ
(
−α

t

)( q
α ; q

)
∞

(
1
t ; q

)
∞

dt

t
.

Assuming that |α| < 1, then we have Re(µ) > 0. From α /∈ qZ, we have µ+iκl /∈ Z.
By using equation (5.9), Lebesgue’s dominated convergence Theorem and∫ ∞

0
e−ttn+µ+iκl dt

t
= Γ(n+ µ+ iκl),

we obtain the equation give in the theorem, where gn(α; q, x) is shown in Lemma
5.1. By applying Remark 2.3 and analytic continuation, the equation in the theorem
holds for any value of α and arg(x) ∈ (− 5π

2 ,
π
2 ). □

Then, we obtain the asymptotic form of solution at zero for the critical
value c0 = γ0.
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Theorem 5.2. Let α /∈ qZ and γ0 be as in (4.9). Then the following relation
holds:

(i) If |α| < q, then

F (α; q, γ0, x) =
1

1− αq−1
x−1 + o(x−1)

as x→ ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ).

(ii) If |α| > q, then

F (α; q, γ0, x) =
iκ(α; q)∞
(q; q)∞

ĝ0(α; q, x)x
−µ + o(x−µ)

as x → ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ), where ĝ0(α; q, x) is a bounded

q-periodic function shown in Lemma 5.2 with n = 0.
(iii) If |α| = q, then

F (α; q, γ0, x) =
1

1− αq−1
x−1 +

iκ(α; q)∞
(q; q)∞

ĝ0(α; q, x)x
−µ + o(x−1)

as x→ ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ).

Proof In order to study the asymptotic behavior of F (α; q, c0, x), we distinguish two
cases:

(i) If |α| < q, then −Re(µ) = − ln |α|/ ln q < −1. From Theorem 5.1, we have

F (α; q, γ0, x) = x−1[ 1
1−αq−1 +

∑
n≥1

α−(n+1)q(n+1)(n+2)/2n!

(α−1q; q)n+1
x−n

+O(x−Re(µ)+1)
]

= 1
1−αq−1 x

−1[1 +O(x−1) +O(x−Re(µ)+1)
]

as x→ ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ).

(ii) If |α| > q, then Re(µ) − 1 < 0. By using Lemma 5.2 and Theorem 5.1, it
follows that

F (α; q, γ0, x) =
iκ(α; q)∞
(q; q)∞

g0(α; q, x) + x−µ[O(x−1) +O(xRe(µ)−1)
]

as x→ ∞ in the direction arg(x) ∈ (−π
2 ,

π
2 ).

(iii) If |α| = q, then we assume that µ = 1 + ia
ln q (a /∈ 2πZ). From Theorem 5.1,

we have

F (α; q, γ0, x) =
1

1− αq−1
x−1[1 +O(x−1)

]
+ ĝ0(α; q, x)x

−µ[1 +O(x−1)
]
,

the proof is thus completed. □

5.3 Concluding results for general c0

From the above analysis, we draw conclusions about the connection formula
and asymptotic behaviors in the general case.
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Corollary 5.1. Let α /∈ qZ. The following relation holds for any c0 ∈ C∗ and

x ∈ C̃∗ with arg(x) ∈ (−π
2 ,

π
2 ) :

F (α; q, c0, x) = G(α; q, x)

+ iκ(α; q)∞
(q; q)∞

∑
n≥0

(−1)nqn(n+1)/2

(q; q)n

[
gn(α; q, x) +

c0−γ0

2πi hn(α; q, x)
]
x−n.

Proof The proof is completed, by using Theorem 5.1,

F (α; q, c0, x) = F (α; q, γ0, x) + (c0 − γ0)F0(α; q, x),

and the connection formula

F0(α; q, x) =
κ(α; q)∞
2π(q; q)∞

∑
n≥0

(−1)nqn(n+1)/2

(q; q)n
hn(α; q, x)x

−n,

for arg(x) ∈ (−π
2 ,

π
2 ) in [19, p. 6, Theorem 1.2]. □

Therefore, we obtain the asymptotic form at ∞ of solutions around zero.

Theorem 5.3. Let α /∈ qZ.
(i) If |α| < q, then

F (α; q, c0, x) =
x−1

1− αq−1
+ o(x−1),

as x→ ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ).

(ii) If |α| > q, then

F (α; q, c0, x) =
iκ(α; q)∞
(q; q)∞

(
ĝ0(α; q, x) +

c0 − γ0
2πi

ĥ0(α; q, x)
)
x−µ + o(x−µ),

as x → ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ), where the functions ĝ0(α; q, x)

and ĥ0(α; q, x) are bounded q-period functions in any direction arg(x) ∈
(−π

2 ,
π
2 ), as shown in Lemma 5.2 with n = 0.

(iii) If |α| = q, then

F (α; q, c0, x)

=
x−1

1− αq−1
+
iκ(α; q)∞
(q; q)∞

(
ĝ0(α; q, x) +

c0 − γ0
2πi

ĥ0(α; q, x)
)
x−µ + o(x−1),

as x→ ∞ in any direction arg(x) ∈ (−π
2 ,

π
2 ).

Proof Similar to the proof of Theorem 5.2, it can be easily obtained by the above
corollary. □
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From the above results, we remark that for small |α|, equation (1.4) behaves
like a differential equation. In contrast, for large |α|, the q-difference operator
plays a more central role than the differential operator.

As mentioned in the Introduction, Lim obtained the asymptotic bound-
aries for all solutions of equation (1.2). We now compare the asymptotic
form obtained in this paper with the results in [18]. In this paper, the non-
homogeneous term g(x) = 1

x has a sigularity at 0, which is defined on (0,∞),
does not satisfy the condition in [18] that g is defined on [0,∞), but it satis-
fies other conditions such as g = O(x−1) and g′ = O(x−2) (equivalent to the
case where α = −1 in [18]). Recall Lim’s results in [18, Theorem 1] (let’s make
α = −1 for comparison):

Let b < 0. Assume that g′ exists. Let g(x) = O(x−1) and g′(x) = O(x−2).
Then:

(i) If ln |b/a|
ln q > −1, every solution of (1.2) is O(x

ln |b/a|
ln q ) as x→ ∞.

(ii) If ln |b/a|
ln q = −1, every solution of (1.2) is O(x

ln |b/a|
ln q lnx) as x→ ∞.

(iii) If ln |b/a|
ln q < −1, every solution of (1.2) is O(x−1) as x→ ∞.

From the tranform shown in the Introduction, we know that α = −a
b .

Therefore, the above case (i) is equivalent to: if |α| > q, every solution of (1.2)

is O(x−
ln |α|
ln q ) as x → ∞, which is consistent with the case (ii) in Theorem

5.3 (because ln |α|
ln q = Re(µ) and every solution is O(x−Re(µ)) as x → ∞). The

above case (iii) is equivalent to: if |α| < q, every solution of (1.2) is O(x−1) as
x→ ∞, which is also consistent with the case (i) in Theorem 5.3.
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