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This paper is devoted to the analytical study of the non-homogeneous functional differential equation y ′ (x) = ay(qx) + by(x) + 1

x , where q is a constant in (0, 1) and where a and b are two non-zero real or complex numbers. This equation represents a q-perturbation of the firstorder ODE y ′ (x) = by(x) + 1

x , that admits an irregular singular point at infinity in the complex plane. First, combing hypergeometric-type and q-hypergeometric-type power series yields solutions at zero and infinity. Next, using the Laplace transform allows us to convert this equation into a first-order linear q-difference equation. In this way, we express the above-mentioned power series-type solutions in terms of Laplace integrals involving the Jacobi theta functions. Finally, we get the connection formula between solutions at zero and infinity, which plays a crucial role in determining the asymptotic behavior of solutions at infinity.

Introduction

The functional differential equation y ′ (x) = ay(qx) + by(x) (1.1) represents an idealized mathematical model derived from an industrial problem concerning the wave motion of the overhead supply line in an electrified railway system [START_REF] Fox | On a functional differential equation[END_REF], where a, b are non-zero real numbers, and y is a real-valued function. Equation (1.1) is often called the pantograph equation, as mentioned in [START_REF] Iserles | On pantograph integro-differential equations[END_REF], the term "pantograph" comes from Ockendon and Tayler [START_REF] Ockendon | The dynamics of a current collection system for an electric locomotive[END_REF] and Iserles [START_REF] Iserles | On the generalized pantograph functional-differential equation[END_REF]. It appears in applications in many areas: analytic number theory [START_REF] Mahler | On a special functional equation[END_REF], nonlinear dynamical systems [START_REF] Derfel | Kato problem for functional-differential equations and difference schrodinger operators[END_REF], etc. Several extensions of equation (1.1) had been widely studied [START_REF] Bogachev | Analysis of the archetypal functional equation in the non-critical case[END_REF][START_REF] Brunt | An eigenvalue problem for holomorphic solutions to a certain class of functional differential equations[END_REF][START_REF] Carr | The functional differential equation y ′ (x) = ay(λx) + by(x)[END_REF][START_REF] Cermák | On a linear differential equations with a proportional delay[END_REF][START_REF] Shaldanbayev | Criterion for the volterra property of the cauchy problem for the pantograph equation[END_REF][START_REF] Shapira | Quasirandom graphs and the pantograph equation[END_REF]. For instance, Carr and Dyson [START_REF] Carr | The functional differential equation y ′ (x) = ay(λx) + by(x)[END_REF] analyzed the asymptotic behavior of solutions of equation (1.1) with Re(b) = 0 but b ̸ = 0. Kato and Mcleod [START_REF] Kato | The functional differential equation y ′ (x) = ay(λx) + by(x)[END_REF] studied the existence and uniqueness of solutions of (1.1) with y(0) = 1 and obtained the asymptotic form of solutions as x → ∞, where a is a possibly complex constant. Shaldanbayev et al. [START_REF] Shaldanbayev | Criterion for the volterra property of the cauchy problem for the pantograph equation[END_REF] discussed the spectral properties of the associated Cauchy problem to (1.1) with b = 0, they obtained that in the case of 0 < q < 1, the Cauchy problem is always a Volterra problem; in the case of q > 1, the problem is not solvable for all values of a. The series solutions at zero of (1.1) belong to a family of hypergeometric-type and q-hypergeometric-type series. See [14, p. 4, formula (1.2.22)] and [START_REF] Andrews | Special Functions. Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Wang | Zeros of the deformed exponential function[END_REF]. Note that Ismail and Zhang applied a technique of integral representations for certain entire q-functions to obtain the convergent asymptotic series expansion of the large zeros of the Ramanujan entire function [START_REF] Ismail | Zeros of entire functions and a problem of ramanujan[END_REF].

In addition to the research on the homogeneous equation (1.1), several studies have also been devoted to investigating its corresponding non-homogeneous form. For example, Lim [START_REF] Lim | Asymptotic bounds of solutions of the functional differential equation x ′ (t) = ax(λt) + bx(t) + f (t), 0 < λ < 1[END_REF] studied the asymptotic bounds of solutions of the non-homogeneous functional differential equation (for 0 < q < 1), y ′ (x) = ay(qx) + by(x) + g(x), (1.2) where g is a continuous function defined on [0, ∞) such that g(x) = O(x α ) for x → ∞.

In this paper, we shall study (1.2) from the point of view of analytic approaches so that g will be some analytic function. To simplify, we suppose that g is a rational function, leading to the classification of three distinct cases: Case 1: g is a polynomial; Case 2: g is of the form 1

x m , m > 0; Case 3: g is of the form 1 (x-c) m , m > 0 and c ̸ = 0. For Case 1, if g is a polynomial, then equation (1.2) has a unique polynomial solution of the same degree as g. The treatment of Case 3, being more complex, is left for future work. In this paper, we only treat Case 2. Initially, a unique polynomial transformation exists, allowing us to convert equation (1.2) with g(x) = 1

x m into an equation with g(x) = 1 x (see Proposition 2.1). Therefore, we are led to the study of a non-homogeneous functional differential equation

y ′ (x) = ay(qx) + by(x) + 1 x , (1.3) 
where a, b are non-zero complex numbers. The boundary-value problem with y(0) = 1 is "well-posed" if 0 < q < 1, but not if q > 1 (see [START_REF] Kato | The functional differential equation y ′ (x) = ay(λx) + by(x)[END_REF]). Consequently, this paper will only deal with the case 0 < q < 1. Furthermore, for equation (1.3), it suffices only to consider the case where b = -1 or b = 0, as we will always assume that x belongs to C * or to the Riemann surface C * of the logarithm function. Indeed, if b ̸ = 0, by making x = -t b and u(t

) = y(x) = y(-t b ), one gets u ′ (t) = -1 b y ′ (-t b ). Letting x = -t b into (1.3) gives that u ′ (t) = αu(qt) -u(t) + f (t), where α = -a b ̸ = 0 and f (t) = -1 b g(-t b ) = 1 t
. This is to say, we shall consider the equation given by the following:

y ′ (x) = αy(qx) -y(x) + 1 x . (1.4)
On the one hand, the corresponding homogeneous equation associated with (1.4) is:

y ′ (x) = αy(qx) -y(x). (1.5)
Zhang [START_REF] Zhang | Analytic study of the pantograph equation using jacobi theta functions[END_REF] proved that if y(0) = 1, the unique power series solution can be expressed by a linear combination of all the elements of a system of fundamental solutions at ∞ in the complex plane. Termed as the connection formula between solutions at 0 and ∞, this formula plays an important role in determining the asymptotic behavior of the solution of this Cauchy problem. Note that the difference between two solutions of equation (1.4) is a solution of equation (1.5). This simple observation will play a key role in our study.

On the other hand, if α = 0 in equation (1.4), the corresponding nonhomogeneous ODE is the well-known Euler differential equation, whose power series solution at ∞ is simply the divergent series n≥0 n!x -n-1 (see Malgrange [START_REF] Malgrange | Sommation des séries divergentes[END_REF] and Ramis [START_REF] Ramis | Les séries k-sommables et leurs applications, analysis, microlocal calculus and relativistic quantum theory[END_REF]). Even in this simple case, solutions of equation (1.4) include some complex properties!

The present paper aims to study the asymptotic behavior of solutions of (1.4). Hence, we first study the connection formula between solutions of equation (1.4) at 0 and ∞. Because the theory of elliptic functions is closely related to the analytic theory of linear functional q-difference equations [START_REF] Birkhoff | The generalized riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations[END_REF][START_REF] Zhang | Développements asymptotiques q-gevrey et séries gqsommables[END_REF][START_REF] Sauloy | Systèmes aux q-différences singuliers réguliers: classification, matrice de connexion et monodromie[END_REF][START_REF] Vizio | On q-summation and confluence[END_REF][START_REF] Ramis | Local analytic classification of qdifference equations[END_REF], we use the Jacobi theta function to express solutions of (1.4).

The paper is organized as follows. In Section 2, we will construct solutions at 0 and ∞ by means of convergent power series and the logarithm function. In Section 3, equation (1.4) is transformed into a linear q-difference equation by means of the Laplace transform. This gives two integral solutions, whose relationship is obtained by using the associated q-difference equation. In Section 4, it is shown that one of these two integral solutions can be identified with a distinguished solution whose behavior near zero depends of the so-called critical value "γ 0 ", the other one being the power series solution at infinity. In Section 5, the connection formula between solutions near zero and infinity is obtained by combining the results from Sections 3 and 4. In this way, we obtain the asymptotic behaviors at infinity over the right half-plane for all the solutions of (1.4) that can be expressed in terms of power series and the logarithm function. Notice that this is done using the above-mentioned critical value γ 0 , which depends on the Euler's constant. Finally, we will note how to interpret our results by means of that obtained in the paper [START_REF] Lim | Asymptotic bounds of solutions of the functional differential equation x ′ (t) = ax(λt) + bx(t) + f (t), 0 < λ < 1[END_REF].

We first introduce some notations. Denote C * = C * ∪ {∞} as the Riemann surface of the logarithm function, and log as the principal branch value of the logarithm function defined over C * . Thus, x a = e a log x for all a ∈ C and x ∈ C * .

For any α ∈ C and n ≥ 1, we define (α) n and (α; q) n in the following form:

(α) n = n-1 j=0 (α + j) and (α; q) n = n-1 j=0
(1 -αq j ), and we denote usually (α; q) 0 = (α) 0 = 1. One can easily get that (α; q) n and (α) n can be extended to (α; q) ∞ and (α) ∞ respectively, as n → ∞. It is obvious to see that the following relation holds:

(αq -n ; q) n = (-1) n q α ; q n α q n q -n(n-1)
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The Jacobi theta function θ(q; x) is defined by θ(q; x) = n∈Z q n(n-1) 2

x n ;

we write it as θ(x) in the absence of ambiguity. It verifies the following functional equation:

θ(q n x) = q -n(n-1) 2 
x -n θ(x), for n ∈ Z.

(1.7)

Following [START_REF] Zhang | Analytic study of the pantograph equation using jacobi theta functions[END_REF], we define

F 0 (α; q, x) = n≥0 (-1) n (α; q) n n! x n , (1.8) 
and we recall that F 0 (α; q, x) is the unique solution of homogeneous equation (1.5) with the initial condition y(0) = 1. The following identities can be found in [15, p. 490, Corollary 10.2.2 (a)-(b)], which will be used in this paper:

n≥0 x n (q; q) n = 1 (x; q) ∞ , |x| < 1, |q| < 1, (1.9) 
and n≥0 (-1) n q n(n-1) 2

x n (q; q) n = (x; q) ∞ , |q| < 1.

(1.10)

Solutions expressed in terms of power series

As stated in the Introduction, this paper is devoted to Case 2, where equation (1.2) has the form g(x) = 1 x m . Notice that this can be converted into equation (1.4) by a simple transformation using the following proposition. Therefore, we will only consider equation (1.4) in the rest of this paper.

Proposition 2.1. Let m be an integer with m > 1. If α / ∈ {q, q 2 , • • • , q m-1 },
then there is a unique transformation of the form

y(x) = m-1 j=1 a j x -j + dz(x),
where a j , d ∈ C * , such that the equation

y ′ (x) = αy(qx)-y(x)+ 1 x m is converted to z ′ (x) = αz(qx) -z(x) + 1
x .

Proof By direct computation, one gets that, for x m can be converted to the homogeneous equation z ′ (x) = αz(qx) -z(x).

j = 1, 2, • • • , m -1, a j = -(αq -m+1 ; q) m-j-1 (j -1)! (m -1)! , d = (αq -m+1 ; q) m-1 (m -1)! . □ Remark 2.1. If α = q k for some k ∈ {1, 2, • • • , m -1},
We now study solutions of equation (1.4) by means of power series at zero. For this purpose, we need the following lemma.

Lemma 2.1. Let F 0 (α; q, x) be as in (1.8), and let u, v be two convergent power series. The function

y(x) = u(x) log x + v(x)
is a solution of equation (1.4) iff the two functions u(x) and v(x) satisfy the following equations:

u ′ (x) = αu(qx) -u(x), u(0) = 1, v ′ (x) = αv(qx) -v(x) + α ln q • u(qx) -u(x)
x + 1 x .

(2.1)

Hence, u(x) = F 0 (α; q, x).

Proof By substituting y(x) = u(x) • log x + v(x) into (1.4), we obtain that

log x[u ′ (x) -αu(qx) + u(x)] = 0, v ′ (x) = αv(qx) -v(x) + α ln q • u(qx) - u(x) x + 1 x , (2.2) 
The first equation of (2.2) is equivalent to equation (1.5), hence u(x) = u 0 F 0 (α; q, x), where u 0 = u(0). Furthermore, the second equation of (2.2) admits a power series solution v only when u(0) = 1. So, we find the system given in (2.1). □ Lemma 2.2. Let y(x) be an analytic solution of equation (1.5) on an interval (0, a) (a > 0). Then, y(x) = 0 for all x ∈ (0, a) iff lim x→0 y(x) = 0.

Proof Set z(x) = y(x)e x for x ∈ (0, a). Then

z ′ (x) = (αy(qx) -y(x))e x + y(x)e x = αe x y(qx) = αe (1-q)x z(qx). If 0 < x 0 < x < x 1 < a, then, one has z(x) = z(x 0 ) + α x x0
e (1-q)t z(qt)dt.

Hence, by taking x 0 → 0, we obtain

z(x) = α x 0 e (1-q)t z(qt)dt, which implies that, for all x ∈ (0, x 1 ], |z(x)| ≤ |α|x 1 e (1-q)x1 max 0<t≤qx1 |z(t)|.
Consequently, it follows that

|y(x)| ≤ |α|x 1 e -x e (1-q)x1 max 0<t≤qx1 |e t y(t)| ≤ Cx 1 max 0<t≤qx1 |y(t)|, where C = |α|e x1 . Therefore, max x∈(0,x1] |y(x)| ≤ Cx 1 max 0<t≤qx1 |y(t)|;
and by iteration, we obtain max

x∈(0,x1] |y(x)| ≤ C n q n(n-1)/2 x n 1 max 0<t≤q n x1 |y(t)|.
Finally, taking n → +∞, one gets that max 0<x≤x1 |y(x)| = 0, which completes the proof.

□

As usual, we denote by

H n = n k=1 1 k
, the n-th harmonic number.

Theorem 2.1. Let α / ∈ q Z ≤0 . For any constant c 0 , we define

F (α; q, c 0 , x) = (c 0 + log x)F 0 (α; q, x) + F 1 (α; q, x), (2.3) 
where F 0 (α; q, x) is as in (1.8) and where

F 1 (α; q, x) = n≥1 H n + n-1 k=0 αq k ln q 1 -αq k (-1) n-1 (α; q) n n! x n . (2.4)
Then the function F (α; q, c 0 , x) is a unique analytic solution on C * of equation (1.4) with the initial asymptotic condition y(x) = log x + c 0 + o(1) as x → 0 along a certain direction.

Proof Since F 0 (α; q, x) is an analytic solution of equation (1.5), substituting F (α; q, c 0 , x) into equation (1.4), we see that the first equation in (2.1) is satisfied.

By taking v(x) = F 1 (α; q, x), the second equation in (2.1) is satisfied. Since the sequence |1 + αq k-1 (k ln q -1)]| is convergent as k → ∞, then there exists a constant C 1 such that |1 + αq k-1 (k ln q -1)]| ≤ C 1 , for all k ≥ 1. Because α ̸ ∈ q -N , there exists a constant C 2 such that |1 -αq k-1 | ≥ C 2 for all k ≥ 1. Therefore, for n ≥ 1, n k=1 (-1) n-1 (α; q)n[1 + αq k-1 (k ln q -1)] n!k(1 -αq k-1 ) ≤ C 1 |(α; q)n| C 2 (n -1)! .
Hence, the radius of convergence of

F 1 (α; q, x) is ∞. Furthermore, it is trivial that F (α; q, c 0 , x) = log x + c 0 + o(1)
as x → 0 along any direction. From the analysis above, the function F (α; q, c 0 , x) is a solution of equation (1.4) as described in the theorem.

For uniqueness, we can easily see that using a suitable change of variable, the difference of two solutions with the given asymptotic initial condition satisfies the conditions of Lemma 2.2. □

Next, we look for a power series solution at ∞.

Theorem 2.2. If α / ∈ q Z>0 , then the following power series

G(α; q, x) = x -1 n≥0 (-1) n+1 α -(n+1) q (n+1)(n+2)/2 n! (α -1 q; q) n+1 x -n (2.5)
represents the unique analytic solution of equation (1.4) in C * ∪ {∞} which vanishes at infinity.

Proof We suppose y = n≥0 anx -n-1 and substitute it into equation (1.4), then

- n≥0 (n + 1)anx -n-2 = n≥0 (αq -n-1 -1)anx -n-1 + x -1 .
Comparing the coefficients of x -1 , one obtains a 0 = 1 1-αq -1 (for α ̸ = q). By comparing the coefficients of x -2 , x -3 , • • • , we have (αq -n-1 -1)an = -na n-1 for n ≥ 1. Therefore,

an = n 1 -αq -n-1 a n-1 = • • • = (-1) n α -n q n(n+3)/2 n! (α -1 q 2 ; q)n a 0
On a non-homogeneous pantograph equation for α / ∈ q Z>0 . Thus, the expression for an is unique. Since lim n→∞ a n+1 an = lim n→∞ (n + 1) q n+2 |α -q n | = 0 , the power series (in 1 x ) G(α; q, x) defined by (2.5) is the unique analytic solution of equation (1.4) in Riemann sphere C * ∪ {∞}, such that lim x→∞ G(α; q, x) = 0. □ Remark 2.2. When α ̸ = 1, any analytic solution at infinity is null there. In this case, G(α; q, x) is the unique analytic solution at infinity.

This comes from the fact that lim

x→∞ (y ′ (x) -1 x ) = 0, which implies that (α -1) lim x→∞ y(x) = 0.
The connection formula between F (α; q, c 0 , x) and G(α; q, x) will be given in Section 5. In formula (2.5), one can notice that, for any α / ∈ q Z>0 ,

α -(n+1) (α -1 q; q) n+1 = 1 |(α -q)(α -q 2 ) • • • (α -q n+1 )| ≤ 1 ϵ n+1 , (2.6) 
where ϵ = min k∈Z>0 |α -q k |. Furthermore, we have the following Remark.

Remark 2.3. The function F (α; q, c 0 , x) of Theorem 2.1 is analytic for α / ∈ q Z ≤0 , while the function G(α; q, x) of Theorem 2.2 is analytic for α / ∈ q Z>0 . Indeed, by using the uniform convergence theorem, one can see that F 0 (α; q, x) and F 1 (α; q, x) are respectively analytic for (α, x) ∈ C × C and for all (α, x) ∈ C × C such that αq k ̸ = 1 for any k ∈ Z ≥0 . This implies the analyticity of F (α; q, c 0 , x) for (α, x) ∈ C \ q Z ≤0 × C. In the same way, we get the analyticity of G(α; q, x), by using (2.6).

Laplace integral solutions and the relationship between them

In this section, we will look for solutions of (1.4) 

ϕ 1 = 1 1 -αq -1 , and for n ≥ 2, ϕ n = 1 1 -αq -n ϕ n-1 . (3.2) 
Next, we use it to get an integral solution of equation (1.4), as shown in the following lemma.

Lemma 3.2. Let α / ∈ q Z>0 , d ∈ [0, 2π], and 
ϕ(t) = n≥0 ϕ n+1 t n+1 = n≥0 t n+1 (αq -n-1 ; q) n+1 . (3.3) 
Then the integral

L [d] 1 (α; q, x) = ∞e id 0 ϕ(t)e -tx dt t is an analytic solution of equation (1.4) for x in the Riemann surface C * such that arg(x) ∈ (-d - π 2 , -d + π 2 ). Consequently, glueing all the functions L [d] 1 (α; q, x) (d ∈ [0, 2π])
gives rise to an analytic solution of equation (1.4) in C * ∪ {∞}, which will be denoted by L 1 (α; q, x).

Proof First, from (3.2) and (1.6), we have ϕn = O(α -n q n(n+1)/2 ), we get that ϕ(t) is an entire function satisfying (3.1) and ϕ(0) = 0. According to Lemma 3.1, it suffices to prove that ϕ(t) has at most exponential growth at ∞.

From [27, p. 59, Proposition 2.1], we obtain that

ϕ(t) t ≤ Ce -(log |t/α √ q|) 2 2 ln q
, as |t| → +∞.

Therefore, as t → ∞ in C, ϕ(t) = O(e λ|t| ) for any λ > 0. Hence, the integral

L [d]
1 (α; q, x) is well-defined in any direction d ∈ [0, 2π]. This is to say, there is no singular direction. Thus, one obtains an analytic function on C * ∪ {∞}. □

Note that the proof above for Lemma 3.2 is based on a basic idea of the Borel-Laplace summation theory (see [20, p. 216, Proposition A.2.3]).

Theorem 3.1. If α / ∈ q Z>0 , then the relation

G(α; q, x) = L 1 (α; q, x) (3.4) holds for x ∈ C * ∪ {∞}.
Proof By the definition in (2.5), one can get that

G(α; q, x) = n≥0 n! (αq -n-1 ; q) n+1 x -n-1 .
Given any direction d and x such that Re(xe id ) > 0, by using dominated convergence theorem, we have

L [d] 1 (α; q, x) = ∞e id 0 e -tx ϕ(t) dt t = n≥0 n! (αq -n-1 ; q) n+1 x -n-1 .
Then G(α; q, x) = L

[d] 1 (α; q, x). By the analytic continuation process, relation (3.4) holds for all x ∈ C * ∪ {∞}. □

In the following, we will introduce another kind of integral solution.

Lemma 3.3. Let |α| < 1, d ∈ (0, 2π), and 
ψ(t) = (α; q) ∞ n≥0 α n t (q; q) n (q n -t) . (3.5) 
The integral 2 (α; q, x) (d ∈ (0, 2π)) gives rise to an analytic solution of equation (1.4) for arg(x) ∈ (-5π 2 , π 2 ), which will be denoted by L 2 (α; q, x).

L [d] 2 (α; q, x) =
Proof To see that L 2 (α; q, x) is a solution of (1.4), we first prove that ψ(t) is a solution of (3.1) (Lemma 3.1). Letting g(t) = ψ(t)/t, we only need to prove that g(t) is a solution of (1 -t)g(t) -α q g( t q ) = 1.

(3.7)

It can be proved by direct computation with the help of the following identity:

(α; q)∞ n≥0 α n (q; q)n = 1.
Then ψ(t) is a solution of equation (3.1).

Next, we consider the growth of ψ(t) at infinity to prove the convergence of the integral. Since

|ψ(t)| ≤|(α; q)∞| n≥0 |α| n (|q n | + |t -q n |) (q; q)n|q n -t| =|(α; q)∞| n≥0 |α| n q n (q; q)n|q n -t| + |(α; q)∞| n≥0 |α| n (q; q)n , (3.8) 
the function ψ(t) is bounded as t → ∞ in any direction d ∈ (0, 2π). The result follows by applying Lemma 3.1 (λ = 0, d = ϵ = π). □

The following theorem describes the Stokes phenomenon of L 2 (α; q, x).

Theorem 3.2. Let |α| < 1 and arg(x) ∈ (-5π 2 , -3π 2 ), the following formula holds: L 2 (α; q, xe 2πi ) -L 2 (α; q, x) = 2πi(α; q) ∞ n≥0

α n e -q n x (q; q) n , (3.9)

the right-hand side of (3.9) is a solution of the homogenous equation (1.5).

Proof Let L be any smooth and anti-clockwise curve whose interior contains the set {1, q, q 2 • • • }. By the residue theorem,

L 2 (α; q, xe 2πi ) -L 2 (α; q, x) = L (α; q)∞ n≥0 α n (q; q)n(t -q n ) e -tx dt = 2πi(α; q)∞ n≥0
α n e -q n x (q; q)n , which is (3.9). Since |α| < 1, the series in (3.9) is convergent for Re(x) > 0, which is satisfied when arg(x) ∈ (-5π 2 , -3π 2 ). By direct calculation, one can prove that the right-hand side of (3.9) is a solution of equation (1.5). □

Relationship between the two Laplace integrals

We have established that L 1 (α; q, x) and L 2 (α; q, x) are solutions of equation (1.4). Then L 1 (α; q, x) -L 2 (α; q, x) is a solution of the homogeneous equation (1.5). We now study the link formula between L 1 (α; q, x) and L 2 (α; q, x), by giving an explicit expression of L 1 (α; q, x) -L 2 (α; q, x). For doing this, we should study the relation between the functions ϕ and ψ.

Lemma 3.4. Let ψ(t) be as in Lemma 3.3. For |t| > 1, the following equation holds:

ψ(t) = - n≥0 (α; q) n 1 t n .
Proof By using 1 1-q n t = m≥0 ( q n t ) m for every fixed n, equation (3.5) becomes

ψ(t) = -(α; q)∞ n≥0,m≥0
(αq m ) n (q; q)n

1 t m . (3.10) 
For every fixed m, by applying equation (1.9), we obtain The functions ϕ and ψ are solutions of (3.1), and ϕ is an entire function while ψ has simple poles on the set q N . The homogeneous equation of (3.1) has special solutions, for example,

(α; q)∞ n≥0 (αq m ) n (q; q)n = (α; q)∞ (αq m ; q)∞ = (α; q)m. ( 3 
H(t) = θ(-q α t) ( q α ; q) ∞ ( 1 t ; q) ∞ , (3.12) 
who has the same poles as ψ. We will obtain the relationship between ϕ(t), ψ(t), and H(t), as shown in Lemma 3.5. From (1.6), we have

ϕ(t) = n≥0 t n+1 (αq -n-1 ; q) n+1 = n≥0 q n(n+1) 2 ( q α ; q) n+1 - qt α n+1 . (3.13)
According to the definition of basic hypergeometric series in [14, p. 4, formula (1.2.22)]:

r ϕ s (a 1 , a 2 , • • • , a r ; b 1 , b 2 , • • • , b s ; q, z) = n≥0 (a 1 ; q) n (a 2 ; q) n • • • (a r ; q) n (q; q) n (b 1 ; q) n • • • (b s ; q) n (-1) n q n(n-1) 2 
1+s-r z n , the right-hand side of the series in (3.13) can be viewed as a basic hypergeometic series, written as 1 ϕ 1 (q; q α ; q, qt α ) -1. The connection formula for 2 ϕ 1 is proposed in [14, p. 117, formula (4.3.2)], and the following relationship can also be regarded as the connection formula for 1 ϕ 1 . Lemma 3.5. Let ϕ(t) and ψ(t) be as in (3.3) and (3.5). For |t| > 1, the following equation holds:

ϕ(t) = H(t) + ψ(t). ( 3 

.14)

Proof Let c = -q α , equation (3.12) can be rewritten as

H(t) = θ(ct) (-c; q)∞( 1 t ; q)∞ . From formula (1.9), we have, for |t| > 1, 1 ( 1 t ; q)∞ = k≥0 1 (q; q) k 1 t k .
Multiplying with the series θ(ct) = l∈Z q l(l-1) 2

(ct) l , we obtain

H(t) = 1 (-c; q)∞ k≥0 1 (q; q) k 1 t k l∈Z q l(l-1) 2 (ct) l = H + (t) + H -(t),
where

H + (t) = k≥0 l>k c l q l(l-1) 2 
(-c; q)∞(q; q) k t l-k , H -(t) = k≥0 l≤k c l q l(l-1) 2 
(-c; q)∞(q; q) k 1 t k-l .
Letting m = l -k and replacing l with k + m, it follows that

H + (t) = m>0,k≥0 (cq m ) k q k(k-1) 2 q m(m-1) 2 
(-c; q)∞(q; q) k (ct) m .
By applying equation (1.10), for fixed m, we have k≥0

(cq m ) k q k(k-1) 2 (q; q) k = (-cq m ; q)∞.
Therefore,

H + (t) = m>0 (-cq m ; q)∞ (-c; q)∞ q m(m-1) 2 (ct) m = m>0 q m(m-1) 2 ( q α ; q)m (- q α t) m = ϕ(t).
Next, letting n = k -l and replacing l with k -n, we have

H -(t) = n≥0,k≥0 c k-n q (k-n)(k-n-1) 2 (-c; q)∞(q; q) k 1 t n . Since (k-n)(k-n-1) 2 = k(k-1) 2 + n(n+1) 2 
-kn, by summing on k and using equation (1.10), we obtain

H -(t) = n≥0 cn( 1 t ) n , where cn = (-c q n ; q)∞ (-c; q)∞ c -n q n(n+1) 2 = (- c q n ; q)nc -n q n(n+1) 2 
.

By using formula (1.6), we have cn = (α; q)n. From Lemma 3.4, we can obtain that H -(t) = -ψ(t), which completes the proof. □ Remark 3.1. We note that equation (3.14) is still valid for all t ∈ C * \q N . This property will be used in the sequel.

We obtain the link formula between the two integral solutions as follows.

Theorem 3.3. Let |α| < 1 and α / ∈ q Z>0 . For any x verifying arg(x) ∈ -5π 2 , π 2 , there exists a direction d ∈ (0, 2π) such that the following relation holds:

L 1 (α; q, x) = L 2 (α; q, x) + ∞e id 0 e -tx H(t) dt t . ( 3 

.15)

Proof For any given such x, one can find a direction d ∈ (0, 2π) such that arg(x) ∈ -d -π 2 , -d + π 2 , the theorem follows by using Lemma 3.5, Remark 3.1 and integration. □

Expression of integral solutions in terms of series

This section focuses on exploring the relationship between series and integral solutions, which is structured into the following aspects. By applying perturbations of the equation, we derive an alternative expression for L 2 (α; q, x), which is represented in terms of series expansions at zero. Finally, we establish the link formula between F (α; q, c 0 , x) and L 2 (α; q, x) by using Theorem 3.1.

Perturbations of the parameter α

The idea of perturbations of the equation gives another representation of L 2 (α; q, x). In the following, we consider α as a parameter close to zero. If α = 0, then equation (1.4) becomes

y ′ (x) = -y(x) + 1 x , (4.1) 
which has the divergent series solution n≥0 n!( 1 x ) n+1 . From the Definition 1.3.1.2 in [START_REF] Malgrange | Sommation des séries divergentes[END_REF]: We place ourselves in the plane of τ = 1

x .

an τ n is Borel- summable in U = {Re(τ ) > 0}, of sum f , if: ∃C > 0, ∀n ∈ N, ∀τ ∈ U, f (τ ) - k<n a k τ k ≤ C n • n! |τ | n .
We obtain that, given any d ∈ (0, 2π), the corresponding Borel-sum in the direction d is

E [d] (x) = ∞e id 0 e -xt dt 1 -t , for Re(xe id ) > 0, i.e., arg(x) ∈ (-d -π 2 , -d + π 2 )
. By the analytic continuation process, it yields a function E(x), which is a solution of (4. Since L 2 (α; q, x) is a solution of (1.4) with α ̸ = 0 and E(x) is a solution of (1.4) with α = 0 , equation (1.4) can be seen as the perturbation of equation (4.1). We expect to expand L 2 (α; q, x) as a perturbation series related to E(x).

On a non-homogeneous pantograph equation Lemma 4.1. Let γ = Γ ′ (1) be Euler's constant ([28, p. 185, formula (10.8.1)]) and

w γ (x) = γe -x + e -x log(e iπ x) + n≥1 n-1 k=0 (-1) k (n -k)(n -k)! k! x n . (4.4) 
Then, for arg(x) ∈ (-5π 2 , π 2 ), we have E(x) = w γ (x).

Proof Choose d = π for E [d] (x). Given x such that arg(x) ∈ (-3π 2 , -π 2 ), we have Re(x) < 0, and

E [π] (x) = ∞e iπ 0 e -tx 1 -t dt = - +∞ 0 e tx 1 + t dt.
From [28, p. 276, formula (14.1.10)], we have the exponential integral

E 1 (z) := ∞ 1 e -zt t dt = -γ -Ln(z) - k≥1 (-1) k z k k!k ,
where Re(z) > 0. If z = e iπ x, then we have

E [π] (x) = -e -x E 1 (e iπ x) = γe -x + e -x log(e iπ x) + e -x k≥1 x k k!k ,
One completes the proof by direct computation and analytic continuation. □ Remark 4.1. The series in (4.4) has another expression as follows

w γ (x) = γe -x + e -x log(e iπ x) + n≥1 (-1) n-1 H n n! x n . (4.5) 
By utilizing formula (4.2) and Lemma 4.1, we have the following corollary.

Corollary 4.2. Let |α| < 1 and arg(x) ∈ (-5π 2 , π 2 ). The function L 2 (α; q, x) can be expressed in terms of w γ (x) as follows:

L 2 (α; q, x) = (α; q) ∞ m≥0 α m (q; q) m w γ (q m x). (4.6) 
The following lemma presents a relation that will be used to study the relationship between L 2 (α; q, x) and solutions at 0 of equation (1.4). Lemma 4.2. For any |x| < 1, the following equation holds

m≥0 mx m (q; q) m = 1 (x; q) ∞ k≥0 xq k 1 -xq k . (4.7) 
Proof For any |x| < 1, by using (1.9), we have

x (x; q)∞ ′ = m≥0 x m+1 (q; q)m ′ = m≥0 (m + 1)x m (q; q)m , then m≥0 mx m (q; q)m = x (x; q)∞ ′ - m≥0 x m (q; q)m = (x; q)∞ -x[(x; q)∞] ′ (x; q) 2 ∞ - m≥0 x m (q; q)m = -x[(x; q)∞] ′ (x; q) 2 ∞ . Since [(x; q)∞] ′ = (x; q)∞ k≥0 -q k 1-xq k , equation (4.7
) can be easily proved. □

We now examine the relationship between L 2 (α; q, x) and F (α; q, c 0 , x) where the function F (α; q, c 0 , x) is defined in Theorem 2.1. For a special value of c 0 , we have the following result.

Theorem 4.1. Let α / ∈ q Z ≤0 and arg(x) ∈ (-5π 2 , π 2 
). The following relation holds:

L 2 (α; q, x) = F (α; q, γ 0 , x), (4.8) where

γ 0 = k≥0 αq k ln q 1 -αq k + γ + iπ. (4.9) 
Proof According to Remark 2.3, the function F (α; q, γ 0 , x) is analytic for α / ∈ q Z ≤0 . Thus, we need only to establish the validity of (4.8) for |α| < 1.

First, we have (see [19, p. 7, Proposition 2.1]) F 0 (α; q, x) = (α; q)∞ m≥0 α m e -q m x (q; q)m = m≥0 (-1) m (α; q)m m! x m .

Then, from (4.5) and (4.6), we obtain L 2 (α; q, x) = (log(e iπ x) + γ)F 0 (α; q, x)

+ A 1 + A 2 ,
where

A 1 = (α; q)∞ m≥0 α m (q; q)m (log(q m
))e -q m x and

A 2 = (α; q)∞ m≥0 α m (q; q)m n≥1 n k=1 (-1) n-1 n!k q mn x n .
By using the exponential series and inversion of the summation order of convergent power series, we get

A 1 = (α; q)∞(ln q) m≥0 mα m (q; q)m k≥0 (-q m x) k k! = (α; q)∞(ln q) k≥0 (-x) k k! m≥0 m(αq k ) m (q; q)m .
By applying (3.11) and Lemma 4.2, we further have

A 1 = (α; q)∞(ln q) k≥0 (-x) k k!(αq k ; q)∞ m≥0 αq k+m 1 -αq k+m = n≥0 k≥n αq k ln q 1 -αq k (-1) n (α; q)n n! x n .
Together with (1.9), we get

A 2 = (α; q)∞ n≥1 n k=1 m≥0
α m q mn (q; q)m (-1) n-1 n!

x n k = n≥1 (-1) n-1 Hn n! (α; q)nx n .

Hence,

A 1 + A 2 = F 1 (α; q, x) + k≥0 αq k ln q 1 -αq k F 0 (α; q, x)
Thus, the proof is complete. □

Connection formula and asymptotic behaviors

We recall that F (α; q, c 0 , x) and G(α; q, x) are as in (2.3) and (2.5). In this section, we first introduce some lemmas about q-periodic functions. Then, we present the connection formula between F (α; q, c 0 , x) and G(α; q, x) for a special case c 0 = γ 0 . The asymptotic behaviors of F (α; q, γ 0 , x) are obtained using the connection formula. Finally, we draw conclusions about the connection formula and the asymptotic behaviors at ∞ of solutions around zero for the general case.

Two families of q-periodic functions

Let µ be a fixed complex number such that α = q µ and -π | ln q| < Im(µ) ≤ π | ln q| . There are infinity numbers of µ l = µ + iκl (l ∈ Z and κ = -2π ln q ), such that q µ l = α. All values of µ l form a set, which we call Λ α = {µ l ∈ C : q µ l = α}. Lemma 5.1. Let α / ∈ q Z . For arg(x) ∈ (-5π 2 , π 2 ), the function

g n (α; q, x) = µ l ∈Λα Γ(n + µ l )x -µ l 1 -e 2πiµ l , n ≥ 0 (5.1)
is an analytic solution of the equation y(x) = αy(qx).

Proof For µ l ∈ Λα, we have

x -µ l = e -(Re(µ l )+iIm(µ l ))(log |x|+i arg(x)) = e Im(µ l ) arg(x) |x| -Re(µ) . Since α / ∈ q Z , we have µ l / ∈ Z ⊕ iκZ. By using Stirling's formula for the Gamma function (see [START_REF] Andrews | Special Functions. Encyclopedia of Mathematics and its Applications[END_REF]p. 21,Corollary 1.4.4]), it yields that

Γ(n + µ l ) = √ 2π|Im(µ l )| n+Re(µ l )-1 2 e -π|Im(µ l )| 2 1 + O 1 |Im(µ l )| (5.4)
as |Im(µ l )| → +∞. (i) If Im(µ l ) > 0 (l > 0), then for Im(µ l ) = Im(µ) + κl, we have

Γ(n + µ l ) = O l n+Re(µ)-1 2 e -πκl 2
, as l → +∞.

Together with equations (5.2) and ( 5.3), we obtain that

Im(µ l )>0 Γ(n + µ l )x -µ l 1 -e 2πiµ l ≤ Ce Im(µ) arg(x) l∈Z>0 l n+Re(µ)-1 2 e κl(arg(x)-π 2 )
1 -e -2πIm(µ)-2πκl |x| -Re(µ) .

(5.5)

The series of the right-hand side of (5.5) is convergent if the ratio of two consecutive terms tends to a limit smaller than 1, that is to say:

lim l→+∞ 1 + 1 l n+Re(µ)-1 2 (1 -e -2πImµ-2πκl )e κ(arg(x)-π 2 ) 1 -e -2πImµ-2πκ(l+1) = e κ(arg(x)-π 2 ) < 1, i.e. arg(x) < π 2 . (ii) If Im(µ l ) < 0 (l < 0), then equation (5.4) becomes Γ(n + µ l ) = O (-Im(µ l )) n+Re(µ)-1 2 e πIm(µ l ) 2
, as Im(µ l ) → -∞.

By taking m = -l, we have

Γ(n -µm) = O (-m) n+Re(µ)-1 2 e -πκm 2 
, as m → +∞.

Equation (5.2) becomes x -µ l = e (Im(µ)-κm) arg(x) |x| -Re(µ) . Therefore, we have

Im(µ l )<0 Γ(n + µ l )x -µ l 1 -e 2πiµ l ≤ Ce Im(µ) arg(x) m∈Z>0 m n+Re(µ)-1 2 e -κm(arg(x)+ π 2 )
e -2πIm(µ)+2πκm -1 |x| -Re(µ) .

(5.6)

The series of the right-hand side of (5.6) is convergent if

lim m→+∞ 1 + 1 m n+Re(µ)-1 2 (1 -e -2πImµ+2πκm )e -κ(arg(x)+ π 2 )
1 -e -2πImµ+2πκ(m+1) = e -κ(arg(x)+ 5π 2 ) < 1, i.e. arg(x) > -5π 2 . To sum up, the Laurent series in (5.1) is convergent if the series of the righthand side of (5.5) and (5.6) are convergent. Therefore, the function gn(α; q, x) is well-defined and analytic for arg(x) ∈ (-5π 2 , π 2 ). Finally, it is obvious that gn(α; q, x) satisfies αy(qx) = y(x) by direct computation.

□

From [15, p. 502, (10.5.3)]: for |q| < 1 and |ba -1 | < 1, l∈Z (a; q) l (b; q) l x l = (ax; q)∞(q/ax; q)∞(q; q)∞(b/a; q)∞ (x; q)∞(b/ax; q)∞(b; q)∞(q/a; q)∞ , letting q = q * , x = x * , a = e 2πiµ and b = q * e 2πiµ yields that θ(q * ; -e 2πiµ x * ) θ(q * ; -x * ) = θ(q * ; -e 2πiµ ) (q * , q * ) 3

∞ l∈Z

x * l 1 -e 2πiµ q * l .

(5.10) From (5.8) and (5.10), we have θ(q; -q µ x) θ(q; -x) = q -µ(µ-1)/2 (e iπ ) -µ θ(q * ; -e 2πiµ ) (q * , q * ) 3

∞ l∈Z

x * l 1 -e 2πiµ q * l .

By using (5.7) to θ(q * ; -e 2πiµ ) and (q * ; q * )∞ = q 1/24

√ κ e κπ/12 (q; q)∞, it yields that θ(q; -q µ x)

(x; q)∞ = κ(q µ , q 1-µ ; q)∞ i(q; q)∞ ( q x ; q)∞ l∈Z x -(µ+iκl) 1 -e 2πi(µ+iκl) = κ(q µ , q 1-µ ; q)∞ i(q; q)∞ n≥0 (-1) n q n(n+1)/2 x -n (q; q)n l∈Z x -(µ+iκl) 1 -e 2πi(µ+iκl) ,
the series in the right-hand side is normally convergent on any compact of {x| arg(x) ∈ (-2π, 0)} (|x * | < 1). The proof is completed by replacing x with 1 t . □ Theorem 5.1. Let α / ∈ q Z and γ 0 be as in (4.9). The following relation holds for any x ∈ C * with arg(x) ∈ (-5π 2 , π 2 ) :

F (α; q, γ 0 , x) = G(α; q, x) + iκ(α; q) ∞ (q; q) ∞ n≥0 (-1) n q n(n+1)/2 (q; q) n g n (α; q, x)x -n .

Proof From equations (3.4), (3.15) and (4.8), letting d = π, we have, for arg(x) ∈ (-3π 2 , π 2 ),

F (α; q, γ 0 , x) = G(α; q, x) - ∞e iπ 0 e -tx θ -α t q α ; q ∞ 1 t ; q ∞ dt t .
Assuming that |α| < 1, then we have Re(µ) > 0. From α / ∈ q Z , we have µ+iκl / ∈ Z. By using equation (5.9), Lebesgue's dominated convergence Theorem and

∞ 0 e -t t n+µ+iκl dt t = Γ(n + µ + iκl),
we obtain the equation give in the theorem, where gn(α; q, x) is shown in Lemma 5.1. By applying Remark 2.3 and analytic continuation, the equation in the theorem holds for any value of α and arg(x) ∈ (-5π 2 , π 2 ). □

Then, we obtain the asymptotic form of solution at zero for the critical value c 0 = γ 0 . F (α; q, c 0 , x) = G(α; q, x) + iκ(α; q)∞ (q; q)∞ n≥0

(-1) n q n(n+1)/2 (q; q)n g n (α; q, x) + c0-γ0 2πi h n (α; q, x) x -n .

Proof The proof is completed, by using Theorem 5.1, F (α; q, c 0 , x) = F (α; q, γ 0 , x) + (c 0 -γ 0 )F 0 (α; q, x), and the connection formula F 0 (α; q, x) = κ(α; q)∞ 2π(q; q)∞ n≥0 (-1) n q n(n+1)/2 (q; q)n hn(α; q, x)x -n , for arg(x) ∈ (-π 2 , π 2 ) in [START_REF] Zhang | Analytic study of the pantograph equation using jacobi theta functions[END_REF]p. 6,Theorem 1.2]. □ Therefore, we obtain the asymptotic form at ∞ of solutions around zero.

Theorem 5.3. Let α / ∈ q Z . (i) If |α| < q, then F (α; q, c 0 , x) =

x -1 1 -αq -1 + o(x -1 ), as x → ∞ in any direction arg(x) ∈ (-π 2 , π 2 ). (ii) If |α| > q, then F (α; q, c 0 , x) = iκ(α; q) ∞ (q; q) ∞ ĝ0 (α; q, x) + c 0 -γ 0 2πi ĥ0 (α; q, x) x -µ + o(x -µ ), as x → ∞ in any direction arg(x) ∈ (-π 2 , π 2 ), where the functions ĝ0 (α; q, x) and ĥ0 (α; q, x) are bounded q-period functions in any direction arg(x) ∈ (-π 2 , π 2 ), as shown in Lemma 5.2 with n = 0. (iii) If |α| = q, then F (α; q, c 0 , x)

=

x -1 1 -αq -1 + iκ(α; q) ∞ (q; q) ∞ ĝ0 (α; q, x) + c 0 -γ 0 2πi ĥ0 (α; q, x) x -µ + o(x -1 ), as x → ∞ in any direction arg(x) ∈ (-π 2 , π 2 ).

Proof Similar to the proof of Theorem 5.2, it can be easily obtained by the above corollary. □

From the above results, we remark that for small |α|, equation (1.4) behaves like a differential equation. In contrast, for large |α|, the q-difference operator plays a more central role than the differential operator.

As mentioned in the Introduction, Lim obtained the asymptotic boundaries for all solutions of equation (1.2). We now compare the asymptotic form obtained in this paper with the results in [START_REF] Lim | Asymptotic bounds of solutions of the functional differential equation x ′ (t) = ax(λt) + bx(t) + f (t), 0 < λ < 1[END_REF]. In this paper, the nonhomogeneous term g(x) = 1

x has a sigularity at 0, which is defined on (0, ∞), does not satisfy the condition in [START_REF] Lim | Asymptotic bounds of solutions of the functional differential equation x ′ (t) = ax(λt) + bx(t) + f (t), 0 < λ < 1[END_REF] that g is defined on [0, ∞), but it satisfies other conditions such as g = O(x -1 ) and g ′ = O(x -2 ) (equivalent to the case where α = -1 in [START_REF] Lim | Asymptotic bounds of solutions of the functional differential equation x ′ (t) = ax(λt) + bx(t) + f (t), 0 < λ < 1[END_REF]). Recall Lim's results in [18, Theorem 1] (let's make α = -1 for comparison):

Let b < 0. Assume that g ′ exists. Let g(x) = O(x -1 ) and g ′ (x) = O(x -2 ). Then:

(i) If ln |b/a| ln q > -1, every solution of (1.2) is O(x ln |b/a| ln q

) as x → ∞.

(ii) If ln |b/a| ln q = -1, every solution of (1.2) is O(x ln |b/a| ln q ln x) as x → ∞.

(iii) If ln |b/a| ln q < -1, every solution of (1.2) is O(x -1 ) as x → ∞. From the tranform shown in the Introduction, we know that α = -a b . Therefore, the above case (i) is equivalent to: if |α| > q, every solution of (1.2) is O(x -ln |α| ln q ) as x → ∞, which is consistent with the case (ii) in Theorem 5.3 (because ln |α| ln q = Re(µ) and every solution is O(x -Re(µ) ) as x → ∞). The above case (iii) is equivalent to: if |α| < q, every solution of (1.2) is O(x -1 ) as x → ∞, which is also consistent with the case (i) in Theorem 5.3.

  then there is a transformation of the form y(x) = m-1 j=k a j x -j +z(x), such that equation y ′ (x) = αy(qx) -y(x) + 1

6 )

 6 is an analytic solution of equation (1.4) for x in the Riemann surface C * such that arg(x) ∈ (-d -π 2 , -d + π 2 ). Consequently, glueing all the functions L [d]

. 11 )

 11 Putting (3.11) into (3.10) allows us to complete the proof. □

  1) for arg(x) ∈ (-5π 2 , π 2 ) on C * , for more details, see Ramis [21, p. 183, Definition 3.1] and Malgrange [20, p. 217, Proposition A.2.4].

  (5.2) Therefore, |1 -e 2πiµ l | ≥ |1 -|e 2πiµ l || = |1 -e -2πImµ e -2πκl |. (5.3)

Corollary 5 . 1 .

 51 Let α / ∈ q Z . The following relation holds for any c 0 ∈ C * and x ∈ C * with arg(x) ∈ (-π 2 , π 2 ) :

  It is denoted Lf , Laplace transform of f , which holomorphic for Re(ξ) > B. We first give an elementary lemma as follows. Lemma 3.1. Assume that d ∈ R, ϵ > 0, and h is an analytic function in the open sector {t ∈ C * | arg(t) -d| < ϵ}, verifying h(t) = O(t) for t → 0, and

	is a solution of equation (1.4) in the domain
	S d ϵ,λ =	{x ∈ C * Re(xe iδ ) > λ}
	δ∈(d-ϵ,d+ϵ)	
	if and only if the function h(t) satisfies
	αh(t) + (qt -1)h(qt) = -qt.	(3.1)
	Proof One has an analytic function in S d 1 x = ∞e id 0 ϵ,λ under the given conditions. Thus, we can obtain the te -tx dt for Re(xe id ) > 0, and y(x) can be extended into t
	result by substituting y(x) in equation (1.4).
			+∞ 0	f (x)e -xξ dx converges
	for Re(ξ) > B. ∞e id 0	h(t)e -tx dt t

in the form of Laplace integral. For the convergence of Laplace integral, we refer to

[20, p. 216

, Definition A.2.3], whose main content is: Let f ∈ C 2 ([0, +∞)). Suppose there are A, B > 0 such that |f (x)| ≤ Ae Bx , then the function ξ → h(t) = O(e λ|t| ) for t → ∞ (λ ≥ 0). An integral of the form y(x) = □

3.1 Two types of Laplace integral solutions

Suppose ϕ(t) = n≥1 ϕ n t n and substisute it into equation (3.1). Comparing the coefficients of t n , we obtain

Acknowledgment

This work is partly supported by the Shenzhen Science and Technology Program (Basic Research Project, No. JCYJ20210324133003011), the National Natural Science Foundation of China (No. 12171491), and the Labex CEMPI (ANR-11-LABX-0007).

Proposition 4.1. Let α ̸ = 0 and |α| < 1. For arg(x) ∈ (-5π 2 , π 2 ) on C * , the following relation holds L 2 (α; q, x) = (α; q) ∞ n≥0 α n (q; q) n E(q n x). (4.2)

Consequently, L 2 (α; q, x) → E(x) as α → 0.

Proof For any given x with arg(x) ∈ (-5π 2 , π 2 ), one can find a direction d ∈ (0, 2π) such that arg(x) ∈ -d -π 2 , -d + π 2 . By the definition of L 2 (α; q, x), we have

2 (α; q, x) = (α; q)∞ ∞e id 0 n≥0

where the series under the integral verifies (3.8). Since

we can apply the dominated convergence theorem to obtain (4.2). □

Let α ̸ = 0 and close to 0. Note that a function in the form y(x) = n≥0 y n (x)α n is a solution of equation (1.4) iff the functions y n (x) satisfy the following system of differential equations:

By using equations (1.10) and (4.2), we obtain the following corollary, which gives a particular solution to the above system. Corollary 4.1. For arg(x) ∈ (-5π 2 , π 2 ), a particular solution of system (4.3) is given by the following

4.2 Relationship between L 2 (α; q, x) and F (α; q, c 0 , x)

To derive the link formula between L 2 (α; q, x) and F (α; q, c 0 , x), we will express L 2 (α; q, x) in terms of power series at 0. This is done by establishing the relationship between E(x) and the series solution at 0 of equation (4.1), because formula (4.2) indicates that L 2 (α; q, x) can be expressed in terms of E(x), and E(x) is a solution of (4.1).

Remark 5.1. For arg(x) ∈ (-π 2 , π 2 ), let h n (α; q, x) = g n (α; q, x) -g n (α; q, xe -2πi ).

Then, we have h n (α; q, x) =

Lemma 5.2. For any fixed n, the functions ĝn (α; q, x) = x µ g n (α; q, x) and ĥn (α; q, x) = x µ h n (α; q, x) are q-periodic functions and bounded as x → ∞ in any direction d ∈ (-5π 2 , π 2 ) and d ∈ (-π 2 , π 2 ) respectively.

Proof Both gn(α; q, x) and hn(α; q, x) are solutions of equation y(x) = αy(qx), it is easy to verify that ĝn and ĥn are q-periodic functions, i.e., satisfying ŷ(qx) = ŷ(x).

We only need to prove that ĝn satisfies |ĝn(α; q, x)| ≤ C as x → ∞ in any direction arg(x) ∈ (-5π 2 , π 2 ), for ĥn, we change the direction to arg(x) ∈ (-π 2 , π 2 ). For any d ∈ (-5π 2 , π 2 ) and x ∈ [ 1 q e id , 1 q 2 e id ], ŷ(x) = ŷ(qx), where qx ∈ [e id , 1 q e id ]. Therefore, using the continuity and taking C = max

for all x = te id with t ≥ 1. □

5.2

The connection formula for the critical value c 0 = γ 0

In this section, we will present the connection formula between F (α; q, γ 0 , x) and G(α; q, x). We first introduce a lemma that will be used later.

Define e(q; x) = e - log 2 x √ q 2 ln q . One can get that both e(q; x) and θ(q; x) satisfy equation xy(qx) = y(x). Let q * = e -2πκ and x * = x -iκ . From [15, p. 498, (10.4.2)] and [19, p. 12, (4.2)], we have θ(q; e iπ x) = √ κ e(q; e iπ x)θ(q * ; e iπ x * ), (5.7) and from [19, p. 12, Lemma 4.1], we have θ(q; -q µ x) θ(q; -x) = q -µ(µ-1)/2 (e iπ ) -µ θ(q * ; -e 2πiµ x * ) θ(q * ; -x * ) .

(5.8)

The following relation holds:

(-1) n q n(n+1)/2 t n+µ+iκl (q; q) n (1 -e 2πi(µ+iκl) ) (5.9)

for arg(t) ∈ (0, 2π).

Proof Let x = 1 t . Since arg(t) ∈ (0, 2π), we have arg(x) ∈ (-2π, 0). Then |x * | = e κ arg(x) ∈ (e -2κπ , 1) = (q * , 1).

On a non-homogeneous pantograph equation Theorem 5.2. Let α / ∈ q Z and γ 0 be as in (4.9). Then the following relation holds:

, where ĝ0 (α; q, x) is a bounded q-periodic function shown in Lemma 5.2 with n = 0.

(iii) If |α| = q, then

Proof In order to study the asymptotic behavior of F (α; q, c 0 , x), we distinguish two cases: (i) If |α| < q, then -Re(µ) = -ln |α|/ ln q < -1. From Theorem 5.1, we have

). (ii) If |α| > q, then Re(µ) -1 < 0. By using Lemma 5.2 and Theorem 5.1, it follows that F (α; q, γ 0 , x) = iκ(α; q)∞ (q; q)∞ g 0 (α; q, x) + x -µ O(x -1 ) + O(x Re(µ)-1 ) as x → ∞ in the direction arg(x) ∈ (-π 2 , π 2 ). (iii) If |α| = q, then we assume that µ = 1 + ia ln q (a / ∈ 2πZ). From Theorem 5.1, we have F (α; q, γ 0 , x) = 1 1 -αq -1 x -1 1 + O(x -1 ) + ĝ0 (α; q, x)x -µ 1 + O(x -1 ) , the proof is thus completed. □

Concluding results for general c 0

From the above analysis, we draw conclusions about the connection formula and asymptotic behaviors in the general case.