Boundedness of spectral projectors on hyperbolic surfaces - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2023

Boundedness of spectral projectors on hyperbolic surfaces

Abstract

In this paper, we prove L2 → Lp estimates, where p>2, for spectral projectors on a wide class of hyperbolic surfaces. More precisely, we consider projections in small spectral windows [λ−η, λ+η] on geometrically finite hyperbolic surfaces of infinite volume. In the convex cocompact case, we obtain optimal bounds with respect to λ and η, up to subpolynomial losses. The proof combines the resolvent bound of Bourgain-Dyatlov and improved estimates for the Schrödinger group (Strichartz and smoothing estimates) on hyperbolic surfaces.
Fichier principal
Vignette du fichier
spectral-proj-quo-finalv2.pdf (533.22 Ko) Télécharger le fichier
ReferencesJun26.bib (16.04 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04231695 , version 1 (06-10-2023)

Identifiers

  • HAL Id : hal-04231695 , version 1

Cite

Jean-Philippe Anker, Pierre Germain, Tristan Léger. Boundedness of spectral projectors on hyperbolic surfaces. 2023. ⟨hal-04231695⟩
35 View
39 Download

Share

Gmail Mastodon Facebook X LinkedIn More