Active Sensing for Data Quality Improvement in Model Learning - Archive ouverte HAL
Article Dans Une Revue IEEE Control Systems Letters Année : 2024

Active Sensing for Data Quality Improvement in Model Learning

Olga Napolitano
  • Fonction : Auteur
  • PersonId : 1289708
Lucia Pallottino
  • Fonction : Auteur
  • PersonId : 1289709
Dimitrios Kanoulas
  • Fonction : Auteur
  • PersonId : 1286739
Paolo Salaris
  • Fonction : Auteur
  • PersonId : 1087958
Valerio Modugno
  • Fonction : Auteur
  • PersonId : 1286738

Résumé

In machine learning for robotics, training data quality assumes a crucial role. Many methods use exploration algorithms to select the most informative data points for the model, often ignoring the impact of measurement noise on data. This paper introduces a method to enhance dataset quality for model learning, optimizing a combination of exploration and active sensing metrics. We introduce a novel Exploration Gramian metric based on a Gaussian Process predicted covariance matrix, optimized to explore the state space regions where the knowledge about the unknown model is maximum. These are integrated with an active sensing metric (Constructibility Gramian) to mitigate measurement noise effects. The effectiveness of this approach is demonstrated through simulations on a unicycle and a quadruped robot, confirming that combining active sensing and exploration significantly enhances performance in model learning.
Fichier principal
Vignette du fichier
LCSS_paper_Olga.pdf (602.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04226725 , version 1 (03-10-2023)
hal-04226725 , version 2 (03-06-2024)

Identifiants

Citer

Olga Napolitano, Marco Cognetti, Lucia Pallottino, Dimitrios Kanoulas, Paolo Salaris, et al.. Active Sensing for Data Quality Improvement in Model Learning. IEEE Control Systems Letters, 2024, pp.1-1. ⟨10.1109/LCSYS.2024.3410152⟩. ⟨hal-04226725v2⟩
285 Consultations
176 Téléchargements

Altmetric

Partager

More