
HAL Id: hal-04226725
https://hal.science/hal-04226725v2

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Sensing for Data Quality Improvement in Model
Learning

Olga Napolitano, Marco Cognetti, Lucia Pallottino, Dimitrios Kanoulas,
Paolo Salaris, Valerio Modugno

To cite this version:
Olga Napolitano, Marco Cognetti, Lucia Pallottino, Dimitrios Kanoulas, Paolo Salaris, et al.. Active
Sensing for Data Quality Improvement in Model Learning. IEEE Control Systems Letters, 2024,
pp.1-1. �10.1109/LCSYS.2024.3410152�. �hal-04226725v2�

https://hal.science/hal-04226725v2
https://hal.archives-ouvertes.fr


Active Sensing for Data Quality Improvement in Model Learning
Olga Napolitano1, Marco Cognetti2, Lucia Pallottino1, Dimitrios Kanoulas3, Paolo Salaris1, Valerio

Modugno3

Abstract— In machine learning for robotics, training data
quality assumes a crucial role. Many methods use explo-
ration algorithms to select the most informative data points
for the model, often ignoring the impact of measurement
noise on data. This paper introduces a method to enhance
dataset quality for model learning, optimizing a combina-
tion of exploration and active sensing metrics. We intro-
duce a novel Exploration Gramian metric based on a Gaus-
sian Process predicted covariance matrix, optimized to
explore the state space regions where the knowledge about
the unknown model is maximum. These are integrated
with an active sensing metric (Constructibility Gramian) to
mitigate measurement noise effects. The effectiveness of
this approach is demonstrated through simulations on a
unicycle and a quadruped robot, confirming that combin-
ing active sensing and exploration significantly enhances
performance in model learning.

Index Terms— Optimization; Robotics; Information the-
ory and control

I. INTRODUCTION

IN the field of machine learning (ML), many researchers fo-
cus on developing powerful models for processing complex

datasets to enhance predictions. However, the importance of
the quality and informativeness of these datasets, particularly
in real-world applications, often receives less attention, despite
its significant impact on ML performance [1], [2]. The quality
of the datasets in terms of informativeness plays a crucial
role in ML applications in robotics and automation, especially
when used for unknown model learning. Because of the
time constraint of a real-time implementation, only a few
data points can be processed to provide a timely prediction.
Therefore, to best predict the model, during the learning
process, it is of paramount importance to identify the few data
points that contain the largest amount of information [3]. To
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this purpose, strategies for constructing training sets that min-
imize the epistemic error (systematic errors due to limitations
on model knowledge) are becoming popular. These include
the use of information-theoretic optimal experimental design
for selecting optimal training dataset [4], and exploration
algorithms that maximize information gain, quantified by the
Fisher Information Matrix (FIM) [5], [6].

In learning unknown dynamics, a significant challenge is
to extend the concept of information gain to a trajectory
optimization problem. To tackle this issue, in [7] a static active
learning strategy is adopted to dynamic settings, aligning the
sampling strategy with trajectory-dependent states.

Another factor affecting data quality is measurement error,
primarily stemming from noisy sensor readings. While filters
can passively increase the robustness of model learning by
limiting the effects of noise, actively optimizing measure-
ment acquisition through active sensing/perception approaches
further mitigates these effects. Although widely adopted in
robotics to enhance estimation [8], [9], active sensing has
been minimally explored for improving filter estimates in
training set construction. In particular, in this work, we use the
Constructibility Gramian (CG) as active sensing metric [10]

Our proposed method integrates active sensing with explo-
ration to identify informative trajectories for sample collection.
We introduce the Exploration Gramian (EG), a new metric
that uses the state transition matrix to capture how the system
evolves along a trajectory, thus improving sample collection
in trajectory optimization problems. The EG is obtained from
the predicted covariance matrix of a Gaussian Process, which
we utilize as a learning method in our study. To the best
of our knowledge, this represents the first implementation of
EG in an exploration algorithm. Here, exploration and active
sensing metrics are combined, providing new cost functions
maximized in a Model Predictive Control (MPC) framework.

The effectiveness of our methodology is demonstrated
through comparative analysis with a standard exploration
algorithm based on the GP covariance matrix. Differently
from the EG, this metric does not contain the state dynamics
and hence could not properly steer the system to unexplored
states. Finally, we test our EG-based methodology on sim-
ulated unicycle and quadrupedal robots, proving significant
improvements in model learning.

II. PRELIMINARIES

The primary objective of this paper is to maximize data-
derived information to reduce both epistemic and measurement
errors. Consequently, we employ two metrics: the active sens-
ing measure (CG) enhances observer estimate performance and



minimizes measurement error, while the active exploration
measure (EG) boosts the efficiency of a Gaussian Process used
in learning unknown dynamics, thus diminishing epistemic
error.

Let us consider a generic nonlinear system

q̇(t) = fn(q(t),u(t)) + fu(q(t),u(t)) , q(t0) = q0 (1)
z(t) = h(q(t)) + ν(t) (2)

where q(t) ∈ Rn is the state of the system, u(t) ∈ Rm is
the control inputs, z(t) ∈ Rp is the sensor outputs (i.e., the
measurements available through onboard sensors at time t),
fn(·) is the known nominal system dynamics while fu(·)
is the unknown one. Finally, ν(t) ∼ N (0,R(t)) is a white,
normally-distributed Gaussian noise with zero mean and co-
variance matrix R(t). We assume that the nonlinear system is
affected by negligible process noise.

Let us consider the linear time-varying (LTV) system ob-
tained by linearizing (1)-(2) around a given trajectory, with
q(t0) = q0:

q̇(t) = A(t)q(t) +B(t)u(t) + F u(q(t),u(t)) , (3)
z(t) = C(t)q(t) + ν(t) , (4)

where A(t) = ∂fn(q(t),u(t))
∂q(t) , B(t) = ∂fn(q(t),u(t))

∂u(t) , and

C(t) = ∂h(q(t))
∂q(t) . Moreover, for the LTV system, the unknown

dynamics is F u(q(t),u(t)) = fu(q(t),u(t)) + O(q2) and
consists of the linearized unknown dynamics fu(q(t),u(t))
and nonlinear higher-order terms O(q2) resulting from the
Taylor series, which are neglected during the linearization
process. The chosen formulation is general enough to cover a
broad class of practical cases, ranging from simplified linear
models of complex systems with highly nonlinear dynamics to
nonlinear dynamics with unmodeled dynamics, disturbances,
and neglected higher-order terms.

A. Active Sensing measures
In real scenarios, the real state q(t) of a system is typically

unknown, with only an available estimate q̂(t) provided by an
observer. The observer’s performance, in terms of uncertainty
and estimation error, heavily relies on the information coming
from noisy sensor readings. Addressing this, active sens-
ing/perception control aims to maximize sensory information
for optimal state estimation. A crucial key step is the selection
of an appropriate measure of information to optimize [11]–
[13]. The measure chosen in this work is the CG (see Section I)
which is defined as

Gc(t0, tf ) ≜
∫ t

t0

Φ⊤(τ, t)C(τ)
⊤
(τ)W c(τ)C(τ)Φ(τ, t) dτ ,

where tf > t0 is the final integration time, and W c(τ) ∈ Rp×p

is a symmetric positive definite weight matrix. Φ(t, t0) is the
state transition matrix of the LTV system in (3)-(4) (with
F u(q(t),u(t)) = 0) and solution of the following matrix
differential equation

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I . (5)

In [10], the authors showed that the CG is also strictly
related to the inverse of the estimation error covariance matrix

P provided by an Extended Kalman Filter (EKF) built on
(3)-(4) (with F u(q(t),u(t)) = 0 and negligible process
noise). Indeed, the following equivalence holds: P−1(t) =
Gc(−∞, t), where Gc(−∞, t) represents the amount of the
collected information in the time window [−∞, t]. Thus,
maximizing the CG is equivalent to minimizing the state
estimation uncertainty.

B. Exploration measures

A Gaussian Processes regressor is exploited to reconstruct
the unknown dynamics F u. GPs can be seen as an infinite
collection of random Gaussian variables, any finite number of
which has a joint Gaussian distribution [14]. Therefore, F u is
learned from N samples xi := (q̂i,ui), i = 1, . . . , N , which
consists of estimated state and inputs and represents the input
data of the GP. The corresponding outputs

yi =
˙̂qi − fn(q̂i,ui) +w (6)

represent the deviation of the estimated nominal system dy-
namics from ˙̂qi, which is an estimate of q̇i. Moreover, w ∼
N (0,Λ) is a white, normally-distributed Gaussian noise with
zero mean and covariance matrix Λ that affects each element of
y ∈ IRn. The computation of ˙̂q(t) in (6), requires an estimator.
An observer built on (1)-(2) allows to only retrieve q̂(t) but
not its time derivative. Hence we introduce an augmented state
qaug(t) = (q(t), q̇(t),u(t))⊤ with uaug(t) = u̇(t) the new
input. Starting from (1) with fu(q(t),u(t)) = 0, the dynamics
of qaug(t) is

q̇aug(t) =

 q̇(t)
A(t)fn(q(t),u(t))

0

+

0n×m

B(t)
Im×m

uaug(t) . (7)

The training dataset of the GP is hence given by D :={
X := [x1, . . . ,xN ]

⊤
,Y := [y1, . . . ,yN ]

⊤
}
, with X ∈

RN×(n+m), Y ∈ RN×n, and N the number of training set
samples.

The accuracy of ˙̂q and q̂ directly influences the training set
quality and thus the effectiveness of the GP in learning the
unknown model. Consequently, the introduction of an active
sensing control strategy is crucial for enhancing training set
quality, underlining the importance of the active perception-
exploration approaches tackled in this work.

Since F u is approximated by a GP, providing F̂ u, in each
output dimension a = 1, ..., n it is fully characterized by its
mean µa(·) and variance Qa(·), which at at unobserved point
x∗ are

µa(x∗) = Ka
Xx∗

(Ka
XX + Λ)−1[y].,a,

Qa(x∗) = Ka
x∗x∗

−Ka
x∗X(Ka

XX + Λ)−1Ka
Xx∗

.

where Ka
Xx∗

, Ka
XX , Ka

x∗x∗
and Ka

x∗X
depends on the kernel

ka(·, ·) (see [14]). The prior mean is assumed zero. Each
dimension of the output is learned independently, resulting
in a multivariate GP approximation of the unknown dynam-
ics F u, given by stacking the individual output dimensions
F̂ u(x) ∼ N (µ(x),Q(x)), where µ = [µ1, . . . , µn]T and
Q = diag([Q1, . . . , Qn]) are the predicted mean vector and



covariance matrix provided by the GP about the unknown
dynamics at a generic input x and conditioned by the training
set D.

To enhance the reconstruction of unknown dynamics
F̂ u(x), the GP training set will be extended with novel
samples x that are expected to increase the knowledge about
F u(x). In the context of online learning, where the training set
is continuously updated, the informativeness of new sampling
points is assessed using mutual information between these
points and their respective observations [15]. Therefore, let
us consider new samples Xnew = [x1, . . . ,xκ] and the a-
th component of the outputs ya

new = [ya1 , . . . , y
a
κ], with a =

1, . . . , n. Since the observations are affected by an additive
Gaussian white noise N (0,Λ) with Λ = λ2I , the Information
Gain (IG) for each component of the output can be expressed
as (see [16, Lemma 5.3] for details)

Ia(ya
new, F̂

a
u new) = H(ya

new)−H(ya
new|F̂ a

u new)

=
1

2

κ∑
α=1

log(2πe(λ2 +Qa(xα))−
1

2

κ∑
α=1

log(2πeλ2)

=
1

2

κ∑
α=1

log
(
1 + λ−2Qa(xα)

)
,

where F̂ a
u new = [F̂ a

u (x)]x∈Xnew , and α = 1, . . . , κ is an
index used to iterate over the new samples of Xnew. One can
conclude that for the future points to sample, IG depends on
the predictive variances Q(x) of the GP [16]. Moreover, in
parameter identification problems, Q can be an alternative to
the FIM, as the two are inversely proportional [17].

Remark 1 The eigenvalues of Q measure the information
gain associated with the new samples taken along the direc-
tions denoted by their eigenvectors. Samples that maximize
Q, also maximize IG, steering the system toward unexplored
state-input space.

Unfortunately, Q(x) does not consider the information about
the state evolution along the planned trajectory that, instead,
cannot be neglected since we are learning the unknown part of
a dynamic system. Hence, let us start from the explicit solution
of (3), i.e.,

q(t) = Φ(t, t0)q0+∫ t

t0

Φ(t, τ) (B(τ)u(τ) + F u(q(τ),u(τ))) dτ.
(8)

Following [18], the first and the second moments of (8) are

µq(t) = Φ(t, t0)q0 +

∫ t

t0

Φ(t, τ) (B(τ)u(τ) + µ(x(τ))) dτ,

Qq(t) =

∫ t

t0

Φ(t, τ)Q(x(τ))Φ⊤(t, τ)dτ .

Unlike Q(t), Qq(t) describes the evolution of the uncer-
tainty on F u(q(t),u(t)) in the time window [t0, t] taking
into account the information about the fn(q(t),u(t)) around
the nominal trajectory. The maximization (of some norm) of
Qq(t) is expected to steer the system toward unexplored state
space regions, where the expected IG about F u(q(t),u(t)) is

maximized. For this reason, hereafter, we will rename Qq(t)
as Gexp(t0, t) and we will refer to it as Exploration Gramian.

We conclude by showing an important link between the EG
and the solution X(t) of the Continuous Riccati Differential
Equation (CRDE) associated with (3) in the absence of out-
put equations (i.e. sensor readings). In this case, the CRDE
becomes a Differential Lyapunov Equation (DLE), i.e.,

Ẋ(t) = A(t)X(t) +X(t)A⊤(t) +Q(t) , (9)

with initial condition X(t0) = X0. The solution of (9) is (see
[19])

X(t) = Φ(t, t0)X0Φ
⊤(t, t0) +

∫ t

t0

Φ(t, τ)Q(τ)Φ⊤(t, τ)dτ

= Φ(t, t0)X0Φ
⊤(t, t0) + Gexp(t0, t).

(10)
Analogously to what has been done in [10] for the CG, also
in this case equation (10) can be expressed as a function of
the sole EG. Let Gexp(−∞, t) represent the EG computed over
the interval (−∞, t],

Gexp(−∞, t) =

∫ t0

−∞
Φ(t, τ)Q(τ)Φ⊤(t, τ)dτ+

+

∫ t

t0

Φ(t, τ)Q(τ)Φ⊤(t, τ)dτ.

Since Φ(t, τ) = Φ(t, t0)Φ(t0, τ), it follows that

Gexp(−∞, t) = Φ(t, t0)Gexp(−∞, t0)Φ
⊤(t, t0) + Gexp(t0, t) .

(11)

By comparing (10) with (11), it follows that X(t) =
Gexp(−∞, t). Differently from Q(t), the EG takes into account
the integral informativeness of both the state-input sample
collected along the path and the state evolution of the system
encoded in the state transition matrix Φ(t0, t). However, the
state transition matrix is often not available in explicit form,
especially for nonlinear systems or LTV systems, and needs
to be computed by solving (5). Therefore, a simplified version
of the EG, which is easier to compute, is

GDF
exp(t0, t) =

∫ t

t0

Q(τ)dτ .

In the following, we will refer to GDF
exp as Dynamic-Free

Exploration Gramian (DF-EG). Of course, the DF-EG shares
somehow the same disadvantage as the Empirical Observ-
ability Gramian (EOG) [20] related to neglecting the system
state transition matrix. The EOG cannot approximate the local
observability Gramian for the states that do not appear in
the sensor model and hence its optimization cannot steer the
system along those directions. For the same reason, the DF-
EG cannot model the IG for the state that does not appear
in F u(q(t),u(t)), and hence its optimization cannot steer the
system along those directions. It is important to note that, DF-
EG is not a new metric for active exploration, as maximizing Q
has previously been employed in other works. For instance, in
[21], where the GP covariance is maximized within an active
tactile object exploration algorithm.



Fig. 1. Control system block diagram of the active perception-
exploration coupling methodology proposed in this work.

III. ACTIVE PERCEPTION-EXPLORATION COUPLING

This section first introduces the objective function chosen
as a baseline in our simulations. Subsequently, effective new
cost functions that integrate active sensing and exploration
measures are defined and an optimal control problem that
maximizes these functions is stated.

A. Perception-Exploration Performance Metrics
Let t ∈ [−∞, tf ], the first metric that we introduce in this

paper is the trace of DF-EG, i.e.

J1(q(t),u(t)) = tr
(
GDF

exp(−∞, tf )
)
,

chosen as the state-of-the-art baseline to prove the effective-
ness of our methodology. Furthermore, the DF-EG represents
the continuous-time version of the cost function proposed in
[7], wherein the IG is replaced by its equivalent definition,
Q, as described in [16]. The maximization of both IG and Q
yields the same optimal solution, as the logarithmic operation
does not alter the problem optimality. By maximizing J1,
the system will visit unexplored state-input spaces collecting
training set samples that maximize the information needed for
good model learning.

The second metric is the weighted combination of
J1(q(t),u(t)) and the trace of the CG, i.e.

J2(q(t),u(t)) = σEG tr
(
GDF

exp(−∞, tf )
)
+σCG tr (Gc(−∞, tf )) ,

where σEG, σCG > 0 are used to assign different levels of
importance to each component. The maximization of J2 will
result in finding the trajectory that simultaneously leverages
the sensor information for improving state estimation and
explores the regions where the expected knowledge about the
unknown model is maximized.

However, the DF-EG does not consider the system state
evolution along it. As a consequence, a better combination is
the following

J3(q(t),u(t)) = σEG tr (Gexp(−∞, tf ))+σCG tr (Gc(−∞, tf )) .

Unlike J2, in J3 both Gexp(−∞, tf ) and Gc(−∞, tf ) quantify
the sensory information and the evolution of the unknown
model uncertainty along the planned trajectory taking into
account the state evolution of the system encoded in the
transition matrix.

Remark 2 The trace operator (aka A-optimality criterion)
measures both the average IG about the unknown model and
the amount of measurement information. It also satisfies the
Bellman principle of optimality, i.e., tr(M + N) = tr(M) +

tr(N) implying that subpaths of an optimal path are optimal
as well. Other optimality criteria, not satisfying the Bellman
principle, could be used as, e.g., the D-optimality (matrix
determinant) or E-optimality (matrix eigenvalue) [22].

Remark 3 It is crucial to find the correct trade-off between
exploration and active sensing by adjusting the weights in
the proposed objective functions when precise estimation and
thorough exploration are required. Indeed, the combination of
active sensing and active exploration may exhibit contrasting
behaviors. For instance, let us consider a vehicle equipped
with a sensor providing intermittent measurements w.r.t. fixed
markers. The active sensing control strategy steers the robot
around the markers, maximizing the amount of sensory in-
formation. In contrast, active exploration guides the vehicle
to unexplored state space regions for retrieving the missing
dynamics where, however, the availability of the measurement
is not guaranteed, possibly reducing (because of Q, which is
related to the unknown dynamics) the amount of information
and hence the quality of estimation. As a consequence, an
effective control strategy needs to balance the benefits of
sensory information maximization with the advantages of state
space exploration for improving the system’s state estimation
and unknown dynamics reconstruction.

B. Online Optimal Perception-Exploration Problem
Let us consider a generic observer built on the augmented

system qaug(t) = (q(t), q̇(t),u(t))⊤ for estimating q̂aug(t),
needed for constructing the training set. The goal is to develop
an online exploration-perception control strategy (see Fig. 1)
by solving, at each time t, the following

Problem 1 [Online Optimal Perception-Exploration Control]
Given the prediction horizon consisting of L samples, the
control input u(t) ∈ S(∆), where S(∆) is the family of
piece-wise constant functions with sampling period ∆T , the
predicted trajectory of the nominal system q̃aug obtained by
applying u(t) starting from the initial estimated state q̂aug(tk)
at time tk, find, ∀t− ∈ [tk, tk+L], the optimal control sequence

u∗
ref(t−) = arg max

u∈S(∆)
Jl(q̃aug(t−),u(t−)) l = 1, 2, 3 (12)

s.t.
˙̃qaug(t−) = fn(q̃aug(t−),u(t−)) (13)

q̃aug(tk) = q̂aug(tk) (14)

q
aug

≤ q̃aug(t−) ≤ q̄aug (15)

u ≤ u(t−) ≤ ū (16)
c(u(t−), q̃aug(t−)) ≤ 0 (17)

where Jl(q̃aug(t−),u(t−)) with l = 1, . . . , 3 represents one
of the cost functions introduced in Section III-A, integrated
along the time interval [tk, tk+L]. (13) is the nominal system
dynamics used to predict the state evolution starting from the
initial state (14) provided at runtime by the observer. (15) are
the state constraints, (16) are the control constraints, while
(17) are other possible constraints such as the total energy
consumption for the execution of the task [10] or a Lyapunov
constraint to better ensure stability [23].



Problem 1 is solved using the CasADi tool [24] by rewriting
it as a Nonlinear Programming (NLP) problem. u∗

ref(t), is
exploited to compute the current system state estimate, q̂aug(t).
The state estimation-input pair is then added to the GP
training set. The GP is updated at intervals of ∆Tupdate, where
∆Tupdate > ∆T . By setting the update time distinct from
the sampling time, the samples are spatially more separated,
improving the GP’s ability to capture the characteristics of the
unknown model more effectively.

IV. RESULTS

To validate our methodology, we conduct tests on simulated
unicycle and quadrupedal robots. An Extended Kalman Filter
is employed as an observer, and training set samples are
collected online by optimizing each objective function detailed
in Section III-A. In addition, we also compare our method with
a random approach generated by applying random input. Each
learned GP, yielding estimates of the unknown dynamics f̂u,
is validated on a testing trajectory of 200 samples for both case
studies. The testing trajectory consists of (qtest, q̇test)⊤, along
with the corresponding control inputs utest. For each sample
of the testing trajectory, we compute the mismatch error

e = q̇test −
(
fn(q

test,utest) + f̂u(q
test,utest)

)
(18)

where the second term in brackets is the reconstructed dynam-
ics. To show the effectiveness of our approach, we compare the
Root Mean Square (RMS) of the mismatch errors. Moreover,
we consider σe = σa = 1, for both case studies.

A. Unicycle vehicle
Let us consider a unicycle vehicle affected by an un-

known external disturbance fu(q,u), whose dynamics is
described by (1) with q = [px, py, θ]

⊤, u = [v, ω]⊤ and
fn(q,u) = [v cos θ, v sin θ, ω]⊤. According to (7), the aug-
mented unicycle vehicle has qaug = [px, py, θ, ṗx, ṗy, ω, v]

⊤

as state and uaug = [v̇, ω̇]⊤ as input. The vehicle starts from
q0 = 06 with zero estimation error and initial uncertainty
P 0 = 0.4 I6×6. The onboard sensors provide noisy dis-
tances w.r.t. four markers located at (0,−5) m, (0, 5) m,
(10, 6) m, (−10,−10) m. The measurement noise covariance
matrix is R = 0.25I4×4. Moreover, −3m/s ≤ v ≤ 3m/s
and −3 rad/s ≤ ω ≤ 3 rad/s, while, ∆T = 0.1 s, and
L = 10 samples. Finally, the unknown disturbance is defined
as fu(q,u) =

(
−0.3 sin θ, 0.3 cos θ, 0.3 cos θ sin θ

)⊤
.

The training set is built online by solving Problem 1 and
updating the GP every ∆Tupdate = 0.5 s, continuing until
the training set reaches 200 samples. Each sample of the
training set consists of the input xj = [p̂jx, p̂

j
y, θ̂

j , vj , ωj ]⊤

and the output yj = [ˆ̇pjx, ˆ̇p
j
y,

ˆ̇
θj ]⊤ − fn(q̂

j ,uj). Once a
testing trajectory (qtest, q̇test) and corresponding input utest

have been chosen, we compute the mismatch error defined
in (18) along such a trajectory, with qtest = [ptest

x , ptest
y , θtest]⊤,

q̇test, and utest = [vtest, ωtest]. For this case study, we have
q̇test = fn(q

test,utest)+fu(q
test,utest), and hence (18) reduces

to e = fu(q
test,utest) − f̂u(q

test,utest). Finally, the RMS of
the mismatch errors are compared in TABLE I. Overall, all

Fig. 2. Real system block in Fig. 1 for the quadrupedal robot. u∗
ref are

the robot CoM reference. Horizon [26] converts it to the optimal input u∗

used to update the state estimate and hence the training set.

three performance indices improve the quality of the training
set over the random approach. Comparing J2 and J3 to J1
indicates that the active sensing part further enhances the
quality of the training dataset. In general, the RMSE values for
J2 and J3 are smaller than those for J1. Moreover, J3 allows
to achieve the best results in terms of mismatch errors. Finally,
we have evaluated the time needed for the GP update and for
solving Problem 1, both w.r.t. the training set size. The update
time increases with the growth of the training set dimensions,
confirming the computational expense of updating the GP
scales as O(nN2) [25]. Furthermore, J3 consistently exhibits
long times for finding the optimal solution of Problem 1,
mainly due to a not-optimized code w.r.t. the one of the
quadrupedal robot.

B. Quadrupedal Robot
We now test the proposed metrics on a more complex

dynamic system such as a quadrupedal robot. According
to [27], its approximated linear Single Rigid Body Dynamics
(SRBD) in the world frame is

q̇ =

 ṗ

Θ̇
fn(q,u)

+

 03×1
03×1

fu(q,u)

 , (19)

with fn(q,u) =
[∑4

i=1 f i

m + g,
∑4

i=1 I(ψ)ri × f i

]⊤
, q =

[p,Θ, ṗ, Θ̇]⊤ and u = [f1, . . . ,f4]
⊤. Moreover, p ∈ R3

is the robot’s position, m is the robot’s mass, g ∈ R3 is
the gravity vector, and I ∈ R3 is the robot’s inertia tensor,
Θ = [ϕ, θ, ψ]⊤ is the robot’s orientation with ϕ, θ, and ψ
are the roll, pitch, and yaw angles, respectively. Notice that,
we assumed that the roll and pitch angles do not significantly
vary during the robot’s motion. Additionally, ri ∈ R3 is the
vector connecting the center of mass (CoM) to the point where
the force f i ∈ R3 is applied with i = 1 . . . 4. The system
dynamics expressed by (19) represents a simplified version of
the more complex nonlinear one. Therefore, fu(q(t),u(t))
(O(q2) is zero in this case) represents the legs dynamics, the
robot-ground interaction, and the small angles approximation
on pitch and roll in the SRBD. According to (7), the new
augmented state is qaug = [p,Θ, ṗ, Θ̇, p̈, Θ̈,f1, . . . ,f4]

⊤

with input uaug = ḟ i. The robot is simulated in PyBullet,
as shown in Fig. 2. We consider q0 = 018 with zero
estimation error and initial uncertainty P 0 = 0.32I18×18.
An onboard IMU provides the linear acceleration and the
angular velocity of the robot CoM. Additionally, a laser scan
provides noisy distances of the floating base CoM w.r.t. fixed
landmarks. Moreover, R = 0.12I9×9, ∆T = 0.04s and



Unicycle vehicle Quadrupedal robot
RMS(e) Improvement w.r.t. random Improvement w.r.t. J1 RMS(e) Improvement w.r.t. random Improvement w.r.t. J1

random [2.789, 3.697, 0.100] – – [1.689, 2.475, 5.197] – –
J1 [0.303, 0.567, 0.341] [-89%, -85%, +60%] – [0.591, 0.550, 1.486] [-65%, -78%, -71%] –
J2 [0.534, 0.141, 0.045 ] [-81%, -96%, -46%] [43%, -75%, -87%] [0.399, 0.405, 0.607] [-76%, -84%, -88%] [-32%, -26%, -59%]
J3 [0.148, 0.298, 0.141] [-95%, -92%, +29%] [-51%, -47%, -57%] [0.316, 0.381, 0.783] [-81%, -85%, -85%] [-47%, -31%, -47%]

TABLE I
RMS OF THE MISMATCH ERROR OF RANDOM, J1 , J2 , AND J3 FOR THE UNICYCLE VEHICLE AND QUADRUPEDAL ROBOT CASE STUDIES.

L = 20 samples. The training set is built with GP sample
collected every ∆Tupdate = 0.12s, until the training set reaches
200 samples. Each sample of the training set consists of the
input xj = [p̂j , Θ̂

j
, ˆ̇pj , ˆ̇Θj ,f j

i , r
j
i ]
⊤ and the output yj =

[ˆ̈pj , ˆ̈Θj ]⊤ − fn(q̂
j ,uj) with j = 1, . . . , 200. The mismatch

error (18) is computed on a testing trajectory with qtest =

[ṗtest, Θ̇
test

]⊤, q̇test, utest = [f test
i , rtest

i ], and i = 1, . . . , 4,
provided by the PyBullet simulator. Since we noticed small
variations in the height, roll, and pitch angles during motions,
we have excluded these variables from the discussion of the
results. TABLE I shows the comparison between the RMS
of mismatch errors. The RMSE values for J2 and J3 are
smaller than those for the random approach and J1, confirming
that the active sensing component contributes to enhancing
the quality of the training dataset. The case study involving
the quadrupedal robot demonstrates a rising trend in the GP
update time as the size of the training set increases, following
an O(nN2) as discussed for the unicycle vehicle. As stated
in the previous section, the time required to find the optimal
solution of Problem 1 should exhibit a growing trend with the
size of the training set. This trend is evident for the unicycle
vehicle but not for the quadrupedal robot. This is due to a
more optimized code version used in the latter case (based on
the open-source framework Horizon [26]).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an online optimal
perception-exploration control approach. Results have clearly
shown the data quality improvement obtained by including
active sensing. We have also observed an increasing trend in
GP update times as a function of the training set size for
both case studies. Future works will aim at optimizing the
GP model size by adding a sub-sampling level, e.g., based on
Nystrom-type methods [28] or a subset data technique [25],
to reduce the growth rate of the training set size, which is of
paramount importance for real-time experiments.
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