SPECTRAL ASYMPTOTICS AND METASTABILITY FOR THE LINEAR RELAXATION BOLTZMANN EQUATION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

SPECTRAL ASYMPTOTICS AND METASTABILITY FOR THE LINEAR RELAXATION BOLTZMANN EQUATION

Résumé

We consider the linear relaxation Boltzmann equation in a semiclassical framework. We construct a family of sharp quasimodes for the associated operator which yields sharp spectral asymptotics for its small spectrum in the low temperature regime. We deduce some information on the long time behavior of the solutions with a sharp estimate on the return to equilibrium as well as a quantitative metastability result. The main novelty is that the collision operator is a pseudo-differential operator in the critical class S^1/2 and that its action on the gaussian quasimodes yields a superposition of exponentials.
Fichier principal
Vignette du fichier
Boltzmann-linear-relaxation.pdf (615.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04225686 , version 1 (03-10-2023)

Identifiants

  • HAL Id : hal-04225686 , version 1

Citer

Thomas Normand. SPECTRAL ASYMPTOTICS AND METASTABILITY FOR THE LINEAR RELAXATION BOLTZMANN EQUATION. 2023. ⟨hal-04225686⟩
30 Consultations
22 Téléchargements

Partager

More