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SPECTRAL ASYMPTOTICS AND METASTABILITY FOR THE LINEAR
RELAXATION BOLTZMANN EQUATION

THOMAS NORMAND

ABSTRACT. We consider the linear relaxation Boltzmann equation in a semiclassical framework. We
construct a family of sharp quasimodes for the associated operator which yields sharp spectral asymp-
totics for its small spectrum in the low temperature regime. We deduce some information on the long
time behavior of the solutions with a sharp estimate on the return to equilibrium as well as a quan-
titative metastability result. The main novelty is that the collision operator is a pseudo-differential
operator in the critical class $1/2 and that its action on the gaussian quasimodes yields a superposition
of exponentials.
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1. INTRODUCTION

1.1. Motivations. We are interested in the linear Boltzmann equation:
{h@tu + v hoyu — 0,V - hOyu + Qu(h,u) =0

11
(1) Ujz=0 = U0

in a semiclassical framework (i.e in the limit h — 0), where h is a semiclassical parameter and corresponds

to the temperature of the system. Here we denoted for shortness d, and 0, the partial gradients with

respect to z and v. This equation is used to model the evolution of a system of charged particles in

a gas on which acts an electrical force associated to the real valued potential V' that only depends on

the space variable x. The operator QQ is called collision operator and models the interactions between

the particles. Here the unknown is the function u : R, — L'(R24) giving the probability density of the
1
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system of particles at time ¢ € R, position 2 € R? and velocity v € R?. For our purpose, we introduce

the square roots of the usual Maxwellian distributions

e_% v
(12) Mh(’l}) = W and Mh =€ 2" Up.

This paper is devoted to the study of the linear BGK model for which the collision operator is
(1.3) Qulu) =h(u= [ ule)avud)

v’ €R4
and corresponds to a simple relaxation towards the Maxwellian. Denoting @3, (h, -) the formal adjoint of
Q(h,+), one can easily compute

(14) Quih M3)=0  and  Qj(h,1)=0

so in particular M3 is a stable state of (1.1) and Qy features the local conservation of mass. In order to
do a perturbative study of the time independent operator associated to (1.1) near M%N we introduce the
natural Hilbert space

H={ueD; M, ue L*(R*)}.
It is clear from the Cauchy Schwarz inequality that # is indeed a subset of L!'(R2?) provided that
e~2r € L2(RY). In view of (1.4) and the definition of A, it is more convenient to work with the new
unknown

f=M; u Ry — L2(R??)

for which the new equation becomes

(1.5)
f|t:0 = fo
where
(1.6) Qn =M " 0 Qy(h,-) o Mp.

Denoting with the notation (1.2),
I, : L*(R*?) — L*(R?9)
the orthogonal projection on u L2(R%), we have by (1.3) and (1.6)
(1.7) Qp = h(Id — 1I;).
Our study will be focused on the spectral properties of the new time independent operator
P, =v-hd, — 0,V -hd, + h(I1d — 1I;)
= X{ +Qn

where the notation Xg will stand for the operator v - hd, — 0,V - hd,, but also for the vector field
(x,v) = h(v, =0,V (x)).

This type of questions has recently known some major progress on the impulse of microlocal methods.
The operator P, was already studied in 2016 in [13] where the use of hypocoercive techniques enabled
to get some resolvent estimates and establish a rough localization of its small spectrum which consists of
exponentially small eigenvalues in correspondance with the minima of the potential V. This type of result
is similar to the one obtained for example for the Witten Laplacian by Helffer and Sjostrand in [5] in the
1980’s. Such a localization already leads to return to equilibrium and metastability results which can be
improved as the description of the small spectrum becomes more precise. For example, sharp asymptotics
of the small eigenvalues of the Witten Laplacian were obtained later in the 2000’s in [2] and [1] and later
again for Kramers-Fokker-Planck type operators by Hérau et al. in [6]. In these papers, the idea was
to exhibit a supersymmetric structure for the operator and then study both the derivative acting from
0-forms into 1-forms and its adjoint with the help of basic quasimodes. However, these methods do not
apply to the Boltzmann equation as in that case the matrix appearing in the modification of the inner
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product does not obey good estimates with respect to the semiclassical parameter h (see for instance [12]
for the case of the mild relaxzation collision operator).

This is why our goal in this paper will be to give precise spectral asymptotics for the operator Py
through a more recent approach which consists in directly constructing a family of accurate gaussian
quasimodes for our operator in the spirit of [1,8] for Fokker-Planck type differential operators and [11]
for the mild relaxation Boltzmann equation. Here the first difficulty is that like in [11], the operator that
we consider is non local and hence it is harder to compute its action on the constructed quasimodes.
This will be overcome thanks to the factorization result stated in Proposition 2.2. The second and
main difficulty is that unlike in [11], the bad microlocal properties of @y are such that its action on a
gaussian quasimode as used in [1, 8, 11] does not yield a precise exponential, but rather a superposition
of exponentials (see Lemma 2.4) wich will lead to the introduction of some new quasimodes given by a
superposition of “usual” gaussian quasimodes. The result that we manage to establish is similar to the
one from [41] for the Witten Laplacian as well as the ones from [6,7] with recent improvements by Bony
et al. in [1] for the Fokker-Planck equation.

1.2. Setting and main results. For d € N* and Z € C%, we use the standard notation (Z) =
(141Z|?)*2. Let us introduce a few notations of semiclassical microlocal analysis which will be used
in all this paper. These are mainly extracted from [14], chapter 4. For our purpose, it is sufficient to
consider pseudo-differential operators acting only in the variable v. We will denote € R? the dual
variable of v and use the semiclassical Fourier transform

Ff)m = [ e s de
R
We consider the space of semiclassical symbols
S”(((v,n»k) ={as € C>(R*¥); Yo € N>, 3C, > 0 such that |0%ay(v,n)| < Cah_”‘o‘l((v,n»k}
where k € R and x € [0,1/2]. Given a symbol a;, € S*(((v,7n))*), we define the associated semiclassical
pseudo-differential operator for the Weyl quantization acting on functions v € S(R%) by
, , !
Opy(an)u(w) = (2rh) [ [ b0, (UL p)u(e') de'dy
]Rd Rd 2

where the integrals may have to be interpreted as oscillating integrals. We will denote W*(((v,7))*) the
set of such operators. Note that the operator Opy, (ar) admits the distributional kernel

Kn(v,0') = Fit (ah (” J; v )) (v — ).

Conversely, if an operator Opj,(an) € U*({(v,n))*) admits the distributional kernel K} (v,v’), then its
symbol is given by
(1.8) an(v, ) = Fa((Kn 0 4)(v,)) ()
where A denotes the change of variables
A, v") = (v +v" /2,0 =" /2).

We will also make a few confining assumptions on the function V', assuring for instance that the
bottom spectrum of the associated Witten Laplacian is discrete. In particular, our potential will satisfy
Assumption 2 from [8] and Hypothesis 1.1 from [13].

Hypothesis 1.1. The potential V is a smooth Morse function depending only on the space variable
x € R? with values in R which is bounded from below and such that

1
|0,V (x)] > ol for |z| > C.

Moreover, for all a € N® with |a| > 2, there exists Cy, such that
02V < Con
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In particular, for every 0 < k < d, the set of critical points of index k of V that we denote U) is finite
and we set

(1.9) ng = #U©,
Finally, we will suppose that ng > 2.

The last assumption comes from the fact that when ng = 1, the so-called small spectrum of the operator
Py, (i.e its eigenvalues with exponentially small modulus) is trivial, so there is nothing to study. It is
shown in [9], Lemma 3.14 that for a function V satisfying Hypothesis 1.1, we have V' (x) > |z|/C outside
of a compact. In particular, under Hypothesis 1.1, it holds e~V/2" € L?(R¢%). Moreover, in our setting,
XP is a smooth vector field whose differential is bounded on R??, so the operator X/ endowed with the
domain
D = {u € L*(R*?); X['u € L*(R*")}

is skew-adjoint on L2(R2?) and the set S(R??) is a core for this operator. Since moreover the collision
operator @y, defined in (1.7) is bounded and self-adjoint, we have (P, D)* = (=X +Qp, D) and (Py, D)
is m-accretive on L2(R??).

For an operator such as P, which is not for instance self-adjoint with compact resolvent, we do not
have any information a priori on its spectrum (except here that it is contained in {z € C; Rez > 0}). In
[13], the use of hypocoercive techniques enabled to establish a first description of the spectrum of P, near
0 which, in the spirit of the case of other non self-adjoint operators studied in [(], appears in particular
to be discrete. More precisely, the following result is shown in [13]:

Theorem 1.2. Assume that Hypothesis 1.1 is satisfied and recall the notation (1.9). Then the operator
(Pn, D) admits 0 as a simple eigenvalue. Moreover, there exists ¢ > 0 and hg > 0 such that for all
0 < h < hg, we have that Spec(Py)N{Rez < ch} consists of exactly ng eigenvalues (counted with algebraic
multiplicity) which are real and exponentially small with respect to 1/h. Finally, for all 0 < é < ¢, the
resolvent estimate

(Ph—2)""=0("")
holds uniformly in {Re z < ch}\B(0,ch).

In order to study the long time behavior of the solutions of (1.5), we need a precise description of the
small spectrum of P,. To this aim, we construct in Section 3 a family of accurate quasimodes localized
around the minima of V' that enables us to establish sharp asymptotics of the small eigenvalues of Pj,.
This will lead to the following Theorem which is the main result of this paper. Before we can state it,
let us introduce a few notations that we will use throughout the paper. We denote

V(z) v?
1.1 = b
(1.10) W(o,0) = o+ 2
the global potential on R2¢ and for = € R?,
(1.11) V, (resp. W) the Hessian of V at x (resp. the Hessian of W at (x,0)).

When s € R? is a saddle point of V' (i.e s € UM), we also denote
(1.12) Ts the only negative eigenvalue of V.

For the sake of simplicity, we will make in the statement of the Theorem an additionnal assumption
(Hypothesis 2.8) on the topology of the potential V' that could actually be omitted (see [10] or [1]). Tt
implies in particular that V has a unique global minimum that we denote m.

According to Theorem 1.2, we can associate to each m € U®\{m} a non zero exponentially small
eigenvalue of P, that we denote A\(m, h).

Theorem 1.3. Suppose that Hypotheses 1.1 and 2.8 are satisfied and recall the notations (1.11)-(1.12).
The exponentially small eigenvalues of Py satisfy the following equivalent in the limit h — 0:
—25(m)

A(m, h) ~ ho(m)e™ =




METASTABILITY FOR THE LINEAR RELAXATION BOLTZMANN EQUATION 5

with
1 24+ v2\ Vi / det Vi 1/2/ ( (14 2)(1+7) )

= — kS(V)EkS(2)In | 2 dzd

o) wsg(;n)(%ﬁ) (Idetvsl> creya BORE I 2 T ) e
where

2V2 i\ =1
ko(2) = = (Z %)2\/E ;o m=-3+2v2 ;0 1=-3-2V2
VITsl(z = 72)2 N2 =72

and the maps S and j are defined in Definition 2.7.

Finally, following [13], we use the sharp localization obtained in Theorem 1.3 in order to discuss the
phenomena of return to equilibrium and metastability for the solutions of (1.5). More precisely, we are
able to give a sharp rate of convergence of the semigroup e *"»/" towards PP, the orthogonal projector
on Ker P, : denoting A* the smallest non zero eigenvalue of P}, we establish that the rate of return to
equilibrium is essentially given by \*/h:

Corollary 1.4. Under the assumptions of Theorem 1.3, there exists hg > 0 such that for all 0 < h < hg
andt >0,
||e—tPh/h _ PlH < Ce—t)\*/h.

Besides, in the spirit of [1, 11], we also show the metastable behavior of the solutions of (1.5):

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 hold true. Let us consider some local
minima m; = m, mo, ..., my, such that

SU®) = {+00 = S(my;) > S(my) > --- > S(m,)}
for the map S from Definition 2.7. For 2 < k < p, denote Py the spectral projection (which is not
necessarily orthogonal) associated to the eigenvalues of Pp that are O(e_25(?k)).
(f,fhgkgp satisfying

Then for any times

S(mp 1)
t; > In(h®)| and t; >|W(h®) F for k=1,...,p—1
as well as St
tf = +oo and tz:O(hoer o ) for k=2....p

one has
e /M =P+ O(R®)  on [t ,t]].

In other words, we have shown the existence of timescales on which, during its convergence towards the
global equilibrium, the solution of (1.5) will essentially visit the metastable spaces associated to the small
eigenvalues of Pj.

Another perspective would then be to study the case of collision operators satisfying the local conser-
vation laws of physics, such as the full linear Boltzmann operator

n = h(ld —TI;7%)

with 1T L the orthogonal projector on the collision invariants subspace

v2 2

’1)2 v 1)2
Vectga {e_ﬁ, vie A, ..., vge” ik, v2e_Th}L2(Ri)
which was recently studied in [3] at fixed temperature.
2. PRELIMINARIES

From now on, the letter r will denote a small universal positive constant whose value may decrease as we
progress in this paper (one can think of r as 1/C).
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2.1. Naive approach. In order to investigate a first natural approach to our problem consisting in
trying to reproduce the method from [11] which was itself inspired by [1,8], let us make for simplicity
and for this subsection only an additional assumption.

Hypothesis 2.1. The potential V' has exactly one saddle point s.

Roughly speaking, this approach consists in introducing a linear form ¢(x,v) = £, - (x —s) + £, - v in the
variables (x —s,v) as well as a gaussian cut-off § which is essentially given by

L(z,v) .2
O(x,v) = / e 2rds.
0

With the notation (1.10), the idea is then to introduce the so-called gaussian quasimode

o(z,v) = 0(z,v) e_W(’?U)

and compute P in order to then choose the linear form ¢ minimizing the norm of P,p. We already
know from [11] (proof of Proposition 3.13) that

(2.1) X o(x,v) = hpg(x,v)e_%(W(L”H%éz(L”)) (1+O(h)) with py = Op~ (1), |z —s|,|v] <7

It is also shown that the collision operator studied in this reference, that we denote ng, satisfies a similar
result:

(2:2) Q5" p(2,v) = has(e, v)e FWEIHEEED) (1L OR))  with o = 0= (1), 2 — s, o] <7

and it is then sufficient in that case to choose ¢ so that p; = —qy.

In our case, although @, may appear as a quite simple operator as it is just an orthogonal projection, in
order to perform a computation similar to (2.2), it will be more convenient to adopt a microlocal point
of view. This is the point of the two following results which are proven in Appendix A.

Proposition 2.2. Let us denote
bh = h@v + ’U/Q.

There exists a symbol my, € 51/2(<U,n>_2) given by

1 s
mp(v,7) = 2/ (y+ 1)0-2e—# (5+20%) gy
0
such that
Qh = b;; o Oph(mh Id) o bh.

Corollary 2.3. One has

Qn = Opy,(gn) o by
with

1 2 1}2
(o) = [ e+t ) ay (a4 o) € 82 (o)),
0
We are now in position to establish the following fundamental computation which shows that the bal-

ancing obtained between Xy and Qfogp cannot happen between X%y and Q. This will motivate the
introduction of some new quasimodes later on.

Lemma 2.4. Assume for simplicity that Hypothesis 2.1 holds true and let £ a linear form in the variables
(x —s,v). We have

1 W +3L2 () T —s
Qnep(w,v) = _h/ Oy(Ly)e " dy - ( >
0
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where with a slight abuse of notations, L, denotes both the linear form

A+y)le-(x—s)+ (1 —y)ly-v

Ly(z,v) = T
/2
(1922 + v+ 1))

and the vector representing it. Moreover, denoting

1/2

(2.3) My (v,m) = 2y + )02~ 1 (5 20°),
we have

. 1)d—2
(2.4) Opy(myp) o buip(a, v) = 2h(2mh) /2%~ 48 WH D2

(4y)>
x/ o H(FHE R @N) gy g,
v’ R4

Proof. According to Corollary 2.3, we have

Qh‘p('rv U) = Oph(gh) [haveeiwﬂl} (JJ, U)

::hOthm)F*%(W+%ﬁ)%}@%@

. ’ ! ’ !
_ h(271'h)7d\/ / e;%(vffu ).r,—,gh (U +2 v ’n) efi(W(:L’,v )+%Z2(z7v )) d’l)/dn Ev-
v’ €RE JneRd

Let us now compute the integral in n with the expression of g5 from Corollary 2.3:

i —+ 4 1 "2 IAY4 ) 2
i / (v4v') + i ’
/ eﬁ(’U*’U ).ngh(v v an)dn = / (y 1)d ! 7L |:('UU) / eﬁ(U*’U )'nef 214}:1 d'r)
nerd 2 0 2

neR4

_2’/ nter =) M= qp | dy
nerd

1 . ‘

:/ (y+ 1)d_1 _utr)? 12 ;v/) ] / o (=0 ) Qy’:g dndy
0 Y neRrd
d-1 (v— v)
—2(27711)‘“2/ (( )d) ((v—l-v)y-l-v—v)e s (yoro P+ 525 ) g
0 5+

Hence, we get

Vi (x 1 d—1
(25)  Queplw,v) = 2h(2wh) 26" 2(")/0 (124;1)“/ ey =)
2 ’U’E d

o o=t (B HE @)+ 2 4 12 (@0 dw'dy - 4,
and (2.4) is now a straightforward adaptation of (2.5) with m, ; instead of g,. Denoting x5 = — s,

241 21
y Id and Uy (T, V) = by - T Ly + Y 1
) Y

v,

1
A@:§m+&@+
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(2.5) becomes by the change of variables w = v’ + M, u, (x5, v)

1 d—1

_ _ V(@) +1)
,v) = 2h(2mh) =2 V;h)/ (Chat
Qne(x,v) (2mh) = "e 0 (dy)Ft!

y? 41
4y

-1
X exp {% (Eméfcxs - T +

v? — M;luy(xs,v) Uy (s, v))]

1 1 _Mywuw
X {(U—My uy(xs,v))y+v+My uy(ms,v)}e 7 dwdy - £,
weR?

1 d—1
P C.) (y+1) ~1/2 _ -1

(2.6) — 2he™ "2k /0 7(43/)%4_1 det(M,) ((1 +yv+ (1 —-y)M, uy(xs,v)> £,

-1 y?+1 _

X exp {Qh (&Z;ats - xs + 02— M, 1uy(xs,v) - Uy (T, v))] dy
Now s
y+ 1)~ _ 1

4 4y(4y€% +(y+ 1)2)

while
_ 4y

2.7 MYy =———— 1,
27 v T BT e

so the prefactor in the integral from (2.6) becomes

! [ =yt ly-x +<(1+y)+(1y)(y21))£ -v}
1/2 2 27T S 2 2 )Y
4y(4yg% +(y+ 1)2> Ayly + (y + 1) Ayly + (y + 1)

which is further equal to
1—y)le, -xs+ (1 1+ 03¢, - 1
Ut et DU 0 () (%),
/2 2
(4962 + w+ 1))

Thus, it only remains to show that the exponentials coincide, i.e

2 2
+1 _ v
y 1y 2 — M, luy(xs,v) Uy (zs,v) = Y

(2.8)

00 g - g + + L?,(z: v)

or equivalently

2
(4 )tz + (1 =)ty o)
dyl2 + (y +1)2

(y —1)?

(2.9) Ol - g + v? — M;luy(xs, v) - uy(xs,v) =

Using (2.7), we already obtain

4yl? y* -1 (> -1
. AT I o ¥ aly v+ L Ny
I P A A Ty | A A oY

16y2 y
so the LHS of (2.9) becomes
(1+y)?

My_luy(ajs, v) - Uy (zs,v)

1 -y y—-1°* -1 _
210) —— (0 26)? +2——— A, - w6l - ( — Ml) -,
210) o el ®) P ga g et whevt Ty 162 v )0
Finally, still using (2.7), one can easily check that
12 2 1)2 02
4y 1632 Y 4yl2 + (y + 1)2

so (2.10) equals the RHS of (2.9) and the proof is complete. O
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This result shows that unlike in the case of some S° collisions operators as studied in [11] (or even in
the case of differential operators [1,8]), here the action of @, on the quasimode ¢ does not yield a precise
exponential, but rather a superposition of exponentials with the linear form in the phase varying. This
suggests the introduction of some new quasimodes given by a superposition of functions similar to ¢ with
the linear form varying.

2.2. Labeling of the potential minima. We now drop Hypothesis 2.1. Before we can construct our
quasimodes, we need to recall the general labeling of the minima which originates from [2,4] and was
generalized in [7], as well as the topological constructions that go with it. Here we only introduce the
essential objects and omit the proofs. For more details, we refer to [11] where it is in particular shown
that, roughly speaking, the constructions for the potential V//2 are the projections on R% of the ones for
the global potential W. Recall that we denote

(2.11) U the critical points of V of index k.

For shortness, we will write “CC” instead of “connected component”. The constructions rely on the
following fundamental observation which is an easy consequence of the Morse Lemma (see for instance
[11], Lemma 3.1 for a proof):

Lemma 2.5. If v € UV, then there exists ro > 0 such that for all 0 < r < 1o, (z,0) has a connected
neighborhood O, in By(z,r) such that O, N {W < W(x,0)} has exactly 2 CCs.

It motivates the following definition:

Definition 2.6. a) We say that z € UV is a separating saddle point and we denote z € V) if for
every r > 0 small enough, the two CCs of O, N{W < W(z,0)} are contained in different CCs of
{W < W(z,0)}.
b) We say that o € R is a separating saddle value if o € %(V(l)).

It is known (see for instance [11], Lemma 3.4) that V() = ) since ng > 2. Let us then denote
o9 > --- > oy where N > 2 the different separating saddle values of V/2 and for convenience we set
o1 = 4+o00. For 0 € RU{+00}, let us denote C, the set of all the CCs of {W < o}. We call labeling of the
minima of V' any injection U(®) — [1, N] x N* which we denote for shortness (my ;)5 ;. Given a labeling
(my ;)g,; of the minima of V', we denote for k € [1, N]

U](CO) = {mk/J; 1< K < ]{7} n {% < O'k;}

and we say that the labeling is adapted to the separating saddle values if for all k£ € [1, N], each my ; is
a global minimum of V restricted to some CC of {V/2 < o4} and the map

(2.12) T, : vl > ¢,

sending m € U;O) on the element of C,, containing (m,0) is bijective. In particular, it implies that

each my, ; belongs to U;O). Such labelings exist, one can for instance easily check that the usual labeling
procedure presented in [7] is adapted to the separating saddle values. From now on, we fix a labeling
(my ;)r,; adapted to the separating saddle values of V.

Definition 2.7. Recall the notation (2.11) and Definition 2.6. We define the following mappings:

e E:U0 — P(R?)
mg ; — Tk(mk,j)
where Ty, is the map defined in (2.12).

e VO P((V(l) U{s1}) x {o})
given by %V (my 1) = (s1,0) where sy is a fictive saddle point such that V(s1) = o1 = +00; and for
2< k<N, jW(my;) = 0E(my ;)N (V) x {0}) which is not empty (see for instance Lemma 3.5
from [11]), finite and included in {W = o }.
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L §100 5 PV U fs))
such that j(m) x {0} = j" (m).
e 0:UO = XvM)yu{o}
m > 3 (j(m))
where we allow ourselves to identify the set % (j(m)) and its unique element in L (VD) U {oy}.
e S:U0 —]0, 400

1%
m +— o(m) — 3 (m).
Following [2,4,7,8], we can now state our last assumption that allows us to treat the generic case. As
mentionned in the introduction, this assumption could actually be omitted (see [10] or [, section 6]) but

this would introduce additionnal difficulties that are not the main concern of this paper.

Hypothesis 2.8. Recall that we fized a labeling (my, ;)i ; adapted to the separating saddle values of V.
We assume the following:

a) Each my,; is the only global minimum of V on the CC of {% < o} to which it belongs.

b) For allm #m’ € U, the sets j(m) and j(m') do not intersect.

According to Proposition 3.9 from [11], this hypothesis is equivalent to the facts that (m,0) is the only
global minimum of W|g () and j (m) Nj*" (m’) = 0 which is what we use in practice.

3. ACCURATE QUASIMODES

3.1. Gaussian quasimodes superposition. By Hypothesis 2.8, the potential V' has a unique global
minimum that we denote m. For 7 > 0, denote 7 a positive number such that for all m € U\ {m} and
s € j(m),

2 2 2

(3.1) W(x,v) > o(m) + % +2 ;T

as soon as |z —s| < 7 and |v| > r.

We also denote for = € R?
By(z,r) = B(x,7) x B(0,r) C R*.

Let m € U\ {m}; for each s € j(m) we introduce a vector £5 = (£5,¢5) € R?? which will represent a
linear form involved in the construction of our quasimodes. Note that thanks to item b) from Hypothesis
2.8, each £3 corresponds to a unique m € U(®\{m}. In the spirit of [I,%, 11] and more precisely in view
of (2.1)-(2.2), we want s to be a local minimum of the function W (z,v) + (¢5 - (z —s) + £5 - v)?/2 so
according to Lemma B.1 and using the notation (1.11), we take ¢° satisfying

_ 1

-V 162 A5 — |Zf1\2 > 3

This condition would be sufficient to develop a framework for the construction of our quasimodes. How-
ever, it would appear later on when establishing a result analogous to the one of Lemma 3.6 that the

optimal choice of £% would actually satisfy

Vil —jeP =t
Similarly, one could show in this framework from the analogous of (3.9) that our quasimodes would not
depend on the norm of ¢%. Thus, we set

(3.2) |52 =1
as well as
(3.3) A R

straight away as it leads to significant simplifications in the study.
We now introduce the polynomial

(3.4) P(y) =47+ (v+1)?



METASTABILITY FOR THE LINEAR RELAXATION BOLTZMANN EQUATION 11

and its two roots
y1=-3+2v2€(-1,0) and yp=-3-2vV2< 1.

In the spirit of Lemma 2.4, we also introduce for v € (1, 1] the vector (LS., LS.,) € R?? where

yiw o oy
s 1 + Yy s s 1- v S
(3.5) LS., = W 2 and LY, = 7P(7)1/2 2.

Note that (Lg;r , Lg;v) = (5. Lemma 2.4 would actually suggest to consider only ~ € [0, 1], but doing so it
would appear with the notation (3.45) that (3.47) has no non-trivial solution, which is not true anymore
when working on (71, 1]. We do not consider «y outside (1, 1] as it would add a condition similar to (3.46)
which would be incompatible with (3.46). Here is the picture of an example in the case d = 1:

XU

Since by Hypothesis 1.1 we have that V' is a Morse function, there exists according to the Morse Lemma
a smooth diffeomorphism ¢s defined on B(s, 7), sending s on 0, whose differential at s is the identity and
such that

(3.6) Voot =V(s)+ %Ws )

For shortness, we will use for x € B(s,7) the notation
(3.7) Ts = ¢s(v)

and we introduce the smooth function LS supported in B (s,27) x R? and given when x is close to s by
the twisted linear form:

Li(v,v) = L%, -3+ L5, v for (z,v) € B(s,7) x RY.

Now, let us denote ¢ € C°(R,[0,1]) an even cut-off function supported in [—4d,d] that is equal to 1 on
[—0/2,8/2] where § > 0 is a parameter to be fixed later. As we will not be able to produce some remainder
terms that are uniform with respect to v € (71, 1], we will work on [y; + v, 1] with

v > 0 that will be fixed small enough before letting h — 0.
Consider also a probability density k3 on [y, + v, 1] as well as the quantity

1 o0 S 2 vrh
38) A= [ k0) [ ((a)e Fsdy= Y2140 ") forsome a >0,
e8) A= [ w0 | () 75 (1+0(™/")

where Lo
1
V() = (52 + 105, 2) = .

We will also use the notation
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m
v,h

We now define for each m € UO\{m} the gaussian cut-off superposition 6™, as follows: if (x,v) belongs

to

U {|U§| <20} N By(s,r)
YE[Y1+v,1]

for some s € j(m), then

(3.9) o™, (z,v) = 1(1+( > )‘1/1 k3 () /Li(W)C(S)e‘S”?"dsdv)
. v,h \*» ) v,h . v 0 NS(’Y) .

Here are some pictures of the set {|{US| <25} N By(s,r) fory =~ +v;y=0and y=1:

v v v

(L5, 4, =0} {L5 = 0} {L1 =0}

Furthermore, we set

(3.10) m —1 on (E(m) + B(O,e))\( || ( U {usl<25n Bo(s,r)))
s€i(m)  yE[vi+v,1]

with € = ¢(r) > 0 to be fixed later and

(3.11) 0, =0 everywhere else.

Note that 07}, takes values in [0, 1] and that, thanks to (3.9), we also have

™ =1 on ( U {los) <2630 Bo(s,r)) N ( N {us= 5})
YEM+w,1] €M +v,1]

and

6, = 0 on( U {|U§|g25}m30(s,r))ﬂ( N {Uﬁg—é}).

vE[m+v,1] YE V1 +v,1]

Denote 2 the CC of {W < o(m)} containing m. The CCs of {WW < o(m)} are separated so for € > 0
small enough, there exists £ > 0 such that

min {W(z,v); dist((z,v),Q) = ¢} = o(m) + 2¢.

Thus the distance between {W < o(m) + £} N (2 + B(0,¢)) and 9(Q + B(0,¢)) is positive and we can
consider a cut-off function

Xm € C° (dev [0,1])
such that
(312)  xm=1lon{W <o(m)+&n(Q+ B(0,¢)) and supp xm C (2 + B(0,¢)).

To sum up, we have the following picture:
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The following Lemma will among other things help us discuss the regularity of 677,

Lemma 3.1. Recall the notaion (1.11). For all v € (71,1], we have
_Vs_lL’Sy,z : Lfy,z - (Lfy,v)Q =1

In particular, according to Lemma B.1, (s,0) is a non degenerate minimum of W + %(L§)2 and the
associated hessian has determinant

2724 det Vs|.

Proof. Tt suffices to use (3.2) and (3.3):

2 _ 2

P(v) P(v) P(v)

For the computation of the determinant, it is sufficient to notice that, with the notation (1.11), the

hessian of W + §(L5)? at (s, 0) is
L) (L)
we () ()
Liw) \ L5
and apply Lemma B.1. ([

Proposition 3.2. Up to changing the sign of £3, for allv € (0, |11]), we can choose e > 0 and § > 0 small
enough so that the function 037, is smooth on the neighborhood of the support of xm given by Q+ B(0,¢).

Proof. Recall that by item b) from Hypothesis 2.8, each £5 corresponds to a unique m € U®\{m}. Let
us first show that in By(s,r), we have

313)  |J {lusl <26} = ({UF = —26} N {U3, 4, < 26}) U ({UF < 26} N {U3,,, > —26})
YEM+v,1]

(so in particular, this set is closed).
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(Us <26y {UE,,, > -2} — =

S | {UF > 2510 {Us,,, <26}

/ |

/ ! s
| /

I / !

Let (z,v) € {U} > =26} N{U3, 4, < 26}. If Uf(z,v) < 26, then (z,v) € {|Uf| < 20} and similarly,

it U5, 4, (z,0) > =26, then (z,v) e_{|U§1+y| < 20}, Now if Uf(z,v) > 26 and U3, (v,v) < —24,

by the intermediate value theorem, there exists v € [y1 + v, 1] such that U3(z,v) = 0 so in particular
(z,v) € {|U5| < 20}. Thus, we have shown that

(3.14) (U7 > 25y n{Us ., <26y ¢ | {lU3] <26}

yem+w1]
and clearly the same strategy of proof enables to show that
(3.15) Uy <20} n{Us,,, >-26}C | J {|U3] <26}

yElm+r1]
Conversely, let

(z,v) ¢ ({UF = =263 n{U3 ,, <20}) U ({U} <26} N{U3, ,, > —26}).

Since {U} < —20} N{U{ > 20} and {U3 |, < —20} N{U5 ;, > 25} are empty, we have
(3.16) (z,v) € {UF < =20} N{U5, 4, < =26} or (z,v) € {U3 4, >26} N{UT > 26}.
Besides, using (2.8) and (3.2), one can check that the sign of 9,US(z,v) is given by
(3.17) 0y — B2 v — (65 G+ P )y

which vanishes at most once in (y; +v,1). If it does not vanish in (1 +v, 1), then by monotonicity (3.16)
implies that for any v € [y1 + v, 1], we have (z,v) ¢ {|U5| < 20}. Now in the case where the expression
from (3.17) vanishes at some point in (71 + v, 1), its values at 3 + v and 1 have opposite signs, i.e

(3.18) 31265 v ((1 o =) T — B+ + ) ~v) > 0.

When both factors from (3.18) are positive, we have £5 - g > 0 so Uf(z,v) > 0 and it follows that
(z,v) € {U5 4, > 26}N{U§ > 26}. Moreover, we also have in that case that the minimum of v + U (x, v)
on [y1 +,1] is attained on the boundary of the interval since 0, U3 (x,v)|y=1 < 0, so for any v € [y1+v,1]
it holds (z,v) € {US > 2}. Here again, the same strategy of proof enables to show that if both factors
from (3.18) are negative, then for any v € [y1 +v, 1], it holds (z,v) € {U5 < —246}. Combined with (3.14)
and (3.15), this proves (3.13).

From (3.9), (3.10), (3.11) and (3.13), we see that the only parts on which it is not clear that 67 is
smooth are 7

F= ] ({Uf =26} N {US, ., > 26} N Bo(s,r)>,

s€j(m)

B= || (=20 (U5, =2)0Bysn),

s€j(m)
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F= || ({Uf — 28} N{US, ., < —26} N Bo(s,r)),
s€j(m)

F= || ({Uf < 26} N{US ,, = =26} N Bo(s7r)>7
s€j(m)

= || ( U {|U3|g25}maBO(s,r))

s€j(m) ~v€[y1+v,1]

and  Fy = 8<E(m) + B(O,a))\( || ( U (usl <26} ﬂBo(s,r))).
s€j(m) yeMm+uy,1]
Note that (3.13) suggested to put {Uf = 26} N{US,;, > =26} N Bo(s,r) in the definition of Fy, but we
allowed ourselves to discard the part {U} = 26} N {U3, 1, € [—~26,25)} N Bo(s,r) since it is included in
the interior of {U} > =25} N{U3, 1, <26} N By(s,r) (and we did similarly for F, F3 and Fy).
Now, let s € j(m) and (v,z,v) € [v1 +v,1] x Bo(s,7)\{(s,0)} such that U3(x,v) = L5 (x,v) = 0. Using
Lemma 3.1, we see that if » > 0 is small enough,

(3.19) Wz, v) = W(z,v) + %Lz(x,v)z > W(s,0).

Hence, for all v € [y1 +v,1], the set {US = 0} N By(s,r) is contained in {W > o(m)}. Assume by
contradiction that for any r > 0, the function UJ takes both positive and negative values on £ (m) N
By(s,r). Then according to Lemma 2.5, the two CCs of O, N {W < o(m)} are both included in E(m)
(the one on which US > 0 and the one where U5 < 0). This is a contradiction with the fact that

s € V(). Therefore U3 has a sign on E(m) N By(s,r) and since it depends smoothly on v and cannot
vanish on E(m) N By(s, ), this sign does not depend on . In particular, it is given by the sign of U§ on
E(m) N By(s,r) so taking ¢° such that

(3.20) £+ (¢s(w0),v0) > 0

for some (zg,v9) € E(m) N Bo(s,r), we get that for each v € [y1 + v, 1], the function US is positive on
E(m) N By(s,r). We can then choose £(d) > 0 small enough so that

(3.21) ((Bm) + B0.2)) 1 Bols, 1) € {UF > —6} 0 {5, > —o}.

Similarly, if we denote Qs the other CC of {W < o(m)} which contains (s, 0) on its boundary, one can
check that (¢3! (—ds(20)), —vo) € Qs N Bo(s,r) N{U§ < 0} where (g, vo) was introduced in (3.20) so US
is negative on Qs N By(s, r) and

(3.22) (2 + B(0,2)) N Bo(s,1)) € {UF <6} 0 {03, <6}

Choosing once again e(r) small enough, we can even assume that

(3.23) (E(m) T B(0,2) N O 1 B0, a)) C % (m) + Bo(0, r)

(see [11], Lemma 3.2 for more details). We first prove that 2% is smooth on F; N (2 + B(0,¢)): let

s € j(m) and (z,v) € Bo(s,r) N {U} = 26} N{U5,;, > 26} N (Q + B(0,¢)). According to (3.22), there
exists a small ball B centered in (z,v) such that

Bc (Bo(s,r) N{Us > 8y N{US ., > 8} N (E(m) + B(O,s))).

Thus, according to (3.9), (3.10) and (3.13) with ¢ instead of 20, we have 6}, =1 on B so 07}, is smooth at
(z,v). Obviously, the same goes for F» N (2 + B(0,¢)) and similarly, for (z,v) € (F3UFy)N(Q+ B(0,¢)),
we can show that 077, = 0 in a neighborhood of (z,v).

Now we show that F5 does not meet Q + B(0,¢). Recall that Q denotes the CC of {W < o(m)}
containing m. For s € j(m), we can deduce from (3.19) that if (v,z,v) € [y1 + v, 1] x 9By(s,r) is such
that US(x,v) = 0, then (z,v) ¢ Q. Hence (v,z,v) > |U(x,v)| must attain a positive minimum on



16 T. NORMAND

[v1+v,1] x (8By(s,r)N), so we can choose 6(r,v) > 0 independent of  such that for all v € [y, +v, 1],
the set 0By (s,r) N {|U5| < 26} does not intersect 2. It follows that we can choose £(d) > 0 such that

F5 C (R*\Q + B(0,¢)).

It only remains to prove that, as for Fj, the set Fg does not meet Q + B(0,¢). If (z,v) € Fs N By(s,r),
(3.21) and (3.13) imply that (z,v) € {U} > 26} N {US ,, > 20} so using (3.22), we see that (x,v)
is outside s + B(0,¢). Since it is not in (E(m) + B(0,¢)) either, it is outside Q + B(0,¢). Now if
(z,v) € Fe\ (i (m) + By(0,7)), (3.23) implies that (z,v) is outside Ujim)(Q2s + B(0,¢)) so it is also
outside Q + B(0, ) for € small enough and the proof is complete. O

From now on, we fix the sign of ¢° as well as € > 0 and § > 0 such that the conclusion of Proposition 3.2
holds true. In particular, even though we do not make it appear in the notations, the functions x, and
¢ now depend on v. Finally, we denote

(3.24) W™ (z,v) = W(z,v) — V(m)/2
and it is clear from (3.12) that
(3.25) W™ > S(m)+ & on supp Vyxm.

Our quasimodes will be the L2-renormalizations of the functions
(3.26) FI (@, 0) = Xan (@, 0)07 (2, 0)e”V @I m e U\ {m}
and for m = m,

fmn(z,v) = e~ WEE)/h ¢ Ker P,.
Note that for m # m, we have f}, € C° (R24) thanks to Proposition 3.2 and
(3.27) supp f,, € E(m) + B(0,¢")

where ¢’ = max(e, 7).
3.2. Action of the operator Pj,. Let us fix m € U(O)\{m}. For 7 € (1, 1], we will denote

(3.28) W™ (2,v) = W™(z,v) Z L2 (z,v)

SEJ(m

For s € j(m) and x € B(s,7) we also denote

_ LE (z,v) 2
(3.29) 05 (w,v) :/ e~ 2 ds.
0

We now have to compute Py f}7,. We will see fairly easily thanks to (3.35) that X[ applied to Jo5, will
yield a superposition of the exponentials

(3.30) (e_w/h)yehﬁu 1’

In view of (3.9), we see that the computation of Qp, £, will essentially boil down to the one of Qh(
which we are already able to do thanks to Lemma 2.4:

Qh(éfy,h —-wm /h h/ Oy ZL5(v,y) exp [— %(Wm(x,v) + %[35(%@) ) (i‘s,v)]Qﬂ dy - (5;5>

s e WT/hy

where Z3%(7y,y) stands for the vector

14y s . 1—y I3
(3.31) ((4|L§7U|2y+(y+1)2)1/2 vz (4|L’Sy 1,|2y+(y+1)2)1/2 %v> .
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Here we disregarded the fact that the linear form L., is twisted in = as @, only acts in v. Our concern is
now to see whether the functions

<eXp [7 %(Wm(x’v) N %[Xs(v’y) . (js’v)]z)Dve[v +v,1];y€[0,1]

belong to the family (3.30) as we hoped for some compensations between X/* o and Qn [, 1t appears
to be the case as, denoting for v € (71, 1] and y € [0, 1]

Y+
3.32 r =
(332 () =5k

b

an easy computation shows that
(3.33) Z2(1y) = (LE e 5 L, )0)-
We sum up the above discussion in the following updated version of Lemma 2.4.

Lemma 3.3. With the notations (3.29), (3.32) and (3.28), we have

RLE o _wm L "R Ts
hOp(a) (= £5,0) = Qu(@ e M) w0 = = [0y (Lr e ay - ().

Moreover,

~ mg 4 z)—V (m ]_ d—2
(3.34) Opy(my.pld) o by (9; S )) _ op(2nh)- /2o Yyt W+ )T
’ (4y)=
" / 67%("’f+§(v+v')2+<vg’;l)2+%L:(z,v')2) W' LS
v’ €RE "

We are now in position to give a precise computation of Py f5,.

Proposition 3.4. Let f7, be the quasimode defined in (3.26) and recall the notations (3.7) and (3.28).

There exist some functions R}, and (W2) ey, +v,1) 0 L?(R?%) such that
a) The function Py f3%, — Ry, is supported in 3% (m) + Bo(0, 7).
b) The function Ry, is Oy 12 <h¥e* S(;Ln)>

¢) For (z,v) € j(m) + By(0,7), one has

hNY2 [t 1~
(thll,flh — th)(x,v) = (E) [,1+y wyr (w, v) exp [— EWZm(LL‘,’U)} dz

where, using the notation (1.11), we have the expression
m s 0 =Vs\ (LS., i s 0.L5., Ts
wu,z(xvv) = E |:k1/(z) <Id 0 ) (Ls7 ) _/ kl/(’}/) dy (8 Ls, ):l : <’U> :
s€j(m) z5v Yit+v 2tz

Proof. In order to lighten the notations, we will drop some of the exponents and indexes m, s, v and
h in the proof. We know that 6 is smooth on the support of x and since 6 is constant outside of
iW(m) + By(0,7), we have
1 s\ — ! s s\ . —(L%)? s
(3.35) Vo=35 > (4T / | OO VLS 10 .
s€j(m) i

Using Corollary 2.3, we can then begin by computing
Qn(f) = hOpy,(9) ((Du0)xe™™ /" + (D, x) 0™V /M)

h a1 [ s o s _S(m)4e
(3.36) =3 > ()™ / L FEOI0D ) (WD Lgen5,,) dy + Oy (e )
s€j(m) m
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as x now depends on v, where we used (3.25) as well as the fact that Op,,(g) is bounded uniformly in h
since g € SY2({(v,n))™"). Now, since x((US) — 1 = O, ((z — s,v)?), we have thanks to Lemma 3.1 and
by a standard Laplace method (see Proposition D.1) that

(3.37) (XC(U2) = 1)e™ 7 1y e VLS = O, (h1+ge_s<;n>).

Hence, still by the boundedness of Op,,(g), we get that

wm wm m
(3:38)  Opa(0) (XC(WUD) €™ T Lpye L5, ) = Opil9) (€77 Lg(en L5, ) + O, (B HEe™ 7).
In the same spirit, we can write
]-Bo(s T)L’Sy v = 1|a:—s\<'?(1|v\<7' -1+ 1)LS - 1|a:—s\<'? Lfsy v T Py

with p, supported in {(z,v); [z —s| < 7 and |v| > r} and such that ||p||cc < C,, so using the boudedness
of Opy,(g) again and the fact that it is local in the variable x, as well as (3.1), we get

_wm s _we s 14d _Som)
(3839)  Opu(o)(e T Lpyen i) = Opalo)(e” T L2, ) Liemsicr + O, (R Hem 50,
Hence, putting (3.38) and (3.39) together and using (3.8), we get that (3.36) becomes
h >1/2

(340)  Qu(f) = (5

1 m
Z /+ kS(W)Oph(g)(e*W%Li’ )d’yllx s\<r+0 ( Mefs(;?n))
Y1tV

s€j(m)

which further gives

(341)  Qu(f)+ 0, (hF e ) =

h 1/2 1 1 1~m 7
B (%) Z [y1+u kS(W)/O 9y(Lr, (y)) exp {— EWFW(y)} dy - (;) dy 1jz—s|<7

s€j(m)

thanks to Lemma 3.3. By the change of variable z = I',(y), the integral in y from (3.41) becomes

/ 0, ( eXp — W™ (x, v)/h} dz.

Therefore, switching the order of integration and using (3.1) again, (3.41) yields that up to a

0,12 (hsgde )1 the function Qy,(f) satisfies

/ T W x,v
2@ =-(1)" T [ [ re@an () e 000
mTrv YTy

s€j(m)

Now the computation for the transport term is easier: according to (3.35), we have
hp v .
Xof—h(é)IV) Vf
= v . —W™/h v . -W™/h
h (—6 V) Vo xe +h (_896‘/) Vx e

s s s 7@ — S(m)+e
7*X 2, (40) [nw UC(U)( av)'wze e dz o+ Oy (he” )

s€j(m)

thanks to (3.25). Here again, we can use (3.8) and (3.37) to get

Xo ( 1/2 Z [Yl“l‘l’ ( ZV)'VLie_Wh;n1Bo(s,r)d2’+0y(h3+2de_5(hm>.

s€j(m
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Recalling that the differential of ¢ at s is the identity, the last step consists in using (3.6) to write
v ors _ (0 Id\ [z (LI, - 9
(aw) Vi = (VS 0) (v) (L +0,((@,07%)
_ (0 =Vs\ (L. (s - 2
(o 0 () (5) +orlion)
3+d

and the same argument that we used to establish (3.37) yields that up to a O, 2(h™2 e S(™/") the
function X f satisfies

ho\1/2 1 . 0 -V, LS, Ty _ WM(s,w)
(343) ng(m,v) = (%) Z / k (Z) (Id 0 ) <Ls’ ) ! <’U) S h dZ]‘B(J(S,T')(x3U)'

s€j(m) “ Y

The conclusion follows from (3.42) and (3.43). O

Remark 3.5. Since P} = — X'+ Qy, it is clear from (3.42) and (3.43) that

Prfon = (%)1/2 /1 ‘ZITZ(Z‘;U) exp {— %/W:“(x,v)}dz+0,4p (hTe_T>
2!

1+v
with
*m s 0 Vs Lzm - s aZLix Ts
wy,z(xav> = - Z |:ku(z) <Id 0 > <L57 ) +/ ku('y) dﬁy (ast’ >:| : <’U) ljw(m)+Bo(0,r)(I7U)'
sej(m) zv y1+v zv
3.3. Choices of ¢ and k. Following the steps from [1, 1], we would like in view of Proposition 3.4 to find

(£5)sej(m) C R?? satisfying (3.2) and (3.3) as well as some probability densities (kS)sej(m) on [y1 + v, 1]
for which the leading term of P, f7, vanishes, i.e such that

s 0 _VS Lz:v - s 8ZL§'$ s
sy 16 (o) (7)) - [ e (557) =0 weim), viebitnl
zZv 0% z

1+v zZ;v

As it will be more convenient to handle than the function &%, let us introduce the cumulative distribution
function (CDF) on [y + v, 1] associated to k3 :

(3.45) K5 = [ K

Lemma 3.6. Recall the notations (1.11)-(1.12). If (£°)scjm) is a family of vectors satisfying (3.2) and
(k5 )sejm) 15 a family of probability densities on [y1 + v, 1] for which (3.44) holds true, then

(3.46) Vol = 1505, ; 6= —/2|7s|6
(in particular, ¢S satisfies (3.3)) and the function K3 defined in (3.45) is a CDF on [y1 + v, 1] satisfying
the ODE

2v2 K;(z)=0.

VinlP(z) "

Proof. Let (£°)scjm) and (k)scj(m) satisfying the hypotheses of the lemma. According to (2.8), (3.2)
and (3.44), we have

(3.47) (K)'(2) -

K3 K3
P e g and ES()E 14 PV((ZZ))@ =0

(3.48) KVl + 20
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from which we deduce that there exists os < 0 such that ¢§ = o4/; and consequently, that ¢ is an
eigenvector of Vs associated to its negative eigenvalue 75. Plugging these informations in (3.48), we
obtain

K3(2) K3(2)
S S 2 s v — S S 4 v —
|7s|k5 (2) + 20 P0) 0 and oski(z) + P0) 0
which yield og = —+/2|75| and (3.47). O

Since the sign of ¢% was fixed by Proposition 3.2 and |¢3|? = 1, the choice of ¢3 is entirely determined by
(3.46). Unfortunately, there is no CDF on [y; + v, 1] satisfying (3.47). However, there exists a CDF on
the whole segment (77, 1] solving (3.47), which up to renormalization is given by

— L _ 3 L
(349) K32 = ()Y e K= g2 (2T
T 2¢/Imsl(z = 72)2 V2 — 72

This leads to the introduction of the following CDF on [y; + v, 1] which will be an approximate solution
of (3.47):

(3.50) Kio) = OB g e = () () = B
where
(3.51) BS = K3(1) ~ K3 +v) = K3(1) +0(v V).

Lemma 3.7. Recall the notation (1.12) and let (£*)sejm) a family of vectors satisfying (3.2), (3.46) and
whose signs are fived by Proposition 5.2. Let also (k5 )scjm) the probability densities on [y +v, 1] defined
in (3.50). Then for all s € j(m) and (z,v) € By(s,r), the prefactor from Proposition 3.4 satisfies

W (,0) = O (v W) <g§> . <x> |

Proof. By some computations similar to the ones we made in the proof of Lemma 3.6, we get that the
choice of (£*)sgj(m) implies that
P 2v/2 LS\ (7
VI g2 (B ()
22 VIRIPE) 0.15,) \ v
The term between brackets is exactly the one appearing in (3.47) so using (3.50) and the fact that K is
a solution of (3.47), we get

- K§(yi+v) (0.15,\ (is — 0.1\ (s
woz(®,v) = O(Bls ) (@LST > ' (v> :O(V m) (asti ) . (v>

by (3.51) and the definition of K§. O

wl‘:‘Z(m,v) =

Proposition 3.8. Recall the notation (1.12) and let f}7}, be the quasimode defined in (3.26) with (£*)scj(m)
and (k)scjm) satisfying the hypotheses from Lemma 3.7. Then

S(m)

1Pzl = e 1zl (00 () + O( 7 1) ).

Proof. First notice that thanks to item a) from Hypothesis 2.8, one can apply a standard Laplace method
(see Proposition D.1) to obtain with the notation (1.11)

T d
(3:52) 11231 = gz (1 0)).

Hence, according to Proposition 3.4, it is sufficient to show that

S(m)

(3.53) | Pufz — Bl = b e S50 (v VAT [n(w)).
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Now, still using Proposition 3.4 as well as Minkowski’s integral inequality and Lemma 3.7, we have

||th;nh — R,r,“hH < Ch'/? /1 (/ W™ (z,v)? exp [f E/V\[;Zm(x,v)} d(z,v)) 1/Zdz
’ ’ W (m)+Bo(0r) h

Y1+v
—r 1 S S t ~ ~
o [ (8 [ G (Ge) (5) (%)
v Bo(s,r) \OxL%, ) \O:L%,, v v
92— 1/2
X exp {— thm(x,v)}d(x,u)) dz.

s€j(m)

With the notation (1.11), the change of variables
241/2 s\ (L3,\" 12
(y,w) = (E) |:Ws + (Ls’> (sz' ) :l (Ts,v)
then yields according to Lemma 3.1

(354)  |[Pufm, — BR[| < OnltEe S5y i

! (y,w)? 1/2
Lo (5 Lt () () )
M N sej(m) T

tq-1/2

wm P () () | ()
Thanks to Proposition C.1, we know that
(3.55)

tq—1
—d t Y . Y _mw)? _ 2 _ Lz,m Lz,z azLi;m 3 azLi;m
o [ aat (w) <w>e T w) = ool ‘[W”(sz Lx, o.1%,) \o.rz,)

Since by (2.8)
oo (B} (B2 (005 - =8 () P08
° Li;v Lz;v asz;v P(Z)3/2 (1 + Z) éi ’

16
P(2) (20427 - (1-22) = P(2)?

Putting together (3.54), (3.55), (3.56) and computing the integral in z, we obtain (3.53) so the proof is
complete. O

where

we get

(3.56) la.|? =

4. COMPUTATION OF THE APPROXIMATED SMALL EIGENVALUES

Let us denote

; U
(4.1) L=
Y

the renormalization of the quasimodes defined in (3.26) and satisfying the hypotheses of Proposition 3.8.
The goal of this section is to compute the approximated eigenvalues

(4.2) /N\g,lh = (P N;T,lh’ ~;flh> = <thf,lh, N:Th>
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as XSL is a skew-adjoint differential operator and ?Zlh is real valued.
This will require to study the matrix

Vs +2Ly oL, Lyl.Lt, Ly.Lt
(4.3) HS = LWLEW 3+ LyoLt ) 0 t
L’Y»UL'y,:b 0 2 + L’vaL’y,v

where we used the notation (1.11) and for shortness, we wrote L, , and L, , instead of LS , and L% .
Lemma 4.1. For vy € [y; + v, 1], the matriz H? is positive definite.

Proof. Tt suffices to notice that

x x t t
L3, L3, x T L3, L3, T x
s . - V@ v . v v )
mele) o) =D () () T 6)- () e () (G22) ) )
and apply Lemma 3.1. ]

In the spirit of Proposition 2.2 and with the notation (2.3), let us denote
(4.4) Qy,n = by © Opy,(my,1, 1d) o by
For m € U\{m}, s € j(m), we also denote (-,-) the inner product on L?(B(s,) x RZ).

Lemma 4.2. Let s € j(m) for some m € UO\{m} and recall the notations (1.11), (3.24) and (3.29).
Then for all v € [y1 +v,1] and y € (0,1),

~ m (g ~ m (g oy — m 1 Ol/ h
(Qua (B ) 0™ ) = 202 omh) | det VA2 L0 2,2
' (L+y)(1+ (1 +2L3,P)y)
Proof. First, let us use the definition of @ to write
P WM (a,v) - WM (z,v) - WM (a,v) - WM (a,v)

<Qy,h(9%he h )797,he h >’F = <Oph(my7h Id) © bh (e’y,he h >7bh (e’y}he h >>f'

Using (3.34), we get
- M)\ x ™ (0 )42 v(m
(45 {Qua(lh o) o ) oo et
T Yy 2
1 2 2 _ )2 L3 x,v2—|—Ls x’v/2

/ exp[—f(V(x)%—v Rl + 2w )2+ =) + (7) (@ v) )}dxdvdv'.

|z—s|<7,v,0’ ER? h 8 8y 2

By the change of variables 2’ = ¢¢(x) and with the notation o (m) from Definition 2.7, the last integral
becomes

z’ z’

—20(m 1
(4.6) e m / exp [— —hH,jy v |- | v | |ldet Dyogt|da’dvdn’
lpg t(x!)—s|<F, v, v’ ER? 2 v v
where using the notation (4.3),
Ve+2L, L, LoaLh, LysL, 0 0 0
(y+1) —1 y +1 oy -1
(4.7)HS, = LyoLt, el t LyoL 2 v =H3+ (0 y;iy y§y
1 (y+1) -1 +1
L%ULEY,I y4y %T + L%ULt%v 0 y4y y4y
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is a positive-definite matrix uniformly in (y,y) € [y + v, 1] x (0,1) thanks to Lemma 4.1. Hence,
(HS,,)~/? exists and is O, (1) so by a standard Laplace method (see Proposition D.1),

/ /

x x

/ exp| — —HS, | v ]| |v]|ldet Dot da’dvdv’ = (2rh)>¥/2 det(HS ) /2

lps H(z')—s|<F, v, v ER? 2h ’ v’ v ’
x (14 0,(h))
4 d/2
(4.8) = (2mh)>¥?| det Vs|1/2 (4y) (1+0,(h))
(14y)d-? (1 +(1+ 2|L§’U|2)y)

where we also used Lemma B.2. The conclusion then follows from (4.5), (4.6) and (4.8). O

Lemma 4.3. Recall the notation (3.32) and let y1 +v < z <y < 1. Fory € [0,1), we have
I7lol,(y) €[0,1)

and

PO Al CRY) 1 , sy W (zv)
Qy.h (a’y7he h ) = o F'Y) () QF;lon(y),h (927he " )
on B(s,7) x RY.

Proof. First, notice that for all v € [y, + v,1), the function T, : [0,1) — [y, 1) is an increasing bijection
whose inverse is given by

. y—7
(4.9) I y) =

K 1—yy
so the first assertion follows from the hypothesis on z and . Now, by Lemma 3.3 applied with Q,
instead of Qp,, we get using the notation (3.31) as well as (3.33) that on B(s,#) x R%,

WM (z,0) W, (y) (=) Fs

(410) Qy,h <§’s)l7he7 h ) = —hayg(fy7y) e~  r . <~ )

v

(here we once again disregarded the fact that the linear form L, is twisted in « as @y, only acts in v).
Thus, denoting 92.Z (7, ) the derivative of ¥ w.r.t its second argument and still using (3.33), we also
have

o om B TGO
Qy,h (9,5%,16 h ) = —h ay(LFw(y)) e R . < v )
W ) (220) 7
= _hay ('g(zarz_l ° Fv(y))) e_wa . (1:)
Sy 4 _FramEn (7
= —h (FZ OF’Y) (y) BQZ(Z,FZ OF,y(y))e D A
so (4.10) with Qrzlorw(y)yh and éz,h yields the last statement. 0

Proposition 4.4. With the notations (1.11), (1.12), (3.49) and (4.2), we have for m € U\ {m}

—2S5(m)

A% =ho,,(m)e &
with

1

1 2+ 2\ Vinel [ det Vin \ /2 (1+2)(147)
Oy =— kg(v)k§(z)In [ 2 dzd
Gun(m) ™ Z <2—\/§) <detVs|) [/1<z<'y<1 o(Mka(2) n( 1+3Z+3V+ZV> =

s€j(m)

+0,(h) +O<I/2\/1‘TT|).
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Proof. As we mentionned at the begining of the section, since X! is a skew-adjoint differential operator
and f ", is real valued, we have

<thyh7f1/h> <thl/h’fl/h>
Now by Proposition 2.2, we get

(4.11) <th:lhvf:1h> = <Oph(mh Id) (bhf:jh)vbhfsz
and we saw through (3.36)-(3.40) that

(412) b 35;(%)1/2 > /1 ki(V)e_WTylLs vV 1jp—sj<i + Oy ( +de_¥)
Y1+v

s€j(m)
1 m iy, -
(4.13) = (2rh) 72 Y / B2 ()bn (B pe™ " a1y gy + O, (R5F e 5F)
s€j(m) 77ty

Note that (4.12) also implies

(4.14) b f, = O, (h#e* S(i"))

Combining the boundedness of Opy, (my, Id) with (4.13)-(4.14) and using the notation (4.4), (4.11) becomes

(@uf £ = @al) ™ Y /[ oo RS H(@n (B ) e ) dnda

s€j(m)

+ 0, (20 22)

(2mh)~ Z / /’Yl+V 2 k(= )<Qy h( y,he" - ) , §z7he_ e >7: dvydzdy

SGJ
‘o, (We—&:ﬂ)
(4.15) (27Th sEJZ: / [/1+V<Z<’Y<1 kS( )kS( )<Qy7 ( m ne” - ;ET B ) ’ éz ne- )L(LT B > ddeYdy

0, (420 22)

where for the last equation we used the fact that Q) 5 is self-adjoint. Applying Lemma 4.3 together with
the change of variables § = I';! o ', (y), we get that (4.15) yields

m rm _25(m)
(Qnfons o) + Oy (hd+2e W ) -

1 mg v ~ mg v
20m)t > [ [ e e (Qun (Fane ) B ) agaaan
Y14+r<z<y<1 JTT () 7

s€j(m)

which by Lemma 4.2 is further equal to

(4.16) fh(27rh) Y |detVs|_1/2/

s€j(m) Y1+r<z<y<1

I BOREILLE

rot) (14 gj)(l +(1+ 2|L;U|2)g)

By partial fraction decomposition, the g-integral becomes

/1 1 40 1 /1 1+2[L8 |2 i
g = - — ——dj
T () (1+g)(1+ (1+2\Lg,v|2)g> 2[L8 12 Jroiy 14+ (L4215, %) 147

(4.17) _ 1 1((1+ILZ,UIQ)(lJrF;l(V))>

= n
2|Ls |2 1+ (1+2/L8 )Tz ()
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and using (3.4)-(3.5) as well as (4.9), the quantity in the logarithm from (4.17) simplifies as follows:
L+ 128, )+ 17 () (P(x) +(1—2)*)(1 - 2)(1+7)

1+ (1+2[Ls P)T21() PRI —72) + (B2 + 22 +3)(y — 2)
(1421 =2)(1+1)

(1-=22) 143243y + 27)
(I+2)(1+9)

1+32+3y+2y

Putting together (4.16), (4.17), (4.18) and using (3.52), we get
~ - 25 (m)
(Pufii J) + 0, (n2e” 57 ) =

h  —2S(m) det Vim 1/2 / ( (1 + Z)(l + '7) )
4.19 — 2 (K (2)In | 2 dzd~.
( ) 7Te sej;n) (|detVS|) v <z<y<1 vk () In 14+32+3y+ 2y 1

(4.18) =2

Now, the function 1 + 3z + 37 + 27v is non-negative on [y;, 1]? and vanishes only at (v;,71). Moreover,
we have by Taylor expansion that

Zmax(z_% ’Y—“/l)

c ' C
for (v,2) € [y1,1]? close enough to (y1,7v1) and thus
1 (o (14+2)(1+7)

1432+ 3y + 2y

> = O(| In(z — fyl)|)

holds as well as

1 1
(5t

1+32+3y+2y
Besides, by (3.50) and (3.51), we have

) — O(IIn(y — )))-

2 V) i3 (14 0(v7))

1
with k§(z) = O(|z — 1| 2Vims] 1) on [y1,1]. Consequently, the integral

1 1
/ k§(7)k§(2) In (2 1+2){+7) ) dzdy
n<e<y<l L4 32+ 3y + 27

(4.20) kS (2) = (

exists and we have

(421) / e ORI (2 1+2)+7) )dzdw—ko(;ﬂ\/ll?)

143243y + 2y
14+ 2)(1
_ / kS (1)kS(2) In (2 U+2){+7) ) dzdy.
N <z<y<1 1432437+ 2y

Combining (4.19), (4.20) and (4.21), we get the announced result. O

5. PROOF OF THE MAIN RESULTS

We now introduce a series of results which will enable us to go from the approximated eigenvalues of Py,
to the actual ones.

Lemma 5.1. Let m € UO\{m}. Using the notations (1.12), (4.1) and (4.2), we have
i) | Pafiill = /W, <ou (n?) +0(va=1 ln(l/)|)>
i) | Py = \/ham, (Ol, (n*) + O(ln(u)|)>.
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Proof. The first item is an immediate consequence of Propositions 3.8 and 4.4. The second one can be
obtained similarly using Remark 3.5 and mimicking the proof of Proposition 3.8 after noticing that

. 015\ (i
s =om (575 ) - (7).

O
Lemma 5.2. For m and m’ two distinct elements of U9, we have
i) (P, Jm = 0u (e )
it) There exists ¢ > 0 such that ( ~1Th’ ~;n};> = O(e™¢/h)
Proof. The proof is a straightforward adaptation of the one of Lemma 5.5 in [I1], even though the

operator P, and the quasimodes ( fl‘;f‘h)m differ from the ones of this reference. We recall the main steps
for the reader’s convenience.

i): The idea is to use (3.27), the fact that P} is local in x, Hypothesis 2.8 and the support properties of
Vﬁl’,f‘h and Vyxm to show that

[(Puszme gm)| < (OpumaTa) (B2 @oxam)e™™/") , b fow ) = O (ne
by (4.14). We can then conclude with (3.52).

ii): It is shown in [11] (proof of Lemma 5.5) that when V(m) = V(m’), the supports of £, and ;“};
do not meet. Thus we can suppose that V(m) > V(m') and in that case, using once again (3.27) and
Hypothesis 2.8, we show that

< ll:lhv 1Th> :/ elThegthme’e
E(m)+B(0,e’)

so the conclusion immediately follows from (3.52). O

_ S(m)+S(m’))
R

2V —V(m)—V (m')+v?
- 2h

d(z,v) =0 (e

_ V(m)-V(m’) )
T

In order to go from quasimodes to functions that actually belong to the generalized eigenspace associated
to the small eigenvalues of Py, let us now consider the operator

1
My = — (z — Pp) " 'dz
2im |z|=ch
introduced in [13]. Using the resolvent estimates from Theorem 1.2, the following is established in [13]:

Proposition 5.3. The operator Iy is a projector on the generalized eigenspace associated to the small
eigenvalues of P, and satisfies ||Ip|| = O(1).

Lemma 5.4. Using the notations (1.12), (4.1) and (4.2), for any m € U, we have

(1 — o) £25,1| = \/m<oy(1) + O(h*l/QVﬁ ln(l/)|)>.

Proof. We simply recall the proof from [3]: we write
. 1 .
1—T0o)fB, = =— 1 _(z—pP) Y fmg
( O)fy’h 2% \2|=ch (Z (Z h) )fu,h z
-1

-1 -1 fm
= — - P P dz.
2 Jyoieen (2= ) Pl

We can then conclude using Lemma 5.1 and the resolvent estimate from Theorem 1.2. O

Lemma 5.5. Recall the notations (1.12), (4.1) and (4.2). The family (Hof;’?h)
mal: there exists c > 0 such that

<H0f:lh7nof:1fl> = O + O, (™M),

mey( almost orthonor-
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In particular, it is a basis of the space RanIly.
Moreover, we have

(Pullo [ TIo fI20) = Gomam AL, + 4/ AT, A7 (ou(\/ﬁ) + o(ywﬁ |1n(y)|2)>.

Proof. The proof is the same as the one of Proposition 4.10 in [8]. It suffices to write

(o £, Mo £ ) = (Fm, fm0 ) + (Fm,, (Lo — 1) F ) + (I — 1) £, o f25)

as well as

<PhH0th,Ho > <Ph v,ho n,1h>+<(H071) ~u,h7Ph l/h>+<H0Ph NlTh’(Hoil) N;flh .
and use all the previous results of this section together with Proposition 4.4. ]
Let us re-label the local minima my, ..., m,,, so that (S(m;));=1,. , is non increasing in j. For shortness,

we will now denote

Fi=0% and X =AT%
which still depend on v and h. Note in particular that according to Proposition 4.4, 5\j = 0,(\)
whenever 1 < j < k < nO.NWe also denote (ﬁj)jzl , the orthogonalization by the Gram-Schmidt
procedure of the family (Il f;);=1,.. n, and

.....

u; = BUS
Tl
In this setting and with our previous results, we get the following (see [8], Proposition 4.12 for a proof).

Lemma 5.6. With the notations (1.12), (4.1) and (4.2), for all 1 < j, k < ng, it holds

(Potg,ug) = 8500 + /A A <OV (\/E) n O(Vﬁ |1n(V)2)>.

In order to compute the small elgenvalueb of Py, let us now consider the restriction Pj|gant, : RanIly —
RanIly. We denote @t = tp,— —j+15 )\ = )\no —j+1 and M the matrix of Py |gan1, in the orthonormal basis
(G1,...,0pn,). Since Gp, = uy = f1, we have
M0 PN
M= < 0 O) where M = ((Phuj,uk>)

1<j,k<no—1
and it is sufficient to study the spectrum of M’. We will also denote {$) < --- < S,} the set {S(m;); 2 <
j <mnp}tand for 1 <k < p, Ej the subspace of L2(R2d) generated by {ur, S(m,) = Si}. Finally, we

set @y, = e~ (e=S-1/h for 2 < | < p and gj(w) = Hk G Wk = € —($=80/h for 2 < j < p (with the
convention £ (w) = 1). In view of Proposition 4.4, let us also denote

i 1 2+ v2\ Vil / det Vi \ /2 (1+2)(147) )
== kS (7)kS(2)In 2 dzd
otm) WSZ (2—\/5) (detvsl) [y1§z§7<1 SnAS(=) n( 1+3z+37+27)

a —2S(mp—j4+1)
0 ~ 0—J
Aj =hoo(mp,_ji1)e i

Lemma 5.7. With the above notations, the matriz M’ satisfies
N 1
h*leZSl/hM/ — Q(W) <M(3# —+ OV (\/E) —+ O<V2\/‘Ts| ‘ ln(y)|2)>Q(w)

with
M = ding (Go(mp,541)5 1 < j <no 1)
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and
Q(w) = diag(e1(@)ldg,, . .., ep(w)ldg, ).
In particular, for all v > 0, there exists hg > 0 such that for all 0 < h < hg,

hLe2S /M = Q(w) (MjE + o(ywﬁ |ln(u)2))Q(w).

Remark 5.8. In the words of Definition A.1 from [8], the last Lemma implies that for all v > 0, there
exists hg > 0 such that for all 0 < h < hg,

he2S1/h M s q ((Ek)k, w, vVl |1n(1/)|2) -graded matriz.

Proof. According to Lemma 5.6 and Proposition 4.4, we can decompose M’ = M} + M/, with
“ PR 1
My =diag(A); 1< j <no—1) and b= (\/)\])\k {Oy (\/E)JrO(u?\/@ |1n(l/)2)})

It then suffices to notice that Mg‘7E = /fleQSl/hQ(w)_1./\/1’19(12)_1 and that

1< k<no—1

h_162S1/'LQ(w)_1MIQQ(w)_1 =0, (\/E) + O(VZ\/l\TT\ |1n(V)|2)

where we still used Proposition 4.4. O

Proof of Theorem 1.3. According to Remark 5.8, it now suffices to combine the result of Lemma 5.7 with
Theorem A.4 from [3] which gives a description of the spectrum of graded matrices. We get that for all
v > 0, there exists hg > 0 such that for all 0 < h < hg,

1
h=te?Sm/h )\ (m, h) — Go(m) = O(VQ\/E \ln(l/)|2)
and the result is proven. O

Proof of Corollaries 1.4 and 1.5. With the notations from Theorem 1.3, it is shown in [13], section 4
with the use of PT-Symmetry arguments and a quantitative version of the Gearhart-Priiss Theorem,
that there exist ¢ > 0 and some projectors (II;)1<j<n, which are O(1) and such that

o I, =P,

o II0, = 6,410

* Pe =20 sm,)250m01

o e tP/h = N0 e IAmMEM/RTT 4 O(em)  for t > 0 and h small enough.
Corollary 1.4 directly follows, while the proof of Corollary 1.5 is then an easy adaptation of the one of
Corollary 1.6 from [1]. (Note that our notations ¢, and ¢; differ from that in [1]). O
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APPENDIX A. STRUCTURE OF THE COLLISION OPERATOR

The aim of this section is to show Proposition 2.2 and Corollary 2.3. For a, b two symbols, we denote
a#tb the symbol of Opj,(a) o Opy, (b). We start by showing that @, defined in (1.7) is a pseudo-differential
operator:

Lemma A.1. One has I}, = Op,,(wy,) with @y, € SY?(1) given by

2 2
wn(v,7) = 2%~ 5
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Proof of Lemma A.1. First, notice that the distributional kernel of II, is pp(v)pn(v”). Using the formula
(1.8) to compute the symbol of a pseudo-differential operator from its distributional kernel, we get

v +41,
Fur (040 /2 (0 = 0'[2) ) (v,) = 26
which is clearly in S/2(1) as e~ ~ T e SO(1). O

Proof of Proposition 2.2. Let us first check that my € 5’1/2(<v, 77>_2). We have

(A1) mn(v,n) = m(h~ 2, h=1/2p) and  m(v,n) = ( 22 +2n )

with

1 2 g 1
(v, m) = 2 / w12 (52)ay  and  in(u) =2 / (y + 1) 2 Vidy,
0 0

One can then check using integration by parts that for all k € N, there exists Cy such that |9 (p)| <

Cie(p) ="~ from which we deduce using (A.1) that m € S°((v,n)~2). Thus, still using (A.1), for v € N4,
there exists C,, such that

|aamh(vvn)| _ h7|a|/2|8aﬁl(h71/21}, h71/277)} < Cah7|a|/2<h71/2v,h71/2n>*2 < Cahf\a|/2<v,n>f2’

so my, indeed belongs to S1/2 ((v, n)fz). Using symbolic calculus and Lemma A.1, one could then simply
check that

(A.2) (—in' + 0" /2)# (mp Id)#(in + v/2) = h(1 — @)

but let us explain how the suitable my (i.e the one solving (A.2)) was found. Since (in + v/2) and its
conjugate are both polynomials of degree 1, we compute

2
(A3) (g + o /2 W) de(in + 0/2) = (P+5 )
h h? 1
7§(dmh +v-Oymp+n- &]mh) + T (AU + ZAn)m

U2 2
Let us look for solutions under the form my, (v, n) = up(v,n)e %~ . In that case,

v 20 d 2 024 an2
Opmyp, = € e (81,uh + WU) and A,myp, = (Avuh + — - Opup + huh + 22 )e e
SO
h? h h? hd v2 024492
ZAvmh - EU - Opymp, = (IAvuh + Zuh - Zuh)e I
Similarly, we compute

h2
16
so according to (A.3), (A.2) becomes

) 02 4an?
Up — 1N uh)e 2h

h h? hd
Aymy, — 57] - Oymp, = (EAnuh + i

h? 1 »2 2 »2 2
Z(Avuh + ZA’r]uh) = h(e_ - — 9de= h" )

Applying the semiclassical Fourier transform on R??, this yields

*2 - 2 d s200 02 Lo
—%(0*2 + 7 )}'huh = h(wh)d(e_M S e o 2) = _(mh) (v*2 + 1 )/ e_s#ds
1

where (v*,n*) denotes the dual variable of (v,n). Hence

2
Frup(v*,n*) = (ﬂ'h)d/ e~ e ds
1
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and applying the inverse semiclassical Fourier transform, we get

2 2 2
g _vitdn
up (v, 1) :2d/ s e =h ds.
1

Consequently,
2 ’U2 72
mp(v,n) = Qd/ s~de= (3D
1
and we find the final expression of my, by substituting y = % -1 O

Proof of Corollary 2.3. By symbolic calculus, we just have to check that g, = (—in® + v*/2)#(ms, Id).
Since the symbol on the left hand side is a polynomial of degree 1, we have

(—in' +v'/2)#(my, 1d) = m (—inf +v'/2) - g(@i ~ 508 )m.
Now
b ' d—2 — 4 (S +2m?) 3 ¢
50t = [ty e ) gy

so we easily get
t

v h 1 g _y (2 2
mh(vm)? — 58}3mh(v,n) :/ (y+1)d le h( 7 21 )dyut.
0

One can show similarly that
ih ! u (a2
—impu(v,m) 0’ + %&imh(v,n) = —2i/ (y+ 1) Lo # (5 +20%) gyt
0
which is enough to conclude. ]

APPENDIX B. BILINEAR ALGEBRA

Lemma B.1. Let L(x,v) = Ly -x + L, -v a linear form on R*? and recall the notation (1.11). Then for
any s € UV | the matriz Ws + VL VLt is positive definite if and only if

1
(B.1) V'L, L, — L2 > 3
Moreover, its determinant is

272 det Vs (1 + 2V, 'Ly - Ly +2L2).

Proof. First notice that since s € UY) and Ws+ VL VLt > W;, the matrix Ws + VL VL! has at most one
negative eigenvalue, so it is sufficient to show that its determinant is positive if and only if (B.1) holds.
The rest of the proof is inspired by [1] (Lemma 3.3). We have

det (Ws +VL VLt) = det Wi det (Id +WSIVE VLt) = 2724 det V, det (Id WYL VLt)
and since det Vg < 0, it only remains to show that
(B.1) < det (Id FWIVL VLt) <0.
Now it is easy to see that
(Id WL VLt) loe =1d  and (Id +WIVL VLt)VL VL= 142V L, L, +2L2)|VL].

Hence, det (Id + Wy 'VLVL') = 1+ 2V, 'L, - L, + 2L? which is negative if and only if (B.1) holds
true. O

Lemma B.2. Recall the notations (1.11) and (4.7). For v € [y1 +v,1] and y € (0,1), we have

(1 + y)2d72

(B.2) det H3, = 7 53

2
(1 +(1+ 2|Li7v|2)y> | det V.
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Proof. We drop some exponents and indexes s in the notations for shortness. Let us begin by writing

1% 0 0 y-1 9 0
0 WH? o T A I e G W0 KO A
(B3) ny’y = ;ly 4y , Id + . T+y Lfy,v O t’ 0’ Lt
1 +1 1-y v,z 7,0
0 Y (y4y) 0 7 1 0 Ly,
Clearly, the determinant of the first factor is (4y)~¢(y + 1)2?det V. Denoting
~1
5 v 0 19y L’y,x L’y,:r t . Lt v 0
H’Y»y = 0 1} 1y L’y,v 0 (Lgv 8’ It > )
0 o1 0 L, ) \"re v

it is also clear that ﬁ%y has rank 2, so it has at most 2 non zero eigenvalues. Besides, using Lemma 3.1,
one can easily check that

1 +y)V_1L%r ) (1 —l—y)V_lL%I
% _ 2
i,y L =1, (1 0+ 1, P)) Ly
¥, y,v
and
0 0
i I _ 2y|Ly, 2
¥,y v T Ty ¥,0
_L%v _L%v

Hence, the determinant of the second factor from (B.3) is

2
~+y) 2 (1+ (14222, ))
and we get (B.2). O

APPENDIX C. MULTIVARIATE GAUSSIAN MOMENT

Using the formulas of the first moments of the one dimensional gaussian, we easily establish the following.

Proposition C.1. If A is a real symmetric matriz, then

Az -zeFde = (2m)* /2 Tr(A).
R/

APPENDIX D. LAPLACE’S METHOD
Here we give a precise statement of Laplace’s method that we use to approximate h-dependent integrals.

Proposition D.1. Let zg € Rd/, K a compact neighborhood of xg and ¢ € C*(K) such that xg is a non
degenerate minimum of ¢ and its only global minimum on K. Denote H € Mg (R) the Hessian of ¢ at
ZXo-
e If ap is a function bounded uniformly in h on K such that
ap = O((:c — 170)2”),
then
’ (=) —e(zq)
h= /2/ ah(x)e_w e = O(h™).
K

o Ifan~3 s hlaj in C*(K), then the integral

det(H)1/2 _ e(@)—¢(zg)
T (o

admits a classical expansion whose first term is given by ag(xo).



32

1]
2]
3]
(4]
[5]
[6]
[7]
(8]
[9]

[10]
(11]

(12]
13]

[14]

T. NORMAND

REFERENCES

J.-F. Bony, D. L. Peutrec, and L. Michel, Eyring-Kramers law for Fokker-Planck type differential operators,
arXiv:2201.01660, 2022.

A. Bovier, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes II. Precise asymptotics for small
eigenvalues, Journal of the European Mathematical Society 7 (2005), 69-99.

K. Carrapatoso, J. Dolbeault, F. Hérau, S. Mischler, C. Mouhot, and C. Schmeiser, Special macroscopic modes and
hypocoercivity, arXiv:2105.04855, 2021.

B. Helffer, M. Klein, and F. Nier, Quantitative analysis of metastability in reversible diffusion processes via a Witten
complez approach, Matematica Contemporanea 26 (2004), 41-85.

B. Helffer and J. Sjostrand, Puits multiples en mécanique semi-classique. IV. Etude du complexe de Witten., Comm.
Partial Differential Equations 10, no. 3 (1985), 245-340.

F. Hérau, M. Hitrik, and J. Sjostrand, Tunnel effect for Kramers-Fokker-Planck type operators, Annales Henri Poincaré
9, 2 (2008), 209-274.

, Tunnel effect and symmetries for Kramers Fokker-Planck type operators, Journal Institut Mathématiques
Jussieu 10, no.3 (2011), 567-634.

D. Le Peutrec and L. Michel, Sharp spectral asymptotics for non-reversible metastable diffusion processes, Probability
and Mathematical Physics, Vol. 1, No. 1 (2020), 3-53.

G. Menz and A. Schlichting, Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape,
The Annals of Probability, Vol. 42, No. 5 (2014), 1809-1884.

L. Michel, About small eigenvalues of Witten Laplacian, Pure and Applied Analysis 1, no. 2 (2019), 149-206.

T. Normand, Metastability results for a class of linear Boltzmann equations, Annales Henri Poincaré (2023).
https://doi.org/10.1007/s00023-023-01334-w.

V. Robbe, Etude semi-classique de quelques équations cinétiques a basse température, Ph.D. Thesis, 2015.

, Small eigenvalues of the low temperature linear relaxation Boltzmann equation with a confining potential,
Annales Henri Poincaré 17 (2016), 937-952.

M. Zworski, Semiclassical analysis, American mathematical society, 2012.

THOMAS NORMAND, LABORATOIRE DE MATHEMATIQUES JEAN LERAY, UNIVERSITE DE NANTES
Email address: thomas.normand@univ-nantes.fr



	1. Introduction
	1.1. Motivations
	1.2. Setting and main results

	2. Preliminaries
	2.1. Naive approach
	2.2. Labeling of the potential minima

	3. Accurate quasimodes
	3.1. Gaussian quasimodes superposition
	3.2. Action of the operator Ph
	3.3. Choices of  and k

	4. Computation of the approximated small eigenvalues
	5. Proof of the main results
	Acknowledgements

	Appendix A. Structure of the collision operator
	Appendix B. Bilinear algebra
	Appendix C. Multivariate gaussian moment
	Appendix D. Laplace's method
	References

