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SPECTRAL ASYMPTOTICS AND METASTABILITY FOR THE LINEAR
RELAXATION BOLTZMANN EQUATION

THOMAS NORMAND

Abstract. We consider the linear relaxation Boltzmann equation in a semiclassical framework. We
construct a family of sharp quasimodes for the associated operator which yields sharp spectral asymp-
totics for its small spectrum in the low temperature regime. We deduce some information on the long
time behavior of the solutions with a sharp estimate on the return to equilibrium as well as a quan-
titative metastability result. The main novelty is that the collision operator is a pseudo-differential
operator in the critical class S1/2 and that its action on the gaussian quasimodes yields a superposition
of exponentials.
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1. Introduction

1.1. Motivations. We are interested in the linear Boltzmann equation:

(1.1)
{

h∂tu + v · h∂xu − ∂xV · h∂vu + QH(h, u) = 0
u|t=0 = u0

in a semiclassical framework (i.e in the limit h → 0), where h is a semiclassical parameter and corresponds
to the temperature of the system. Here we denoted for shortness ∂x and ∂v the partial gradients with
respect to x and v. This equation is used to model the evolution of a system of charged particles in
a gas on which acts an electrical force associated to the real valued potential V that only depends on
the space variable x. The operator QH is called collision operator and models the interactions between
the particles. Here the unknown is the function u : R+ → L1(R2d) giving the probability density of the
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2 T. NORMAND

system of particles at time t ∈ R+, position x ∈ Rd and velocity v ∈ Rd. For our purpose, we introduce
the square roots of the usual Maxwellian distributions

µh(v) = e− v2
4h

(2πh)d/4 and Mh = e− V
2h µh.(1.2)

This paper is devoted to the study of the linear BGK model for which the collision operator is

QH(h, u) = h
(

u −
∫

v′∈Rd

u(x, v′) dv′µ2
h

)
(1.3)

and corresponds to a simple relaxation towards the Maxwellian. Denoting Q∗
H(h, ·) the formal adjoint of

QH(h, ·), one can easily compute
QH(h, M2

h) = 0 and Q∗
H(h, 1) = 0(1.4)

so in particular M2
h is a stable state of (1.1) and QH features the local conservation of mass. In order to

do a perturbative study of the time independent operator associated to (1.1) near M2
h, we introduce the

natural Hilbert space
H =

{
u ∈ D′ ; M−1

h u ∈ L2(R2d)
}

.

It is clear from the Cauchy Schwarz inequality that H is indeed a subset of L1(R2d) provided that
e− V

2h ∈ L2(Rd
x). In view of (1.4) and the definition of H, it is more convenient to work with the new

unknown
f = M−1

h u : R+ → L2(R2d)
for which the new equation becomes

(1.5)
{

h∂tf + v · h∂xf − ∂xV · h∂vf + Qh(f) = 0
f|t=0 = f0

where
Qh = M−1

h ◦ QH(h, ·) ◦ Mh.(1.6)
Denoting with the notation (1.2),

Πh : L2(R2d) → L2(R2d)

the orthogonal projection on µh L2(Rd
x), we have by (1.3) and (1.6)

Qh = h(Id − Πh).(1.7)
Our study will be focused on the spectral properties of the new time independent operator

Ph = v · h∂x − ∂xV · h∂v + h(Id − Πh)
= Xh

0 + Qh

where the notation Xh
0 will stand for the operator v · h∂x − ∂xV · h∂v, but also for the vector field

(x, v) 7→ h(v, −∂xV (x)).
This type of questions has recently known some major progress on the impulse of microlocal methods.

The operator Ph was already studied in 2016 in [13] where the use of hypocoercive techniques enabled
to get some resolvent estimates and establish a rough localization of its small spectrum which consists of
exponentially small eigenvalues in correspondance with the minima of the potential V . This type of result
is similar to the one obtained for example for the Witten Laplacian by Helffer and Sjöstrand in [5] in the
1980’s. Such a localization already leads to return to equilibrium and metastability results which can be
improved as the description of the small spectrum becomes more precise. For example, sharp asymptotics
of the small eigenvalues of the Witten Laplacian were obtained later in the 2000’s in [2] and [4] and later
again for Kramers-Fokker-Planck type operators by Hérau et al. in [6]. In these papers, the idea was
to exhibit a supersymmetric structure for the operator and then study both the derivative acting from
0-forms into 1-forms and its adjoint with the help of basic quasimodes. However, these methods do not
apply to the Boltzmann equation as in that case the matrix appearing in the modification of the inner
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product does not obey good estimates with respect to the semiclassical parameter h (see for instance [12]
for the case of the mild relaxation collision operator).

This is why our goal in this paper will be to give precise spectral asymptotics for the operator Ph

through a more recent approach which consists in directly constructing a family of accurate gaussian
quasimodes for our operator in the spirit of [1, 8] for Fokker-Planck type differential operators and [11]
for the mild relaxation Boltzmann equation. Here the first difficulty is that like in [11], the operator that
we consider is non local and hence it is harder to compute its action on the constructed quasimodes.
This will be overcome thanks to the factorization result stated in Proposition 2.2. The second and
main difficulty is that unlike in [11], the bad microlocal properties of Qh are such that its action on a
gaussian quasimode as used in [1, 8, 11] does not yield a precise exponential, but rather a superposition
of exponentials (see Lemma 2.4) wich will lead to the introduction of some new quasimodes given by a
superposition of “usual” gaussian quasimodes. The result that we manage to establish is similar to the
one from [4] for the Witten Laplacian as well as the ones from [6, 7] with recent improvements by Bony
et al. in [1] for the Fokker-Planck equation.

1.2. Setting and main results. For d′ ∈ N∗ and Z ∈ Cd′ , we use the standard notation ⟨Z⟩ =
(1 + |Z|2)1/2. Let us introduce a few notations of semiclassical microlocal analysis which will be used
in all this paper. These are mainly extracted from [14], chapter 4. For our purpose, it is sufficient to
consider pseudo-differential operators acting only in the variable v. We will denote η ∈ Rd the dual
variable of v and use the semiclassical Fourier transform

Fh(f)(η) =
∫
Rd

e− i
h v·ηf(v) dv.

We consider the space of semiclassical symbols
Sκ
(
⟨(v, η)⟩k

)
=
{

ah ∈ C∞(R2d) ; ∀α ∈ N2d, ∃ Cα > 0 such that |∂αah(v, η)| ≤ Cαh−κ|α|⟨(v, η)⟩k
}

where k ∈ R and κ ∈ [0, 1/2]. Given a symbol ah ∈ Sκ(⟨(v, η)⟩k), we define the associated semiclassical
pseudo-differential operator for the Weyl quantization acting on functions u ∈ S(Rd) by

Oph(ah)u(v) = (2πh)−d

∫
Rd

∫
Rd

e i
h (v−v′)·ηah

(v + v′

2 , η
)

u(v′) dv′dη

where the integrals may have to be interpreted as oscillating integrals. We will denote Ψκ(⟨(v, η)⟩k) the
set of such operators. Note that the operator Oph(ah) admits the distributional kernel

Kh(v, v′) = F−1
h

(
ah

(
v + v′

2 , ·
))

(v − v′).

Conversely, if an operator Oph(ah) ∈ Ψκ(⟨(v, η)⟩k) admits the distributional kernel Kh(v, v′), then its
symbol is given by

ah(v, η) = Fh

((
Kh ◦ A

)
(v, ·)

)
(η)(1.8)

where A denotes the change of variables
A(v, v′) = (v + v′/2, v − v′/2).

We will also make a few confining assumptions on the function V , assuring for instance that the
bottom spectrum of the associated Witten Laplacian is discrete. In particular, our potential will satisfy
Assumption 2 from [8] and Hypothesis 1.1 from [13].

Hypothesis 1.1. The potential V is a smooth Morse function depending only on the space variable
x ∈ Rd with values in R which is bounded from below and such that

|∂xV (x)| ≥ 1
C

for |x| > C.

Moreover, for all α ∈ Nd with |α| ≥ 2, there exists Cα such that
|∂α

x V | ≤ Cα.
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In particular, for every 0 ≤ k ≤ d, the set of critical points of index k of V that we denote U(k) is finite
and we set

n0 = #U(0).(1.9)
Finally, we will suppose that n0 ≥ 2.

The last assumption comes from the fact that when n0 = 1, the so-called small spectrum of the operator
Ph (i.e its eigenvalues with exponentially small modulus) is trivial, so there is nothing to study. It is
shown in [9], Lemma 3.14 that for a function V satisfying Hypothesis 1.1, we have V (x) ≥ |x|/C outside
of a compact. In particular, under Hypothesis 1.1, it holds e−V/2h ∈ L2(Rd

x). Moreover, in our setting,
Xh

0 is a smooth vector field whose differential is bounded on R2d, so the operator Xh
0 endowed with the

domain
D = {u ∈ L2(R2d) ; Xh

0 u ∈ L2(R2d)}
is skew-adjoint on L2(R2d) and the set S(R2d) is a core for this operator. Since moreover the collision
operator Qh defined in (1.7) is bounded and self-adjoint, we have (Ph, D)∗ = (−Xh

0 +Qh, D) and (Ph, D)
is m-accretive on L2(R2d).

For an operator such as Ph, which is not for instance self-adjoint with compact resolvent, we do not
have any information a priori on its spectrum (except here that it is contained in {z ∈ C ; Re z ≥ 0}). In
[13], the use of hypocoercive techniques enabled to establish a first description of the spectrum of Ph near
0 which, in the spirit of the case of other non self-adjoint operators studied in [6], appears in particular
to be discrete. More precisely, the following result is shown in [13]:

Theorem 1.2. Assume that Hypothesis 1.1 is satisfied and recall the notation (1.9). Then the operator
(Ph, D) admits 0 as a simple eigenvalue. Moreover, there exists c > 0 and h0 > 0 such that for all
0 < h ≤ h0, we have that Spec(Ph)∩{Re z ≤ ch} consists of exactly n0 eigenvalues (counted with algebraic
multiplicity) which are real and exponentially small with respect to 1/h. Finally, for all 0 < c̃ ≤ c, the
resolvent estimate

(Ph − z)−1 = O(h−1)
holds uniformly in {Re z ≤ ch}\B(0, c̃h).

In order to study the long time behavior of the solutions of (1.5), we need a precise description of the
small spectrum of Ph. To this aim, we construct in Section 3 a family of accurate quasimodes localized
around the minima of V that enables us to establish sharp asymptotics of the small eigenvalues of Ph.
This will lead to the following Theorem which is the main result of this paper. Before we can state it,
let us introduce a few notations that we will use throughout the paper. We denote

W (x, v) = V (x)
2 + v2

4(1.10)

the global potential on R2d and for x ∈ Rd,
Vx (resp. Wx) the Hessian of V at x

(
resp. the Hessian of W at (x, 0)

)
.(1.11)

When s ∈ Rd is a saddle point of V (i.e s ∈ U(1)), we also denote
τs the only negative eigenvalue of Vs.(1.12)

For the sake of simplicity, we will make in the statement of the Theorem an additionnal assumption
(Hypothesis 2.8) on the topology of the potential V that could actually be omitted (see [10] or [1]). It
implies in particular that V has a unique global minimum that we denote m.
According to Theorem 1.2, we can associate to each m ∈ U(0)\{m} a non zero exponentially small
eigenvalue of Ph that we denote λ(m, h).

Theorem 1.3. Suppose that Hypotheses 1.1 and 2.8 are satisfied and recall the notations (1.11)-(1.12).
The exponentially small eigenvalues of Ph satisfy the following equivalent in the limit h → 0:

λ(m, h) ∼ hϱ(m) e
−2S(m)

h
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with

ϱ(m) = 1
π

∑
s∈j(m)

(
2 +

√
2

2 −
√

2

) 1√
|τs|
(

det Vm

| det Vs|

)1/2 ∫
γ1≤z≤γ<1

ks
0(γ)ks

0(z) ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
dzdγ

where

ks
0(z) = 2

√
2√

|τs|(z − γ2)2

(z − γ1

z − γ2

) 1
2
√

|τs|
−1

; γ1 = −3 + 2
√

2 ; γ2 = −3 − 2
√

2

and the maps S and j are defined in Definition 2.7.

Finally, following [13], we use the sharp localization obtained in Theorem 1.3 in order to discuss the
phenomena of return to equilibrium and metastability for the solutions of (1.5). More precisely, we are
able to give a sharp rate of convergence of the semigroup e−tPh/h towards P1, the orthogonal projector
on Ker Ph : denoting λ∗ the smallest non zero eigenvalue of Ph, we establish that the rate of return to
equilibrium is essentially given by λ∗/h:

Corollary 1.4. Under the assumptions of Theorem 1.3, there exists h0 > 0 such that for all 0 < h ≤ h0
and t ≥ 0,

∥e−tPh/h − P1∥ ≤ Ce−tλ∗/h.

Besides, in the spirit of [1, 11], we also show the metastable behavior of the solutions of (1.5):

Corollary 1.5. Suppose that the assumptions of Theorem 1.3 hold true. Let us consider some local
minima m1 = m, m2, . . . , mp such that

S
(
U(0)) = {+∞ = S(m1) > S(m2) > · · · > S(mp)}

for the map S from Definition 2.7. For 2 ≤ k ≤ p, denote Pk the spectral projection (which is not
necessarily orthogonal) associated to the eigenvalues of Ph that are O

(
e−2 S(mk)

h

)
. Then for any times

(t±
k )1≤k≤p satisfying

t−
p ≥ | ln(h∞)| and t−

k ≥ | ln(h∞)|e2
S(mk+1)

h for k = 1, . . . , p − 1
as well as

t+
1 = +∞ and t+

k = O
(

h∞e2 S(mk)
h

)
for k = 2, . . . , p

one has
e−tPh/h = Pk + O(h∞) on [t−

k , t+
k ].

In other words, we have shown the existence of timescales on which, during its convergence towards the
global equilibrium, the solution of (1.5) will essentially visit the metastable spaces associated to the small
eigenvalues of Ph.

Another perspective would then be to study the case of collision operators satisfying the local conser-
vation laws of physics, such as the full linear Boltzmann operator

QF L
h = h(Id − ΠF L

h )
with ΠF L

h the orthogonal projector on the collision invariants subspace

VectRd
v

{
e− v2

4h , v1e− v2
4h , . . . , vde− v2

4h , v2e− v2
4h

}
L2(Rd

x)

which was recently studied in [3] at fixed temperature.

2. Preliminaries

From now on, the letter r will denote a small universal positive constant whose value may decrease as we
progress in this paper (one can think of r as 1/C).
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2.1. Naive approach. In order to investigate a first natural approach to our problem consisting in
trying to reproduce the method from [11] which was itself inspired by [1, 8], let us make for simplicity
and for this subsection only an additional assumption.

Hypothesis 2.1. The potential V has exactly one saddle point s.

Roughly speaking, this approach consists in introducing a linear form ℓ(x, v) = ℓx · (x − s) + ℓv · v in the
variables (x − s, v) as well as a gaussian cut-off θ which is essentially given by

θ(x, v) =
∫ ℓ(x,v)

0
e− s2

2h ds.

With the notation (1.10), the idea is then to introduce the so-called gaussian quasimode

φ(x, v) = θ(x, v) e− W (x,v)
h

and compute Phφ in order to then choose the linear form ℓ minimizing the norm of Phφ. We already
know from [11] (proof of Proposition 3.13) that

Xh
0 φ(x, v) = h pℓ(x, v)e− 1

h

(
W (x,v)+ 1

2 ℓ2(x,v)
)(

1 + O(h)
)

with pℓ = OL∞(1), |x − s|, |v| < r.(2.1)

It is also shown that the collision operator studied in this reference, that we denote QS0

h , satisfies a similar
result:

QS0

h φ(x, v) = h qℓ(x, v)e− 1
h

(
W (x,v)+ 1

2 ℓ2(x,v)
)(

1 + O(h)
)

with qℓ = OL∞(1), |x − s|, |v| < r(2.2)

and it is then sufficient in that case to choose ℓ so that pℓ = −qℓ.
In our case, although Qh may appear as a quite simple operator as it is just an orthogonal projection, in
order to perform a computation similar to (2.2), it will be more convenient to adopt a microlocal point
of view. This is the point of the two following results which are proven in Appendix A.

Proposition 2.2. Let us denote

bh = h∂v + v/2.

There exists a symbol mh ∈ S1/2(⟨v, η⟩−2) given by

mh(v, η) = 2
∫ 1

0
(y + 1)d−2e− y

h

(
v2
2 +2η2

)
dy

such that
Qh = b∗

h ◦ Oph(mh Id) ◦ bh.

Corollary 2.3. One has
Qh = Oph(gh) ◦ bh

with

gh(v, η) =
∫ 1

0
(y + 1)d−1e− y

h

(
v2
2 +2η2

)
dy (−2iηt + vt) ∈ S1/2(⟨v, η⟩−1).

We are now in position to establish the following fundamental computation which shows that the bal-
ancing obtained between Xh

0 φ and QS0

h φ cannot happen between Xh
0 φ and Qhφ. This will motivate the

introduction of some new quasimodes later on.

Lemma 2.4. Assume for simplicity that Hypothesis 2.1 holds true and let ℓ a linear form in the variables
(x − s, v). We have

Qhφ(x, v) = −h

∫ 1

0
∂y(Ly) e−

W (x,v)+ 1
2 L2

y(x,v)
h dy ·

(
x − s

v

)
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where with a slight abuse of notations, Ly denotes both the linear form

Ly(x, v) = (1 + y)ℓx · (x − s) + (1 − y)ℓv · v(
4yℓ2

v + (y + 1)2
)1/2

and the vector representing it. Moreover, denoting

my,h(v, η) = 2(y + 1)d−2e− y
h

(
v2
2 +2η2

)
,(2.3)

we have

Oph(my,h) ◦ bhφ(x, v) = 2h(2πh)−d/2e− V (x)
2h

(y + 1)d−2

(4y) d
2

(2.4)

×
∫

v′∈Rd

e− 1
h

(
v′2

4 + y
8 (v+v′)2+ (v−v′)2

8y + 1
2 ℓ2(x,v′)

)
dv′ ℓv.

Proof. According to Corollary 2.3, we have

Qhφ(x, v) = Oph(gh)
[
h∂vθe−W/h

]
(x, v)

= hOph(gh)
[
e− 1

h

(
W + 1

2 ℓ2
)
ℓv

]
(x, v)

= h(2πh)−d

∫
v′∈Rd

∫
η∈Rd

e i
h (v−v′)·ηgh

(v + v′

2 , η
)

e− 1
h

(
W (x,v′)+ 1

2 ℓ2(x,v′)
)

dv′dη ℓv.

Let us now compute the integral in η with the expression of gh from Corollary 2.3:

∫
η∈Rd

e i
h (v−v′)·ηgh

(v + v′

2 , η
)

dη =
∫ 1

0
(y + 1)d−1e− y(v+v′)2

8h

[
(v + v′)t

2

∫
η∈Rd

e i
h (v−v′)·ηe− 2yη2

h dη

−2i

∫
η∈Rd

ηte i
h (v−v′)·ηe− 2yη2

h dη

]
dy

=
∫ 1

0
(y + 1)d−1e− y(v+v′)2

8h

[
(v + v′)t

2 + (v − v′)t

2y

] ∫
η∈Rd

e i
h (v−v′)·ηe− 2yη2

h dηdy

= 2(2πh)d/2
∫ 1

0

(y + 1)d−1

(4y) d
2 +1

(
(v + v′)y + v − v′

)t

e− 1
8h

(
y(v+v′)2+ (v−v′)2

y

)
dy.

Hence, we get

Qhφ(x, v) = 2h(2πh)−d/2e− V (x)
2h

∫ 1

0

(y + 1)d−1

(4y) d
2 +1

∫
v′∈Rd

(
(v + v′)y + v − v′

)
(2.5)

× e− 1
h

(
v′2

4 + y
8 (v+v′)2+ (v−v′)2

8y + 1
2 ℓ2(x,v′)

)
dv′dy · ℓv

and (2.4) is now a straightforward adaptation of (2.5) with my,h instead of gh. Denoting xs = x − s,

My = 1
2Id + ℓvℓt

v + y2 + 1
4y

Id and uy(xs, v) = ℓx · xs ℓv + y2 − 1
4y

v,
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(2.5) becomes by the change of variables w = v′ + M−1
y uy(xs, v)

Qhφ(x, v) = 2h(2πh)−d/2e− V (x)
2h

∫ 1

0

(y + 1)d−1

(4y) d
2 +1

× exp
[

−1
2h

(
ℓxℓt

xxs · xs + y2 + 1
4y

v2 − M−1
y uy(xs, v) · uy(xs, v)

)]
×
∫

w∈Rd

[(
v − M−1

y uy(xs, v)
)

y + v + M−1
y uy(xs, v)

]
e− Myw·w

2h dwdy · ℓv

= 2he− V (x)
2h

∫ 1

0

(y + 1)d−1

(4y) d
2 +1

det(My)−1/2
(

(1 + y)v + (1 − y)M−1
y uy(xs, v)

)
· ℓv(2.6)

× exp
[

−1
2h

(
ℓxℓt

xxs · xs + y2 + 1
4y

v2 − M−1
y uy(xs, v) · uy(xs, v)

)]
dy

Now
(y + 1)d−1

(4y) d
2 +1

det(My)−1/2 = 1

4y
(

4yℓ2
v + (y + 1)2

)1/2

while

M−1
y ℓv = 4y

4yℓ2
v + (y + 1)2 ℓv(2.7)

so the prefactor in the integral from (2.6) becomes
1

4y
(

4yℓ2
v + (y + 1)2

)1/2

[
4y(1 − y)ℓ2

v

4yℓ2
v + (y + 1)2 ℓx · xs +

(
(1 + y) + (1 − y)(y2 − 1)

4yℓ2
v + (y + 1)2

)
ℓv · v

]

which is further equal to
(1 − y)ℓ2

vℓx · xs + (1 + y)(1 + ℓ2
v)ℓv · v(

4yℓ2
v + (y + 1)2

)3/2 = −1
2∂y(Ly) ·

(
xs
v

)
.(2.8)

Thus, it only remains to show that the exponentials coincide, i.e

ℓxℓt
xxs · xs + y2 + 1

4y
v2 − M−1

y uy(xs, v) · uy(xs, v) = v2

2 + L2
y(x, v)

or equivalently

ℓxℓt
xxs · xs + (y − 1)2

4y
v2 − M−1

y uy(xs, v) · uy(xs, v) =

(
(1 + y)ℓx · xs + (1 − y)ℓv · v

)2

4yℓ2
v + (y + 1)2 .(2.9)

Using (2.7), we already obtain

M−1
y uy(xs, v) · uy(xs, v) = 4yℓ2

v

4yℓ2
v + (y + 1)2 ℓxℓt

xxs · xs + 2 y2 − 1
4yℓ2

v + (y + 1)2 ℓx · xsℓv · v + (y2 − 1)2

16y2 M−1
y v · v

so the LHS of (2.9) becomes
(1 + y)2

4yℓ2
v + (y + 1)2 (ℓx · xs)2 + 2 1 − y2

4yℓ2
v + (y + 1)2 ℓx · xsℓv · v +

( (y − 1)2

4y
− (y2 − 1)2

16y2 M−1
y

)
v · v.(2.10)

Finally, still using (2.7), one can easily check that
(y − 1)2

4y
− (y2 − 1)2

16y2 M−1
y = (1 − y)2

4yℓ2
v + (y + 1)2 ℓvℓt

v

so (2.10) equals the RHS of (2.9) and the proof is complete. □
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This result shows that unlike in the case of some S0 collisions operators as studied in [11] (or even in
the case of differential operators [1,8]), here the action of Qh on the quasimode φ does not yield a precise
exponential, but rather a superposition of exponentials with the linear form in the phase varying. This
suggests the introduction of some new quasimodes given by a superposition of functions similar to φ with
the linear form varying.

2.2. Labeling of the potential minima. We now drop Hypothesis 2.1. Before we can construct our
quasimodes, we need to recall the general labeling of the minima which originates from [2, 4] and was
generalized in [7], as well as the topological constructions that go with it. Here we only introduce the
essential objects and omit the proofs. For more details, we refer to [11] where it is in particular shown
that, roughly speaking, the constructions for the potential V/2 are the projections on Rd

x of the ones for
the global potential W . Recall that we denote

U(k) the critical points of V of index k.(2.11)
For shortness, we will write “CC” instead of “connected component”. The constructions rely on the
following fundamental observation which is an easy consequence of the Morse Lemma (see for instance
[11], Lemma 3.1 for a proof):

Lemma 2.5. If x ∈ U(1), then there exists r0 > 0 such that for all 0 < r < r0, (x, 0) has a connected
neighborhood Or in B0(x, r) such that Or ∩ {W < W (x, 0)} has exactly 2 CCs.

It motivates the following definition:

Definition 2.6. a) We say that x ∈ U(1) is a separating saddle point and we denote x ∈ V(1) if for
every r > 0 small enough, the two CCs of Or ∩ {W < W (x, 0)} are contained in different CCs of
{W < W (x, 0)}.

b) We say that σ ∈ R is a separating saddle value if σ ∈ V
2 (V(1)).

It is known (see for instance [11], Lemma 3.4) that V(1) ̸= ∅ since n0 ≥ 2. Let us then denote
σ2 > · · · > σN where N ≥ 2 the different separating saddle values of V/2 and for convenience we set
σ1 = +∞. For σ ∈ R∪ {+∞}, let us denote Cσ the set of all the CCs of {W < σ}. We call labeling of the
minima of V any injection U(0) → J1, NK × N∗ which we denote for shortness (mk,j)k,j . Given a labeling
(mk,j)k,j of the minima of V , we denote for k ∈ J1, NK

U(0)
k =

{
mk′,j ; 1 ≤ k′ ≤ k

}
∩
{V

2 < σk

}
and we say that the labeling is adapted to the separating saddle values if for all k ∈ J1, NK, each mk,j is
a global minimum of V restricted to some CC of {V/2 < σk} and the map

Tk : U(0)
k → Cσk

(2.12)

sending m ∈ U(0)
k on the element of Cσk

containing (m, 0) is bijective. In particular, it implies that
each mk,j belongs to U(0)

k . Such labelings exist, one can for instance easily check that the usual labeling
procedure presented in [7] is adapted to the separating saddle values. From now on, we fix a labeling
(mk,j)k,j adapted to the separating saddle values of V .

Definition 2.7. Recall the notation (2.11) and Definition 2.6. We define the following mappings:
• E : U(0) −−→ P(R2d)

mk,j 7−−→ Tk(mk,j)
where Tk is the map defined in (2.12).

• jW : U(0) → P
((

V(1) ∪ {s1}
)

× {0}
)

given by jW (m1,1) = (s1, 0) where s1 is a fictive saddle point such that V (s1) = σ1 = +∞; and for
2 ≤ k ≤ N , jW (mk,j) = ∂E(mk,j) ∩

(
V(1) × {0}

)
which is not empty (see for instance Lemma 3.5

from [11]), finite and included in {W = σk}.
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• j : U(0) → P
(
V(1) ∪ {s1}

)
such that j(m) × {0} = jW (m).

• σ : U(0) → V
2 (V(1)) ∪ {σ1}

m 7→ V
2 (j(m))

where we allow ourselves to identify the set V
2 (j(m)) and its unique element in V

2 (V(1)) ∪ {σ1}.
• S : U(0) −−→]0, +∞]

m 7−−→ σ(m) − V
2 (m).

Following [2, 4, 7, 8], we can now state our last assumption that allows us to treat the generic case. As
mentionned in the introduction, this assumption could actually be omitted (see [10] or [1, section 6]) but
this would introduce additionnal difficulties that are not the main concern of this paper.

Hypothesis 2.8. Recall that we fixed a labeling (mk,j)k,j adapted to the separating saddle values of V .
We assume the following:

a) Each mk,j is the only global minimum of V on the CC of { V
2 < σk} to which it belongs.

b) For all m ̸= m′ ∈ U(0), the sets j(m) and j(m′) do not intersect.

According to Proposition 3.9 from [11], this hypothesis is equivalent to the facts that (m, 0) is the only
global minimum of W |E(m) and jW (m) ∩ jW (m′) = ∅ which is what we use in practice.

3. Accurate quasimodes

3.1. Gaussian quasimodes superposition. By Hypothesis 2.8, the potential V has a unique global
minimum that we denote m. For r > 0, denote r̃ a positive number such that for all m ∈ U(0)\{m} and
s ∈ j(m),

W (x, v) ≥ σ(m) + r2

8 + v2 − r2

4 as soon as |x − s| < r̃ and |v| ≥ r.(3.1)

We also denote for x ∈ Rd

B0(x, r) = B(x, r̃) × B(0, r) ⊆ R2d.

Let m ∈ U(0)\{m}; for each s ∈ j(m) we introduce a vector ℓs = (ℓs
x, ℓs

v) ∈ R2d which will represent a
linear form involved in the construction of our quasimodes. Note that thanks to item b) from Hypothesis
2.8, each ℓs corresponds to a unique m ∈ U(0)\{m}. In the spirit of [1, 8, 11] and more precisely in view
of (2.1)-(2.2), we want s to be a local minimum of the function W (x, v) + (ℓs

x · (x − s) + ℓs
v · v)2/2 so

according to Lemma B.1 and using the notation (1.11), we take ℓs satisfying

−V−1
s ℓs

x · ℓs
x − |ℓs

v|2 >
1
2 .

This condition would be sufficient to develop a framework for the construction of our quasimodes. How-
ever, it would appear later on when establishing a result analogous to the one of Lemma 3.6 that the
optimal choice of ℓs would actually satisfy

−V−1
s ℓs

x · ℓs
x − |ℓs

v|2 = 1.

Similarly, one could show in this framework from the analogous of (3.9) that our quasimodes would not
depend on the norm of ℓs. Thus, we set

|ℓs
v|2 = 1(3.2)

as well as
−V−1

s ℓs
x · ℓs

x = 2(3.3)
straight away as it leads to significant simplifications in the study.
We now introduce the polynomial

P (γ) = 4γ + (γ + 1)2(3.4)



METASTABILITY FOR THE LINEAR RELAXATION BOLTZMANN EQUATION 11

and its two roots
γ1 = −3 + 2

√
2 ∈ (−1, 0) and γ2 = −3 − 2

√
2 < −1.

In the spirit of Lemma 2.4, we also introduce for γ ∈ (γ1, 1] the vector (Ls
γ;x , Ls

γ;v) ∈ R2d where

Ls
γ;x = 1 + γ

P (γ)1/2 ℓs
x and Ls

γ;v = 1 − γ

P (γ)1/2 ℓs
v.(3.5)

Note that (Ls
0;x , Ls

0;v) = ℓs. Lemma 2.4 would actually suggest to consider only γ ∈ [0, 1], but doing so it
would appear with the notation (3.45) that (3.47) has no non-trivial solution, which is not true anymore
when working on (γ1, 1]. We do not consider γ outside (γ1, 1] as it would add a condition similar to (3.46)
which would be incompatible with (3.46). Here is the picture of an example in the case d = 1:

−4 −3 −2 −1

−1

1

2

3

×

×

ℓs

(Ls
−0.1,x, Ls

−0.1,v)

×
(Ls

1,x, Ls
1,v) x

v

Since by Hypothesis 1.1 we have that V is a Morse function, there exists according to the Morse Lemma
a smooth diffeomorphism ϕs defined on B(s, r̃), sending s on 0, whose differential at s is the identity and
such that

V ◦ ϕ−1
s = V (s) + 1

2 ⟨Vs ·, ·⟩.(3.6)

For shortness, we will use for x ∈ B(s, r̃) the notation
x̃s = ϕs(x)(3.7)

and we introduce the smooth function Ls
γ supported in B(s, 2r̃) × Rd

v and given when x is close to s by
the twisted linear form:

Ls
γ(x, v) = Ls

γ;x · x̃s + Ls
γ;v · v for (x, v) ∈ B(s, r̃) × Rd

v.

Now, let us denote ζ ∈ C∞
c (R, [0, 1]) an even cut-off function supported in [−δ, δ] that is equal to 1 on

[−δ/2, δ/2] where δ > 0 is a parameter to be fixed later. As we will not be able to produce some remainder
terms that are uniform with respect to γ ∈ (γ1, 1], we will work on [γ1 + ν, 1] with

ν > 0 that will be fixed small enough before letting h → 0.

Consider also a probability density ks
ν on [γ1 + ν, 1] as well as the quantity

As
ν,h =

∫ 1

γ1+ν

ks
ν(γ)

∫ ∞

0
ζ
( s

N s(γ)

)
e− s2

2h ds dγ =
√

πh√
2
(
1 + O(e−α/h)

)
for some α > 0,(3.8)

where
N s(γ) =

(
|Ls

γ;x|2 + |Ls
γ;v|2

)1/2
≥ 1

C
.

We will also use the notation
U s

γ =
Ls

γ

N s(γ) .
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We now define for each m ∈ U(0)\{m} the gaussian cut-off superposition θm
ν,h as follows: if (x, v) belongs

to ⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} ∩ B0(s, r)

for some s ∈ j(m), then

θm
ν,h(x, v) = 1

2

(
1 + (As

ν,h)−1
∫ 1

γ1+ν

ks
ν(γ)

∫ Ls
γ (x,v)

0
ζ
( s

N s(γ)

)
e−s2/2hds dγ

)
.(3.9)

Here are some pictures of the set {|U s
γ | ≤ 2δ} ∩ B0(s, r) for γ = γ1 + ν; γ = 0 and γ = 1:

•s x

v

B0(s, r)

{Ls
0 = 0}

•s x

v

B0(s, r)

{Ls
1 = 0}

•s x

v

B0(s, r)

{Ls
γ1+ν = 0}

Furthermore, we set

θm
ν,h = 1 on

(
E(m) + B(0, ε)

)∖( ⊔
s∈j(m)

( ⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} ∩ B0(s, r)

))
(3.10)

with ε = ε(r) > 0 to be fixed later and

θm
ν,h = 0 everywhere else.(3.11)

Note that θm
ν,h takes values in [0, 1] and that, thanks to (3.9), we also have

θm
ν,h = 1 on

( ⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} ∩ B0(s, r)

)⋂( ⋂
γ∈[γ1+ν,1]

{U s
γ ≥ δ}

)
and

θm
ν,h = 0 on

( ⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} ∩ B0(s, r)

)⋂( ⋂
γ∈[γ1+ν,1]

{U s
γ ≤ −δ}

)
.

Denote Ω the CC of {W ≤ σ(m)} containing m. The CCs of {W ≤ σ(m)} are separated so for ε > 0
small enough, there exists ε̃ > 0 such that

min
{

W (x, v) ; dist
(
(x, v), Ω

)
= ε
}

= σ(m) + 2ε̃.

Thus the distance between {W ≤ σ(m) + ε̃} ∩
(
Ω + B(0, ε)

)
and ∂

(
Ω + B(0, ε)

)
is positive and we can

consider a cut-off function
χm ∈ C∞

c (R2d, [0, 1])
such that

χm = 1 on {W ≤ σ(m) + ε̃} ∩
(
Ω + B(0, ε)

)
and supp χm ⊂

(
Ω + B(0, ε)

)
.(3.12)

To sum up, we have the following picture:
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••m

θm
ν,h = 1

θm
ν,h = 0

Ω

supp χm

θm
ν,h given by (3.9)

j(m)

The following Lemma will among other things help us discuss the regularity of θm
ν,h.

Lemma 3.1. Recall the notaion (1.11). For all γ ∈ (γ1, 1], we have

−V−1
s Ls

γ,x · Ls
γ,x − (Ls

γ,v)2 = 1.

In particular, according to Lemma B.1, (s, 0) is a non degenerate minimum of W + 1
2 (Ls

γ)2 and the
associated hessian has determinant

2−2d
∣∣det Vs

∣∣.
Proof. It suffices to use (3.2) and (3.3):

−V−1
s Ls

γ,x · Ls
γ,x − (Ls

γ,v)2 = 2 (1 + γ)2

P (γ) − (1 − γ)2

P (γ) = P (γ)
P (γ) = 1.

For the computation of the determinant, it is sufficient to notice that, with the notation (1.11), the
hessian of W + 1

2 (Ls
γ)2 at (s, 0) is

Ws +
(

Ls
γ;x

Ls
γ;v

)(
Ls

γ;x
Ls

γ;v

)t

and apply Lemma B.1. □

Proposition 3.2. Up to changing the sign of ℓs, for all ν ∈ (0, |γ1|), we can choose ε > 0 and δ > 0 small
enough so that the function θm

ν,h is smooth on the neighborhood of the support of χm given by Ω + B(0, ε).

Proof. Recall that by item b) from Hypothesis 2.8, each ℓs corresponds to a unique m ∈ U(0)\{m}. Let
us first show that in B0(s, r), we have

⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} =

(
{U s

1 ≥ −2δ} ∩ {U s
γ1+ν ≤ 2δ}

)
∪
(
{U s

1 ≤ 2δ} ∩ {U s
γ1+ν ≥ −2δ}

)
(3.13)

(so in particular, this set is closed).



14 T. NORMAND

•

B0(s, r)

s

{U s
1 ≤ 2δ} ∩ {U s

γ1+ν ≥ −2δ}

x

v

•

B0(s, r)

s x

v

{U s
1 ≥ −2δ} ∩ {U s

γ1+ν ≤ 2δ}

Let (x, v) ∈ {U s
1 ≥ −2δ} ∩ {U s

γ1+ν ≤ 2δ}. If U s
1 (x, v) ≤ 2δ, then (x, v) ∈ {|U s

1 | ≤ 2δ} and similarly,
if U s

γ1+ν(x, v) ≥ −2δ, then (x, v) ∈ {|U s
γ1+ν | ≤ 2δ}. Now if U s

1 (x, v) > 2δ and U s
γ1+ν(x, v) < −2δ,

by the intermediate value theorem, there exists γ ∈ [γ1 + ν, 1] such that U s
γ(x, v) = 0 so in particular

(x, v) ∈ {|U s
γ | ≤ 2δ}. Thus, we have shown that

{U s
1 ≥ −2δ} ∩ {U s

γ1+ν ≤ 2δ} ⊆
⋃

γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ}(3.14)

and clearly the same strategy of proof enables to show that

{U s
1 ≤ 2δ} ∩ {U s

γ1+ν ≥ −2δ} ⊆
⋃

γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ}.(3.15)

Conversely, let

(x, v) /∈
(
{U s

1 ≥ −2δ} ∩ {U s
γ1+ν ≤ 2δ}

)
∪
(
{U s

1 ≤ 2δ} ∩ {U s
γ1+ν ≥ −2δ}

)
.

Since {U s
1 < −2δ} ∩ {U s

1 > 2δ} and {U s
γ1+ν < −2δ} ∩ {U s

γ1+ν > 2δ} are empty, we have

(x, v) ∈ {U s
1 < −2δ} ∩ {U s

γ1+ν < −2δ} or (x, v) ∈ {U s
γ1+ν > 2δ} ∩ {U s

1 > 2δ}.(3.16)

Besides, using (2.8) and (3.2), one can check that the sign of ∂γU s
γ(x, v) is given by

ℓs
x · x̃s − |ℓs

x|2ℓs
v · v −

(
ℓs

x · x̃s + |ℓs
x|2ℓs

v · v
)
γ(3.17)

which vanishes at most once in (γ1 +ν, 1). If it does not vanish in (γ1 +ν, 1), then by monotonicity (3.16)
implies that for any γ ∈ [γ1 + ν, 1], we have (x, v) /∈ {|U s

γ | ≤ 2δ}. Now in the case where the expression
from (3.17) vanishes at some point in (γ1 + ν, 1), its values at γ1 + ν and 1 have opposite signs, i.e

|ℓs
x|2ℓs

v · v
(

(1 − γ1 − ν)ℓs
x · x̃s − |ℓs

x|2(1 + γ1 + ν)ℓs
v · v

)
> 0.(3.18)

When both factors from (3.18) are positive, we have ℓs
x · x̃s > 0 so U s

1 (x, v) > 0 and it follows that
(x, v) ∈ {U s

γ1+ν > 2δ}∩{U s
1 > 2δ}. Moreover, we also have in that case that the minimum of γ 7→ U s

γ(x, v)
on [γ1 +ν, 1] is attained on the boundary of the interval since ∂γU s

γ(x, v)|γ=1 < 0, so for any γ ∈ [γ1 +ν, 1]
it holds (x, v) ∈ {U s

γ > 2δ}. Here again, the same strategy of proof enables to show that if both factors
from (3.18) are negative, then for any γ ∈ [γ1 +ν, 1], it holds (x, v) ∈ {U s

γ < −2δ}. Combined with (3.14)
and (3.15), this proves (3.13).
From (3.9), (3.10), (3.11) and (3.13), we see that the only parts on which it is not clear that θm

ν,h is
smooth are

F1 =
⊔

s∈j(m)

(
{U s

1 = 2δ} ∩ {U s
γ1+ν ≥ 2δ} ∩ B0(s, r)

)
,

F2 =
⊔

s∈j(m)

(
{U s

1 ≥ 2δ} ∩ {U s
γ1+ν = 2δ} ∩ B0(s, r)

)
,
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F3 =
⊔

s∈j(m)

(
{U s

1 = −2δ} ∩ {U s
γ1+ν ≤ −2δ} ∩ B0(s, r)

)
,

F4 =
⊔

s∈j(m)

(
{U s

1 ≤ −2δ} ∩ {U s
γ1+ν = −2δ} ∩ B0(s, r)

)
,

F5 =
⊔

s∈j(m)

( ⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} ∩ ∂B0(s, r)

)
and F6 = ∂

(
E(m) + B(0, ε)

)∖( ⊔
s∈j(m)

( ⋃
γ∈[γ1+ν,1]

{|U s
γ | ≤ 2δ} ∩ B0(s, r)

))
.

Note that (3.13) suggested to put {U s
1 = 2δ} ∩ {U s

γ1+ν ≥ −2δ} ∩ B0(s, r) in the definition of F1, but we
allowed ourselves to discard the part {U s

1 = 2δ} ∩ {U s
γ1+ν ∈ [−2δ, 2δ)} ∩ B0(s, r) since it is included in

the interior of {U s
1 ≥ −2δ} ∩ {U s

γ1+ν ≤ 2δ} ∩ B0(s, r) (and we did similarly for F2, F3 and F4).
Now, let s ∈ j(m) and (γ, x, v) ∈ [γ1 + ν, 1] × B0(s, r)\{(s, 0)} such that U s

γ(x, v) = Ls
γ(x, v) = 0. Using

Lemma 3.1, we see that if r > 0 is small enough,

W (x, v) = W (x, v) + 1
2Ls

γ(x, v)2 > W (s, 0).(3.19)

Hence, for all γ ∈ [γ1 + ν, 1], the set {U s
γ = 0} ∩ B0(s, r) is contained in {W ≥ σ(m)}. Assume by

contradiction that for any r > 0, the function U s
γ takes both positive and negative values on E(m) ∩

B0(s, r). Then according to Lemma 2.5, the two CCs of Or ∩ {W < σ(m)} are both included in E(m)
(the one on which U s

γ > 0 and the one where U s
γ < 0). This is a contradiction with the fact that

s ∈ V(1). Therefore U s
γ has a sign on E(m) ∩ B0(s, r) and since it depends smoothly on γ and cannot

vanish on E(m) ∩ B0(s, r), this sign does not depend on γ. In particular, it is given by the sign of U s
0 on

E(m) ∩ B0(s, r) so taking ℓs such that
ℓs · (ϕs(x0), v0) > 0(3.20)

for some (x0, v0) ∈ E(m) ∩ B0(s, r), we get that for each γ ∈ [γ1 + ν, 1], the function U s
γ is positive on

E(m) ∩ B0(s, r). We can then choose ε(δ) > 0 small enough so that((
E(m) + B(0, ε)

)
∩ B0(s, r)

)
⊆
{

U s
1 ≥ −δ

}
∩
{

U s
γ1+ν ≥ −δ

}
.(3.21)

Similarly, if we denote Ωs the other CC of {W < σ(m)} which contains (s, 0) on its boundary, one can
check that

(
ϕ−1

s (−ϕs(x0)), −v0
)

∈ Ωs ∩ B0(s, r) ∩ {U s
0 < 0} where (x0, v0) was introduced in (3.20) so U s

γ

is negative on Ωs ∩ B0(s, r) and((
Ωs + B(0, ε)

)
∩ B0(s, r)

)
⊆
{

U s
1 ≤ δ

}
∩
{

U s
γ1+ν ≤ δ

}
.(3.22)

Choosing once again ε(r) small enough, we can even assume that(
E(m) + B(0, ε) ∩ Ωs + B(0, ε)

)
⊆ jW (m) + B0(0, r)(3.23)

(see [11], Lemma 3.2 for more details). We first prove that θm
ν,h is smooth on F1 ∩ (Ω + B(0, ε)): let

s ∈ j(m) and (x, v) ∈ B0(s, r) ∩ {U s
1 = 2δ} ∩ {U s

γ1+ν ≥ 2δ} ∩ (Ω + B(0, ε)). According to (3.22), there
exists a small ball B centered in (x, v) such that

B ⊂
(

B0(s, r) ∩ {U s
1 > δ} ∩ {U s

γ1+ν > δ} ∩
(
E(m) + B(0, ε)

))
.

Thus, according to (3.9), (3.10) and (3.13) with δ instead of 2δ, we have θm
ν,h = 1 on B so θm

ν,h is smooth at
(x, v). Obviously, the same goes for F2 ∩ (Ω + B(0, ε)) and similarly, for (x, v) ∈ (F3 ∪ F4) ∩ (Ω + B(0, ε)),
we can show that θm

ν,h = 0 in a neighborhood of (x, v).
Now we show that F5 does not meet Ω + B(0, ε). Recall that Ω denotes the CC of {W ≤ σ(m)}
containing m. For s ∈ j(m), we can deduce from (3.19) that if (γ, x, v) ∈ [γ1 + ν, 1] × ∂B0(s, r) is such
that U s

γ(x, v) = 0, then (x, v) /∈ Ω. Hence (γ, x, v) 7→ |U s
γ(x, v)| must attain a positive minimum on



16 T. NORMAND

[γ1 + ν, 1] × (∂B0(s, r) ∩ Ω), so we can choose δ(r, ν) > 0 independent of γ such that for all γ ∈ [γ1 + ν, 1],
the set ∂B0(s, r) ∩ {|U s

γ | ≤ 2δ} does not intersect Ω. It follows that we can choose ε(δ) > 0 such that

F5 ⊆
(
R2d\Ω + B(0, ε)

)
.

It only remains to prove that, as for F5, the set F6 does not meet Ω + B(0, ε). If (x, v) ∈ F6 ∩ B0(s, r),
(3.21) and (3.13) imply that (x, v) ∈ {U s

1 ≥ 2δ} ∩ {U s
γ1+ν ≥ 2δ} so using (3.22), we see that (x, v)

is outside Ωs + B(0, ε). Since it is not in (E(m) + B(0, ε)) either, it is outside Ω + B(0, ε). Now if
(x, v) ∈ F6\

(
jW (m) + B0(0, r)

)
, (3.23) implies that (x, v) is outside ∪j(m)(Ωs + B(0, ε)) so it is also

outside Ω + B(0, ε) for ε small enough and the proof is complete. □

From now on, we fix the sign of ℓs as well as ε > 0 and δ > 0 such that the conclusion of Proposition 3.2
holds true. In particular, even though we do not make it appear in the notations, the functions χm and
ζ now depend on ν. Finally, we denote

W m(x, v) = W (x, v) − V (m)/2(3.24)

and it is clear from (3.12) that

W m ≥ S(m) + ε̃ on supp ∇χm.(3.25)

Our quasimodes will be the L2-renormalizations of the functions

fm
ν,h(x, v) = χm(x, v)θm

ν,h(x, v)e−W m(x,v)/h ; m ∈ U(0)\{m}(3.26)

and for m = m,
fm,h(x, v) = e−W m(x,v)/h ∈ Ker Ph.

Note that for m ̸= m, we have fm
ν,h ∈ C∞

c (R2d) thanks to Proposition 3.2 and

supp fm
ν,h ⊆ E(m) + B(0, ε′)(3.27)

where ε′ = max(ε, r).

3.2. Action of the operator Ph. Let us fix m ∈ U(0)\{m}. For γ ∈ (γ1, 1], we will denote

W̃ m
γ (x, v) = W m(x, v) + 1

2
∑

s∈j(m)

Ls
γ(x, v)2.(3.28)

For s ∈ j(m) and x ∈ B(s, r̃) we also denote

θ̃s
γ,h(x, v) =

∫ Ls
γ (x,v)

0
e− s2

2h ds.(3.29)

We now have to compute Phfm
ν,h. We will see fairly easily thanks to (3.35) that Xh

0 applied to fm
ν,h will

yield a superposition of the exponentials (
e−W̃ m

γ /h
)

γ∈[γ1+ν,1]
.(3.30)

In view of (3.9), we see that the computation of Qhfm
ν,h will essentially boil down to the one of Qh(θ̃s

γ,he−W m/h)
which we are already able to do thanks to Lemma 2.4:

Qh(θ̃s
γ,he−W m/h) = −h

∫ 1

0
∂yL s(γ, y) exp

[
− 1

h

(
W m(x, v) + 1

2
[
L s(γ, y) · (x̃s, v)

]2)] dy ·
(

x̃s
v

)
where L s(γ, y) stands for the vector(

1+y(
4|Ls

γ,v|2y+(y+1)2
)1/2 Ls

γ,x ; 1−y(
4|Ls

γ,v|2y+(y+1)2
)1/2 Ls

γ,v

)
.(3.31)
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Here we disregarded the fact that the linear form Lγ is twisted in x as Qh only acts in v. Our concern is
now to see whether the functions(

exp
[

− 1
h

(
W m(x, v) + 1

2
[
L s(γ, y) · (x̃s, v)

]2)])
γ∈[γ1+ν,1] ; y∈[0,1]

belong to the family (3.30) as we hoped for some compensations between Xh
0 fm

ν,h and Qhfm
ν,h. It appears

to be the case as, denoting for γ ∈ (γ1, 1] and y ∈ [0, 1]

Γγ(y) = y + γ

1 + yγ
,(3.32)

an easy computation shows that
L s(γ, y) =

(
Ls

Γγ (y),x ; Ls
Γγ (y),v

)
.(3.33)

We sum up the above discussion in the following updated version of Lemma 2.4.

Lemma 3.3. With the notations (3.29), (3.32) and (3.28), we have

h Oph(g)
(

e−
W̃ m

γ
h Ls

γ,v

)
= Qh(θ̃s

γ,he−W m/h)(x, v) = −h

∫ 1

0
∂y(LΓγ (y)) e−

W̃ m
Γγ (y)

h dy ·
(

x̃s
v

)
.

Moreover,

Oph(my,h Id) ◦ bh

(
θ̃s

γ,he− W m(x,v)
h

)
= 2h(2πh)−d/2e− V (x)−V (m)

2h
(y + 1)d−2

(4y) d
2

(3.34)

×
∫

v′∈Rd

e− 1
h

(
v′2

4 + y
8 (v+v′)2+ (v−v′)2

8y + 1
2 Ls

γ (x,v′)2
)

dv′Ls
γ,v.

We are now in position to give a precise computation of Phfm
ν,h.

Proposition 3.4. Let fm
ν,h be the quasimode defined in (3.26) and recall the notations (3.7) and (3.28).

There exist some functions Rm
ν,h and (ωm

ν,z)z∈[γ1+ν,1] in L2(R2d) such that
a) The function Phfm

ν,h − Rm
ν,h is supported in jW (m) + B0(0, r).

b) The function Rm
ν,h is Oν,L2

(
h

3+d
2 e− S(m)

h

)
.

c) For (x, v) ∈ jW (m) + B0(0, r), one has(
Phfm

ν,h − Rm
ν,h

)
(x, v) =

( h

2π

)1/2 ∫ 1

γ1+ν

ωm
ν,z(x, v) exp

[
− 1

h
W̃ m

z (x, v)
]
dz

where, using the notation (1.11), we have the expression

ωm
ν,z(x, v) =

∑
s∈j(m)

[
ks

ν(z)
(

0 −Vs
Id 0

)(
Ls

z;x
Ls

z;v

)
−
∫ z

γ1+ν

ks
ν(γ) dγ

(
∂zLs

z;x
∂zLs

z;v

)]
·
(

x̃s
v

)
.

Proof. In order to lighten the notations, we will drop some of the exponents and indexes m, s, ν and
h in the proof. We know that θ is smooth on the support of χ and since θ is constant outside of
jW (m) + B0(0, r), we have

∇θ = 1
2
∑

s∈j(m)

(As
h)−1

∫ 1

γ1+ν

ks(γ)ζ(U s
γ)e−(Ls

γ )2/2h ∇Ls
γ 1B0(s,r) dγ.(3.35)

Using Corollary 2.3, we can then begin by computing
Qh(f) = hOph(g)

(
(∂vθ)χe−W m/h + (∂vχ)θe−W m/h

)
= h

2
∑

s∈j(m)

(As
h)−1

∫ 1

γ1+ν

ks(γ)Oph(g)
(

χζ(U s
γ) e−

W̃ m
γ

h 1B0(s,r)L
s
γ,v

)
dγ + Oν

(
he− S(m)+ε̃

h

)
(3.36)
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as χ now depends on ν, where we used (3.25) as well as the fact that Oph(g) is bounded uniformly in h
since g ∈ S1/2(⟨(v, η)⟩−1). Now, since χζ(U s

γ) − 1 = Oν

(
(x − s, v)2), we have thanks to Lemma 3.1 and

by a standard Laplace method (see Proposition D.1) that(
χζ(U s

γ) − 1
)
e−

W̃ m
γ

h 1B0(s,r)∇Ls
γ = Oν

(
h1+ d

2 e− S(m)
h

)
.(3.37)

Hence, still by the boundedness of Oph(g), we get that

Oph(g)
(

χζ(U s
γ) e−

W̃ m
γ

h 1B0(s,r)L
s
γ,v

)
= Oph(g)

(
e−

W̃ m
γ

h 1B0(s,r)L
s
γ,v

)
+ Oν

(
h1+ d

2 e− S(m)
h

)
.(3.38)

In the same spirit, we can write
1B0(s,r)L

s
γ,v = 1|x−s|<r̃(1|v|<r − 1 + 1)Ls

γ,v = 1|x−s|<r̃ Ls
γ,v + ργ

with ργ supported in {(x, v); |x−s| < r̃ and |v| ≥ r} and such that ∥ργ∥∞ ≤ Cν , so using the boudedness
of Oph(g) again and the fact that it is local in the variable x, as well as (3.1), we get

Oph(g)
(

e−
W̃ m

γ
h 1B0(s,r)L

s
γ,v

)
= Oph(g)

(
e−

W̃ m
γ

h Ls
γ,v

)
1|x−s|<r̃ + Oν

(
h1+ d

2 e− S(m)
h

)
.(3.39)

Hence, putting (3.38) and (3.39) together and using (3.8), we get that (3.36) becomes

Qh(f) =
( h

2π

)1/2 ∑
s∈j(m)

∫ 1

γ1+ν

ks(γ)Oph(g)
(

e−
W̃ m

γ
h Ls

γ,v

)
dγ 1|x−s|<r̃ + Oν

(
h

3+d
2 e− S(m)

h

)
(3.40)

which further gives

Qh(f) + Oν

(
h

3+d
2 e− S(m)

h

)
=(3.41)

−
( h

2π

)1/2 ∑
s∈j(m)

∫ 1

γ1+ν

ks(γ)
∫ 1

0
∂y(LΓγ (y)) exp

[
− 1

h
W̃ m

Γγ (y)

]
dy ·

(
x̃s
v

)
dγ 1|x−s|<r̃

thanks to Lemma 3.3. By the change of variable z = Γγ(y), the integral in y from (3.41) becomes∫ 1

γ

∂z(Ls
z) exp

[
− W̃ m

z (x, v)/h
]

dz.

Therefore, switching the order of integration and using (3.1) again, (3.41) yields that up to a
Oν,L2(h 3+d

2 e−S(m)/h), the function Qh(f) satisfies

Qh(f)(x, v) = −
( h

2π

)1/2 ∑
s∈j(m)

∫ 1

γ1+ν

∫ z

γ1+ν

ks(γ) dγ ∂z(Ls
z) ·

(
x̃s
v

)
e− W̃ m

z (x,v)
h dz 1B0(s,r)(x, v)(3.42)

Now the computation for the transport term is easier: according to (3.35), we have

Xh
0 f = h

(
v

−∂xV

)
· ∇f

= h

(
v

−∂xV

)
· ∇θ χe−W m/h + h

(
v

−∂xV

)
· ∇χ θe−W m/h

= h

2 χ
∑

s∈j(m)

(As
h)−1

∫ 1

γ1+ν

ks(z)ζ(U s
z )
(

v
−∂xV

)
· ∇Ls

z e− W̃ m
z

h 1B0(s,r) dz + Oν

(
he− S(m)+ε̃

h

)
thanks to (3.25). Here again, we can use (3.8) and (3.37) to get

Xh
0 f =

( h

2π

)1/2 ∑
s∈j(m)

∫ 1

γ1+ν

ks(z)
(

v
−∂xV

)
· ∇Ls

z e− W̃ m
z

h 1B0(s,r) dz + Oν

(
h

3+d
2 e− S(m)

h

)
.
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Recalling that the differential of ϕs at s is the identity, the last step consists in using (3.6) to write(
v

−∂xV

)
· ∇Ls

z =
(

0 Id
−Vs 0

)(
x̃s
v

)
·
(

Ls
z,x

Ls
z,v

)
+ Oν

(
(x̃s, v)2

)
=
(

0 −Vs
Id 0

)(
Ls

z,x

Ls
z,v

)
·
(

x̃s
v

)
+ Oν

(
(x̃s, v)2

)
and the same argument that we used to establish (3.37) yields that up to a Oν,L2(h 3+d

2 e−S(m)/h), the
function Xh

0 f satisfies

Xh
0 f(x, v) =

( h

2π

)1/2 ∑
s∈j(m)

∫ 1

γ1+ν

ks(z)
(

0 −Vs
Id 0

)(
Ls

z,x

Ls
z,v

)
·
(

x̃s
v

)
e− W̃ m

z (x,v)
h dz1B0(s,r)(x, v).(3.43)

The conclusion follows from (3.42) and (3.43). □

Remark 3.5. Since P ∗
h = −Xh

0 + Qh, it is clear from (3.42) and (3.43) that

P ∗
h fm

ν,h =
( h

2π

)1/2 ∫ 1

γ1+ν

∗
ωm

ν,z(x, v) exp
[

− 1
h

W̃ m
z (x, v)

]
dz + Oν,L2

(
h

3+d
2 e− S(m)

h

)
with
∗
ωm

ν,z(x, v) = −
∑

s∈j(m)

[
ks

ν(z)
(

0 −Vs
Id 0

)(
Ls

z;x
Ls

z;v

)
+
∫ z

γ1+ν

ks
ν(γ) dγ

(
∂zLs

z;x
∂zLs

z;v

)]
·
(

x̃s
v

)
1jW (m)+B0(0,r)(x, v).

3.3. Choices of ℓ and k. Following the steps from [1,11], we would like in view of Proposition 3.4 to find
(ℓs)s∈j(m) ⊂ R2d satisfying (3.2) and (3.3) as well as some probability densities (ks

ν)s∈j(m) on [γ1 + ν, 1]
for which the leading term of Phfm

ν,h vanishes, i.e such that

ks
ν(z)

(
0 −Vs
Id 0

)(
Ls

z;x
Ls

z;v

)
−
∫ z

γ1+ν

ks
ν(γ) dγ

(
∂zLs

z;x
∂zLs

z;v

)
= 0, ∀s ∈ j(m), ∀z ∈ [γ1 + ν, 1].(3.44)

As it will be more convenient to handle than the function ks
ν , let us introduce the cumulative distribution

function (CDF) on [γ1 + ν, 1] associated to ks
ν :

Ks
ν(z) =

∫ z

γ1+ν

ks
ν(γ) dγ.(3.45)

Lemma 3.6. Recall the notations (1.11)-(1.12). If (ℓs)s∈j(m) is a family of vectors satisfying (3.2) and
(ks

ν)s∈j(m) is a family of probability densities on [γ1 + ν, 1] for which (3.44) holds true, then

Vsℓs
v = τsℓs

v ; ℓs
x = −

√
2|τs|ℓs

v(3.46)

(in particular, ℓs
x satisfies (3.3)) and the function Ks

ν defined in (3.45) is a CDF on [γ1 + ν, 1] satisfying
the ODE

(Ks
ν)′(z) − 2

√
2√

|τs|P (z)
Ks

ν(z) = 0.(3.47)

Proof. Let (ℓs)s∈j(m) and (ks
ν)s∈j(m) satisfying the hypotheses of the lemma. According to (2.8), (3.2)

and (3.44), we have

−ks
ν(z)Vsℓs

v + 2Ks
ν(z)

P (z) ℓs
x = 0 and ks

ν(z)ℓs
x + 4Ks

ν(z)
P (z) ℓs

v = 0(3.48)
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from which we deduce that there exists σs < 0 such that ℓs
x = σsℓs

v and consequently, that ℓs
v is an

eigenvector of Vs associated to its negative eigenvalue τs. Plugging these informations in (3.48), we
obtain

|τs|ks
ν(z) + 2σs

Ks
ν(z)

P (z) = 0 and σsks
ν(z) + 4Ks

ν(z)
P (z) = 0

which yield σs = −
√

2|τs| and (3.47). □

Since the sign of ℓs was fixed by Proposition 3.2 and |ℓs
v|2 = 1, the choice of ℓs is entirely determined by

(3.46). Unfortunately, there is no CDF on [γ1 + ν, 1] satisfying (3.47). However, there exists a CDF on
the whole segment (γ1, 1] solving (3.47), which up to renormalization is given by

Ks
0(z) =

(z − γ1

z − γ2

) 1
2
√

|τs| i.e ks
0(z) = γ1 − γ2

2
√

|τs|(z − γ2)2

(z − γ1

z − γ2

) 1
2
√

|τs|
−1

.(3.49)

This leads to the introduction of the following CDF on [γ1 + ν, 1] which will be an approximate solution
of (3.47):

Ks
ν(z) = Ks

0(z) − Ks
0(γ1 + ν)

Bs
ν

and ks
ν(z) =

(
Ks

ν

)′(z) = ks
0(z)
Bs

ν

(3.50)

where

Bs
ν = Ks

0(1) − Ks
0(γ1 + ν) = Ks

0(1) + O
(

ν
1

2
√

|τs|
)

.(3.51)

Lemma 3.7. Recall the notation (1.12) and let (ℓs)s∈j(m) a family of vectors satisfying (3.2), (3.46) and
whose signs are fixed by Proposition 3.2. Let also (ks

ν)s∈j(m) the probability densities on [γ1 +ν, 1] defined
in (3.50). Then for all s ∈ j(m) and (x, v) ∈ B0(s, r), the prefactor from Proposition 3.4 satisfies

ωm
ν,z(x, v) = O

(
ν

1
2
√

|τs|
)(∂zLs

z;x
∂zLs

z;v

)
·
(

x̃s
v

)
.

Proof. By some computations similar to the ones we made in the proof of Lemma 3.6, we get that the
choice of (ℓs)s∈j(m) implies that

ωm
ν,z(x, v) =

√
|τs|P (z)
2
√

2

[
ks

ν(z) − 2
√

2√
|τs|P (z)

Kν(z)
](

∂zLs
z;x

∂zLs
z;v

)
·
(

x̃s
v

)
.

The term between brackets is exactly the one appearing in (3.47) so using (3.50) and the fact that K0 is
a solution of (3.47), we get

ωm
ν,z(x, v) = Ks

0(γ1 + ν)
Bs

ν

(
∂zLs

z;x
∂zLs

z;v

)
·
(

x̃s
v

)
= O

(
ν

1
2
√

|τs|
)(∂zLs

z;x
∂zLs

z;v

)
·
(

x̃s
v

)
by (3.51) and the definition of Ks

0. □

Proposition 3.8. Recall the notation (1.12) and let fm
ν,h be the quasimode defined in (3.26) with (ℓs)s∈j(m)

and (ks
ν)s∈j(m) satisfying the hypotheses from Lemma 3.7. Then

∥Phfm
ν,h∥ = h e− S(m)

h ∥fm
ν,h∥

(
Oν

(
h

1
2

)
+ O

(
ν

1
2
√

|τs| | ln(ν)|
))

.

Proof. First notice that thanks to item a) from Hypothesis 2.8, one can apply a standard Laplace method
(see Proposition D.1) to obtain with the notation (1.11)

∥fm
ν,h∥2 = (2πh)d

det(Vm)1/2

(
1 + O(h)

)
.(3.52)

Hence, according to Proposition 3.4, it is sufficient to show that∥∥Phfm
ν,h − Rm

ν,h

∥∥ = h1+ d
2 e− S(m)

h O
(

ν
1

2
√

|τs| | ln(ν)|
)

.(3.53)
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Now, still using Proposition 3.4 as well as Minkowski’s integral inequality and Lemma 3.7, we have

∥∥Phfm
ν,h − Rm

ν,h

∥∥ ≤ Ch1/2
∫ 1

γ1+ν

(∫
jW (m)+B0(0,r)

ωm
ν,z(x, v)2 exp

[
− 2

h
W̃ m

z (x, v)
]
d(x, v)

)1/2
dz

≤ Ch1/2ν
1

2
√

|τs|

∫ 1

γ1+ν

( ∑
s∈j(m)

∫
B0(s,r)

(
∂zLs

z;x
∂zLs

z;v

)(
∂zLs

z;x
∂zLs

z;v

)t(
x̃s
v

)
·
(

x̃s
v

)

× exp
[

− 2
h

W̃ m
z (x, v)

]
d(x, v)

)1/2
dz.

With the notation (1.11), the change of variables

(y, w) =
( 2

h

)1/2
[
Ws +

(
Ls

z;x
Ls

z;v

)(
Ls

z;x
Ls

z;v

)t ]1/2
(x̃s, v)

then yields according to Lemma 3.1∥∥Phfm
ν,h − Rm

ν,h

∥∥ ≤ Ch1+ d
2 e− S(m)

h ν
1

2
√

|τs|(3.54)

×
∫ 1

γ1+ν

( ∑
s∈j(m)

∫
R2d

azat
z

(
y
w

)
·
(

y
w

)
e− (y,w)2

2 d(y, w)
)1/2

dz

where

az =
[
Ws +

(
Ls

z;x
Ls

z;v

)(
Ls

z;x
Ls

z;v

)t ]−1/2(
∂zLs

z;x
∂zLs

z;v

)
.

Thanks to Proposition C.1, we know that

(2π)−d

∫
R2d

azat
z

(
y
w

)
·
(

y
w

)
e− (y,w)2

2 d(y, w) = |az|2 =
[
Ws +

(
Ls

z;x
Ls

z;v

)(
Ls

z;x
Ls

z;v

)t ]−1(
∂zLs

z;x
∂zLs

z;v

)
·
(

∂zLs
z;x

∂zLs
z;v

)
.

(3.55)

Since by (2.8) [
Ws +

(
Ls

z;x
Ls

z;v

)(
Ls

z;x
Ls

z;v

)t ]−1(
∂zLs

z;x
∂zLs

z;v

)
= −8

P (z)3/2

((
2|τs|

)−1/2(1 − z) ℓs
v

(1 + z) ℓs
v

)
,

we get

|az|2 = 16
P (z)3

(
2(1 + z)2 − (1 − z)2

)
= 16

P (z)2 .(3.56)

Putting together (3.54), (3.55), (3.56) and computing the integral in z, we obtain (3.53) so the proof is
complete. □

4. Computation of the approximated small eigenvalues

Let us denote

f̃m
ν,h =

fm
ν,h

∥fm
ν,h∥

(4.1)

the renormalization of the quasimodes defined in (3.26) and satisfying the hypotheses of Proposition 3.8.
The goal of this section is to compute the approximated eigenvalues

λ̃m
ν,h := ⟨Phf̃m

ν,h, f̃m
ν,h⟩ = ⟨Qhf̃m

ν,h, f̃m
ν,h⟩(4.2)
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as Xh
0 is a skew-adjoint differential operator and f̃m

ν,h is real valued.
This will require to study the matrix

Hs
γ =

Vs + 2Lγ,xLt
γ,x Lγ,xLt

γ,v Lγ,xLt
γ,v

Lγ,vLt
γ,x

1
2 + Lγ,vLt

γ,v 0
Lγ,vLt

γ,x 0 1
2 + Lγ,vLt

γ,v

(4.3)

where we used the notation (1.11) and for shortness, we wrote Lγ,x and Lγ,v instead of Ls
γ,x and Ls

γ,v.

Lemma 4.1. For γ ∈ [γ1 + ν, 1], the matrix Hs
γ is positive definite.

Proof. It suffices to notice that

Hs
γ

x
v
v′

 ·

x
v
v′

 =
[
Ws +

(
Ls

γ;x
Ls

γ;v

)(
Ls

γ;x
Ls

γ;v

)t ](
x
v

)
·
(

x
v

)
+
[
Ws +

(
Ls

γ;x
Ls

γ;v

)(
Ls

γ;x
Ls

γ;v

)t ](
x
v′

)
·
(

x
v′

)
and apply Lemma 3.1. □

In the spirit of Proposition 2.2 and with the notation (2.3), let us denote

Qy,h = b∗
h ◦ Oph(my,h Id) ◦ bh.(4.4)

For m ∈ U(0)\{m}, s ∈ j(m), we also denote ⟨·, ·⟩r̃ the inner product on L2(B(s, r̃) × Rd
v

)
.

Lemma 4.2. Let s ∈ j(m) for some m ∈ U(0)\{m} and recall the notations (1.11), (3.24) and (3.29).
Then for all γ ∈ [γ1 + ν, 1] and y ∈ (0, 1),〈

Qy,h

(
θ̃s

γ,he− W m(x,v)
h

)
, θ̃s

γ,he− W m(x,v)
h

〉
r̃

= 2h2e
−2S(m)

h (2πh)d| det Vs|−1/2 1 + Oν(h)
(1 + y)

(
1 +

(
1 + 2|Ls

γ,v|2
)
y
) |Ls

γ,v|2.

Proof. First, let us use the definition of Qy,h to write〈
Qy,h

(
θ̃s

γ,he− W m(x,v)
h

)
, θ̃s

γ,he− W m(x,v)
h

〉
r̃

=
〈

Oph(my,h Id) ◦ bh

(
θ̃s

γ,he− W m(x,v)
h

)
, bh

(
θ̃s

γ,he− W m(x,v)
h

)〉
r̃
.

Using (3.34), we get〈
Qy,h

(
θ̃s

γ,he− W m(x,v)
h

)
, θ̃s

γ,he− W m(x,v)
h

〉
r̃

= 2h2(2πh)−d/2 (y + 1)d−2

(4y) d
2

e
V (m)

h |Ls
γ,v|2×(4.5)∫

|x−s|<r̃, v,v′∈Rd

exp
[

− 1
h

(
V (x) + v2 + v′2

4 + y

8(v + v′)2 + (v − v′)2

8y
+

Ls
γ(x, v)2 + Ls

γ(x, v′)2

2

)]
dxdvdv′.

By the change of variables x′ = ϕs(x) and with the notation σ(m) from Definition 2.7, the last integral
becomes

e
−2σ(m)

h

∫
|ϕ−1

s (x′)−s|<r̃, v, v′∈Rd

exp
[

− 1
2h

Hs
γ,y

x′

v
v′

 ·

x′

v
v′

]| det Dx′ϕ−1
s | dx′dvdv′(4.6)

where using the notation (4.3),

Hs
γ,y =

Vs + 2Lγ,xLt
γ,x Lγ,xLt

γ,v Lγ,xLt
γ,v

Lγ,vLt
γ,x

(y+1)2

4y + Lγ,vLt
γ,v

y2−1
4y

Lγ,vLt
γ,x

y2−1
4y

(y+1)2

4y + Lγ,vLt
γ,v

 = Hs
γ +

0 0 0
0 y2+1

4y
y2−1

4y

0 y2−1
4y

y2+1
4y

(4.7)
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is a positive-definite matrix uniformly in (γ, y) ∈ [γ1 + ν, 1] × (0, 1) thanks to Lemma 4.1. Hence,
(Hs

γ,y)−1/2 exists and is Oν(1) so by a standard Laplace method (see Proposition D.1),∫
|ϕ−1

s (x′)−s|<r̃, v, v′∈Rd

exp
[

− 1
2h

Hs
γ,y

x′

v
v′

 ·

x′

v
v′

]| det Dx′ϕ−1
s | dx′dvdv′ = (2πh)3d/2 det(Hs

γ,y)−1/2

×
(
1 + Oν(h)

)
= (2πh)3d/2| det Vs|−1/2 (4y)d/2

(1 + y)d−1
(

1 +
(
1 + 2|Ls

γ,v|2
)
y
)(1 + Oν(h)

)
(4.8)

where we also used Lemma B.2. The conclusion then follows from (4.5), (4.6) and (4.8). □

Lemma 4.3. Recall the notation (3.32) and let γ1 + ν ≤ z ≤ γ < 1. For y ∈ [0, 1), we have

Γ−1
z ◦ Γγ(y) ∈ [0, 1)

and
Qy,h

(
θ̃s

γ,he− W m(x,v)
h

)
= (Γ−1

z ◦ Γγ)′(y) QΓ−1
z ◦Γγ (y),h

(
θ̃s

z,he− W m(x,v)
h

)
on B(s, r̃) × Rd

v.

Proof. First, notice that for all γ ∈ [γ1 + ν, 1), the function Γγ : [0, 1) → [γ, 1) is an increasing bijection
whose inverse is given by

Γ−1
γ (y) = y − γ

1 − yγ
(4.9)

so the first assertion follows from the hypothesis on z and γ. Now, by Lemma 3.3 applied with Qy,h

instead of Qh, we get using the notation (3.31) as well as (3.33) that on B(s, r̃) × Rd
v,

Qy,h

(
θ̃s

γ,he− W m(x,v)
h

)
= −h ∂yL (γ, y) e−

W̃Γγ (y)(x,v)

h ·
(

x̃s
v

)
(4.10)

(here we once again disregarded the fact that the linear form Lγ is twisted in x as Qy,h only acts in v).
Thus, denoting ∂2L (γ, ·) the derivative of L w.r.t its second argument and still using (3.33), we also
have

Qy,h

(
θ̃s

γ,he− W m(x,v)
h

)
= −h ∂y(LΓγ (y)) e−

W̃Γγ (y)(x,v)

h ·
(

x̃s
v

)
= −h ∂y

(
L
(
z, Γ−1

z ◦ Γγ(y)
))

e−
W̃Γγ (y)(x,v)

h ·
(

x̃s
v

)
= −h (Γ−1

z ◦ Γγ)′(y) ∂2L
(
z, Γ−1

z ◦ Γγ(y)
)

e−
W̃Γγ (y)(x,v)

h ·
(

x̃s
v

)
so (4.10) with QΓ−1

z ◦Γγ (y),h and θ̃s
z,h yields the last statement. □

Proposition 4.4. With the notations (1.11), (1.12), (3.49) and (4.2), we have for m ∈ U(0)\{m}

λ̃m
ν,h = h ϱ̃ν,h(m) e

−2S(m)
h

with

ϱ̃ν,h(m) = 1
π

∑
s∈j(m)

(
2 +

√
2

2 −
√

2

) 1√
|τs|
(

det Vm

| det Vs|

)1/2 ∫
γ1≤z≤γ<1

ks
0(γ)ks

0(z) ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
dzdγ

+ Oν

(
h
)

+ O
(

ν
1

2
√

|τs|
)

.
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Proof. As we mentionned at the begining of the section, since Xh
0 is a skew-adjoint differential operator

and f̃m
ν,h is real valued, we have

⟨Phf̃m
ν,h, f̃m

ν,h⟩ = ⟨Qhf̃m
ν,h, f̃m

ν,h⟩.
Now by Proposition 2.2, we get

⟨Qhfm
ν,h, fm

ν,h⟩ =
〈
Oph(mh Id)

(
bhfm

ν,h

)
, bhfm

ν,h

〉
(4.11)
and we saw through (3.36)-(3.40) that

bhfm
ν,h =

( h

2π

)1/2 ∑
s∈j(m)

∫ 1

γ1+ν

ks
ν(γ)e−

W̃ m
γ

h Ls
γ,vdγ 1|x−s|<r̃ + Oν

(
h

3+d
2 e− S(m)

h

)
(4.12)

= (2πh)−1/2
∑

s∈j(m)

∫ 1

γ1+ν

ks
ν(γ)bh

(
θ̃γ,he− W m(x,v)

h

)
dγ 1|x−s|<r̃ + Oν

(
h

3+d
2 e− S(m)

h

)
(4.13)

Note that (4.12) also implies

bhfm
ν,h = Oν

(
h

1+d
2 e− S(m)

h

)
.(4.14)

Combining the boundedness of Oph(mh Id) with (4.13)-(4.14) and using the notation (4.4), (4.11) becomes

⟨Qhfm
ν,h, fm

ν,h⟩ = (2πh)−1
∑

s∈j(m)

∫
[γ1+ν,1]2

ks
ν(γ)ks

ν(z)
〈

Qh

(
θ̃γ,he− W m(x,v)

h

)
, θ̃z,he− W m(x,v)

h

〉
r̃

dγdz

+ Oν

(
hd+2e− 2S(m)

h

)
= (2πh)−1

∑
s∈j(m)

∫ 1

0

∫
[γ1+ν,1]2

ks
ν(γ)ks

ν(z)
〈

Qy,h

(
θ̃γ,he− W m(x,v)

h

)
, θ̃z,he− W m(x,v)

h

〉
r̃

dγdzdy

+ Oν

(
hd+2e− 2S(m)

h

)
= 2(2πh)−1

∑
s∈j(m)

∫ 1

0

∫
γ1+ν≤z≤γ<1

ks
ν(γ)ks

ν(z)
〈

Qy,h

(
θ̃γ,he− W m(x,v)

h

)
, θ̃z,he− W m(x,v)

h

〉
r̃

dzdγdy(4.15)

+ Oν

(
hd+2e− 2S(m)

h

)
where for the last equation we used the fact that Qy,h is self-adjoint. Applying Lemma 4.3 together with
the change of variables ỹ = Γ−1

z ◦ Γγ(y), we get that (4.15) yields

⟨Qhfm
ν,h, fm

ν,h⟩ + Oν

(
hd+2e− 2S(m)

h

)
=

2(2πh)−1
∑

s∈j(m)

∫
γ1+ν≤z≤γ<1

∫ 1

Γ−1
z (γ)

ks
ν(γ)ks

ν(z)
〈

Qỹ,h

(
θ̃z,he− W m(x,v)

h

)
, θ̃z,he− W m(x,v)

h

〉
r̃

dỹdzdγ

which by Lemma 4.2 is further equal to
2
π

h(2πh)de
−2S(m)

h

∑
s∈j(m)

| det Vs|−1/2
∫

γ1+ν≤z≤γ<1

∫ 1

Γ−1
z (γ)

ks
ν(γ)ks

ν(z)|Ls
z,v|2

(1 + ỹ)
(

1 +
(
1 + 2|Ls

z,v|2
)
ỹ
) dỹdzdγ.(4.16)

By partial fraction decomposition, the ỹ-integral becomes∫ 1

Γ−1
z (γ)

1
(1 + ỹ)

(
1 +

(
1 + 2|Ls

z,v|2
)
ỹ
) dỹ = 1

2|Ls
z,v|2

∫ 1

Γ−1
z (γ)

1 + 2|Ls
z,v|2

1 +
(
1 + 2|Ls

z,v|2
)
ỹ

− 1
1 + ỹ

dỹ

= 1
2|Ls

z,v|2
ln
((

1 + |Ls
z,v|2

)(
1 + Γ−1

z (γ)
)

1 +
(
1 + 2|Ls

z,v|2
)
Γ−1

z (γ)

)
(4.17)
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and using (3.4)-(3.5) as well as (4.9), the quantity in the logarithm from (4.17) simplifies as follows:(
1 + |Ls

z,v|2
)(

1 + Γ−1
z (γ)

)
1 +

(
1 + 2|Ls

z,v|2
)
Γ−1

z (γ)
=

(
P (z) + (1 − z)2)(1 − z)(1 + γ)

P (z)(1 − γz) + (3z2 + 2z + 3)(γ − z)

= 2 (1 + z)2(1 − z)(1 + γ)
(1 − z2)(1 + 3z + 3γ + zγ)

= 2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

.(4.18)

Putting together (4.16), (4.17), (4.18) and using (3.52), we get

⟨Phf̃m
ν,h, f̃m

ν,h⟩ + Oν

(
h2e− 2S(m)

h

)
=

h

π
e

−2S(m)
h

∑
s∈j(m)

(
det Vm

| det Vs|

)1/2 ∫
γ1+ν≤z≤γ<1

ks
ν(γ)ks

ν(z) ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
dzdγ.(4.19)

Now, the function 1 + 3z + 3γ + zγ is non-negative on [γ1, 1]2 and vanishes only at (γ1, γ1). Moreover,
we have by Taylor expansion that

1 + 3z + 3γ + zγ ≥ |(γ, z) − (γ1, γ1)|
C

≥ max
(z − γ1

C
,

γ − γ1

C

)
for (γ, z) ∈ [γ1, 1]2 close enough to (γ1, γ1) and thus

ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
= O

(
| ln(z − γ1)|

)
holds as well as

ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
= O

(
| ln(γ − γ1)|

)
.

Besides, by (3.50) and (3.51), we have

ks
ν(z) =

(
2 −

√
2

2 +
√

2

) −1
2
√

|τs|
ks

0(z)
(

1 + O
(

ν
1

2
√

|τs|
))

(4.20)

with ks
0(z) = O

(
|z − γ1|

1
2
√

|τs|
−1)

on [γ1, 1]. Consequently, the integral∫
γ1≤z≤γ<1

ks
0(γ)ks

0(z) ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
dzdγ

exists and we have∫
γ1+ν≤z≤γ<1

ks
0(γ)ks

0(z) ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
dzdγ + O

(
ν

1
2
√

|τs|
)

(4.21)

=
∫

γ1≤z≤γ<1
ks

0(γ)ks
0(z) ln

(
2 (1 + z)(1 + γ)

1 + 3z + 3γ + zγ

)
dzdγ.

Combining (4.19), (4.20) and (4.21), we get the announced result. □

5. Proof of the main results

We now introduce a series of results which will enable us to go from the approximated eigenvalues of Ph

to the actual ones.

Lemma 5.1. Let m ∈ U(0)\{m}. Using the notations (1.12), (4.1) and (4.2), we have

i) ∥Phf̃m
ν,h∥ =

√
hλ̃m

ν,h

(
Oν

(
h

1
2

)
+ O

(
ν

1
2
√

|τs| | ln(ν)|
))

ii) ∥P ∗
h f̃m

ν,h∥ =
√

hλ̃m
ν,h

(
Oν

(
h

1
2

)
+ O

(
| ln(ν)|

))
.
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Proof. The first item is an immediate consequence of Propositions 3.8 and 4.4. The second one can be
obtained similarly using Remark 3.5 and mimicking the proof of Proposition 3.8 after noticing that

∗
ωm

ν,z(x, v) = O(1)
(

∂zLs
z;x

∂zLs
z;v

)
·
(

x̃s
v

)
.

□

Lemma 5.2. For m and m′ two distinct elements of U(0), we have
i) ⟨Phf̃m

ν,h, f̃m′

ν,h⟩ = Oν

(
h∞
√

λ̃m
ν,hλ̃m′

ν,h

)
ii) There exists c > 0 such that

〈
f̃m

ν,h, f̃m′

ν,h

〉
= O(e−c/h)

Proof. The proof is a straightforward adaptation of the one of Lemma 5.5 in [11], even though the
operator Ph and the quasimodes (f̃m

ν,h)m differ from the ones of this reference. We recall the main steps
for the reader’s convenience.
i): The idea is to use (3.27), the fact that Ph is local in x, Hypothesis 2.8 and the support properties of
∇θm

ν,h and ∇χm to show that∣∣∣〈Phfm
ν,h, fm′

ν,h

〉∣∣∣ ≤
〈

Oph(mh Id)
(
θm

ν,h(∂vχm)e−W m/h
)

, bhfm′,h

〉
= Oν

(
h∞e− S(m)+S(m′)

h

)
by (4.14). We can then conclude with (3.52).
ii): It is shown in [11] (proof of Lemma 5.5) that when V (m) = V (m′), the supports of fm

ν,h and fm′

ν,h

do not meet. Thus we can suppose that V (m) > V (m′) and in that case, using once again (3.27) and
Hypothesis 2.8, we show that〈

fm
ν,h, fm′

ν,h

〉
=
∫

E(m)+B(0,ε′)
θm

ν,hθm′

ν,hχmχm′e− 2V −V (m)−V (m′)+v2
2h d(x, v) = O

(
e− V (m)−V (m′)

2h

)
so the conclusion immediately follows from (3.52). □

In order to go from quasimodes to functions that actually belong to the generalized eigenspace associated
to the small eigenvalues of Ph, let us now consider the operator

Π0 = 1
2iπ

∫
|z|=ch

(z − Ph)−1dz

introduced in [13]. Using the resolvent estimates from Theorem 1.2, the following is established in [13]:

Proposition 5.3. The operator Π0 is a projector on the generalized eigenspace associated to the small
eigenvalues of Ph and satisfies ∥Π0∥ = O(1).

Lemma 5.4. Using the notations (1.12), (4.1) and (4.2), for any m ∈ U(0), we have

∥(1 − Π0)f̃m
ν,h∥ =

√
λ̃m,h

(
Oν

(
1
)

+ O
(

h−1/2ν
1

2
√

|τs| | ln(ν)|
))

.

Proof. We simply recall the proof from [8]: we write

(1 − Π0)f̃m
ν,h = 1

2iπ

∫
|z|=ch

(
z−1 − (z − Ph)−1)f̃m

ν,hdz

= −1
2iπ

∫
|z|=ch

z−1(z − Ph)−1Phf̃m
ν,hdz.

We can then conclude using Lemma 5.1 and the resolvent estimate from Theorem 1.2. □

Lemma 5.5. Recall the notations (1.12), (4.1) and (4.2). The family
(
Π0f̃m

ν,h

)
m∈U(0) is almost orthonor-

mal: there exists c > 0 such that 〈
Π0f̃m

ν,h, Π0f̃m′

ν,h

〉
= δm,m′ + Oν(e−c/h).
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In particular, it is a basis of the space Ran Π0.
Moreover, we have〈

PhΠ0f̃m
ν,h, Π0f̃m′

ν,h

〉
= δm,m′ λ̃m

ν,h +
√

λ̃m
ν,hλ̃m′

ν,h

(
Oν

(√
h
)

+ O
(

ν
1

2
√

|τs| | ln(ν)|2
))

.

Proof. The proof is the same as the one of Proposition 4.10 in [8]. It suffices to write〈
Π0f̃m

ν,h, Π0f̃m′

ν,h

〉
=
〈
f̃m

ν,h, f̃m′

ν,h

〉
+
〈
f̃m

ν,h, (Π0 − 1)f̃m′

ν,h

〉
+
〈
(Π0 − 1)f̃m

ν,h, Π0f̃m′

ν,h

〉
as well as〈

PhΠ0f̃m
ν,h, Π0f̃m′

ν,h

〉
=
〈
Phf̃m

ν,h, f̃m′

ν,h

〉
+
〈
(Π0 − 1)f̃m

ν,h, P ∗
h f̃m′

ν,h

〉
+
〈
Π0Phf̃m

ν,h, (Π0 − 1)f̃m′

ν,h

〉
.

and use all the previous results of this section together with Proposition 4.4. □

Let us re-label the local minima m1, . . . , mn0 so that (S(mj))j=1,...,n0 is non increasing in j. For shortness,
we will now denote

f̃j = f̃
mj

ν,h and λ̃j = λ̃
mj

ν,h

which still depend on ν and h. Note in particular that according to Proposition 4.4, λ̃j = Oν(λ̃k)
whenever 1 ≤ j ≤ k ≤ n0. We also denote (ũj)j=1,...,n0 the orthogonalization by the Gram-Schmidt
procedure of the family (Π0f̃j)j=1,...,n0 and

uj = ũj

∥ũj∥
.

In this setting and with our previous results, we get the following (see [8], Proposition 4.12 for a proof).

Lemma 5.6. With the notations (1.12), (4.1) and (4.2), for all 1 ≤ j, k ≤ n0, it holds

⟨Phuj , uk⟩ = δj,kλ̃j +
√

λ̃j λ̃k

(
Oν

(√
h
)

+ O
(

ν
1

2
√

|τs| | ln(ν)|2
))

.

In order to compute the small eigenvalues of Ph, let us now consider the restriction Ph|Ran Π0 : Ran Π0 →
Ran Π0. We denote ûj = un0−j+1, λ̂j = λ̃n0−j+1 and M the matrix of Ph|Ran Π0 in the orthonormal basis
(û1, . . . , ûn0). Since ûn0 = u1 = f̃1, we have

M =
(

M′ 0
0 0

)
where M′ =

(
⟨Phûj , ûk⟩

)
1≤j,k≤n0−1

and it is sufficient to study the spectrum of M′. We will also denote {Ŝ1 < · · · < Ŝp} the set {S(mj) ; 2 ≤
j ≤ n0} and for 1 ≤ k ≤ p, Ek the subspace of L2(R2d) generated by {ûr ; S(mr) = Ŝk}. Finally, we
set ϖk = e−(Ŝk−Ŝk−1)/h for 2 ≤ k ≤ p and εj(ϖ) =

∏j
k=2 ϖk = e−(Ŝj−Ŝ1)/h for 2 ≤ j ≤ p (with the

convention ε1(ϖ) = 1). In view of Proposition 4.4, let us also denote

ϱ̃0(m) = 1
π

∑
s∈j(m)

(
2 +

√
2

2 −
√

2

) 1√
|τs|
(

det Vm

| det Vs|

)1/2 ∫
γ1≤z≤γ<1

ks
0(γ)ks

0(z) ln
(

2 (1 + z)(1 + γ)
1 + 3z + 3γ + zγ

)
dzdγ

and
λ̂0

j = h ϱ̃0(mn0−j+1) e
−2S(mn0−j+1)

h .

Lemma 5.7. With the above notations, the matrix M′ satisfies

h−1e2Ŝ1/hM′ = Ω(ϖ)
(

M#
0 + Oν

(√
h
)

+ O
(

ν
1

2
√

|τs| | ln(ν)|2
))

Ω(ϖ)

with
M#

0 = diag
(

ϱ̃0(mn0−j+1) ; 1 ≤ j ≤ n0 − 1
)
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and
Ω(ϖ) = diag

(
ε1(ϖ)IdE1 , . . . , εp(ϖ)IdEp

)
.

In particular, for all ν > 0, there exists h0 > 0 such that for all 0 < h < h0,

h−1e2Ŝ1/hM′ = Ω(ϖ)
(

M#
0 + O

(
ν

1
2
√

|τs| | ln(ν)|2
))

Ω(ϖ).

Remark 5.8. In the words of Definition A.1 from [8], the last Lemma implies that for all ν > 0, there
exists h0 > 0 such that for all 0 < h < h0,

h−1e2Ŝ1/hM′ is a
(

(Ek)k , ϖ , ν
1

2
√

|τs| | ln(ν)|2
)

-graded matrix.

Proof. According to Lemma 5.6 and Proposition 4.4, we can decompose M′ = M′
1 + M′

2 with

M′
1 = diag(λ̂0

j ; 1 ≤ j ≤ n0−1) and M′
2 =

(√
λ̂j λ̂k

[
Oν

(√
h
)

+O
(

ν
1

2
√

|τs| | ln(ν)|2
)])

1≤j,k≤n0−1
.

It then suffices to notice that M#
0 = h−1e2Ŝ1/hΩ(ϖ)−1M′

1Ω(ϖ)−1 and that

h−1e2Ŝ1/hΩ(ϖ)−1M′
2Ω(ϖ)−1 = Oν

(√
h
)

+ O
(

ν
1

2
√

|τs| | ln(ν)|2
)

where we still used Proposition 4.4. □

Proof of Theorem 1.3. According to Remark 5.8, it now suffices to combine the result of Lemma 5.7 with
Theorem A.4 from [8] which gives a description of the spectrum of graded matrices. We get that for all
ν > 0, there exists h0 > 0 such that for all 0 < h < h0,

h−1e2S(m)/hλ(m, h) − ϱ̃0(m) = O
(

ν
1

2
√

|τs| | ln(ν)|2
)

and the result is proven. □

Proof of Corollaries 1.4 and 1.5. With the notations from Theorem 1.3, it is shown in [13], section 4
with the use of PT-Symmetry arguments and a quantitative version of the Gearhart-Prüss Theorem,
that there exist c > 0 and some projectors (Πj)1≤j≤n0 which are O(1) and such that

• Π1 = P1
• ΠjΠk = δj,kΠj

• Pk =
∑

{j ; S(mj)≥S(mk)} Πj

• e−tPh/h =
∑n0

j=1 e−tλ(mj ,h)/hΠj + O(e−ct) for t ≥ 0 and h small enough.
Corollary 1.4 directly follows, while the proof of Corollary 1.5 is then an easy adaptation of the one of
Corollary 1.6 from [1]. (Note that our notations t−

k and t+
k differ from that in [1]). □

Acknowledgements. The author is grateful to Jean-François Bony for very helpful discussions as well
as Laurent Michel for his advice through this work, and especially for the proof of Proposition 2.2.
This work is supported by the ANR project QuAMProcs 19-CE40-0010-01.

Appendix A. Structure of the collision operator

The aim of this section is to show Proposition 2.2 and Corollary 2.3. For a, b two symbols, we denote
a#b the symbol of Oph(a) ◦ Oph(b). We start by showing that Qh defined in (1.7) is a pseudo-differential
operator:

Lemma A.1. One has Πh = Oph(ϖh) with ϖh ∈ S1/2(1) given by

ϖh(v, η) = 2de− v2+4η2
2h .
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Proof of Lemma A.1. First, notice that the distributional kernel of Πh is µh(v)µh(v′). Using the formula
(1.8) to compute the symbol of a pseudo-differential operator from its distributional kernel, we get

Fh,v′

(
µh(v + v′/2)µh(v − v′/2)

)
(v, η) = 2de− v2+4η2

2h

which is clearly in S1/2(1) as e− v2+4η2
2 ∈ S0(1). □

Proof of Proposition 2.2. Let us first check that mh ∈ S1/2(⟨v, η⟩−2). We have

mh(v, η) = m̃(h−1/2v, h−1/2η) and m̃(v, η) = m̌
(v2

2 + 2η2
)

(A.1)

with

m̃(v, η) = 2
∫ 1

0
(y + 1)d−2e−y

(
v2
2 +2η2

)
dy and m̌(µ) = 2

∫ 1

0
(y + 1)d−2e−yµdy.

One can then check using integration by parts that for all k ∈ N, there exists Ck such that |∂k
µm̌(µ)| ≤

Ck⟨µ⟩−k−1 from which we deduce using (A.1) that m̃ ∈ S0(⟨v, η⟩−2). Thus, still using (A.1), for α ∈ N2d,
there exists Cα such that

|∂αmh(v, η)| = h−|α|/2∣∣∂αm̃(h−1/2v, h−1/2η)
∣∣ ≤ Cαh−|α|/2〈h−1/2v, h−1/2η

〉−2 ≤ Cαh−|α|/2⟨v, η⟩−2,

so mh indeed belongs to S1/2(⟨v, η⟩−2). Using symbolic calculus and Lemma A.1, one could then simply
check that

(−iηt + vt/2)#(mh Id)#(iη + v/2) = h(1 − ϖh)(A.2)

but let us explain how the suitable mh (i.e the one solving (A.2)) was found. Since (iη + v/2) and its
conjugate are both polynomials of degree 1, we compute

(−iηt + vt/2)#(mh Id)#(iη + v/2) =
(

η2+v2

4

)
mh(A.3)

−h

2
(
dmh + v · ∂vmh + η · ∂ηmh

)
+ h2

4

(
∆v + 1

4∆η

)
mh.

Let us look for solutions under the form mh(v, η) = uh(v, η)e v2+4η2
2h . In that case,

∂vmh = e
v2+4η2

2h

(
∂vuh + uh

h
v
)

and ∆vmh =
(

∆vuh + 2v

h
· ∂vuh + d

h
uh + v2

h2 uh

)
e

v2+4η2
2h

so
h2

4 ∆vmh − h

2 v · ∂vmh =
(h2

4 ∆vuh + hd

4 uh − v2

4 uh

)
e

v2+4η2
2h .

Similarly, we compute
h2

16∆ηmh − h

2 η · ∂ηmh =
(h2

16∆ηuh + hd

4 uh − η2uh

)
e

v2+4η2
2h

so according to (A.3), (A.2) becomes
h2

4

(
∆vuh + 1

4∆ηuh

)
= h

(
e− v2+4η2

2h − 2de− v2+4η2
h

)
.

Applying the semiclassical Fourier transform on R2d, this yields

−1
4

(
v∗2 + η∗2

4

)
Fhuh = h(πh)d

(
e− 4v∗2+η∗2

8h − e− 4v∗2+η∗2
16h

)
= − (πh)d

4

(
v∗2 + η∗2

4

)∫ 2

1
e−s 4v∗2+η∗2

16h ds

where (v∗, η∗) denotes the dual variable of (v, η). Hence

Fhuh(v∗, η∗) = (πh)d

∫ 2

1
e−s 4v∗2+η∗2

16h ds
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and applying the inverse semiclassical Fourier transform, we get

uh(v, η) = 2d

∫ 2

1
s−de− v2+4η2

sh ds.

Consequently,

mh(v, η) = 2d

∫ 2

1
s−de− v2+4η2

2h ( 2
s −1)ds

and we find the final expression of mh by substituting y = 2
s − 1. □

Proof of Corollary 2.3. By symbolic calculus, we just have to check that gh = (−iηt + vt/2)#(mh Id).
Since the symbol on the left hand side is a polynomial of degree 1, we have

(−iηt + vt/2)#(mh Id) = mh(−iηt + vt/2) − h

2

(
∂t

v − i

2∂t
η

)
mh.

Now
−h

2 ∂t
vmh(v, η) =

∫ 1

0
y(y + 1)d−2e− y

h

(
v2
2 +2η2

)
dy vt

so we easily get

mh(v, η) vt

2 − h

2 ∂t
vmh(v, η) =

∫ 1

0
(y + 1)d−1e− y

h

(
v2
2 +2η2

)
dy vt.

One can show similarly that

−imh(v, η) ηt + ih

4 ∂t
ηmh(v, η) = −2i

∫ 1

0
(y + 1)d−1e− y

h

(
v2
2 +2η2

)
dy ηt

which is enough to conclude. □

Appendix B. Bilinear algebra

Lemma B.1. Let L(x, v) = Lx · x + Lv · v a linear form on R2d and recall the notation (1.11). Then for
any s ∈ U(1), the matrix Ws + ∇L ∇Lt is positive definite if and only if

−V−1
s Lx · Lx − L2

v >
1
2 .(B.1)

Moreover, its determinant is
2−2d det Vs

(
1 + 2V−1

s Lx · Lx + 2L2
v

)
.

Proof. First notice that since s ∈ U(1) and Ws +∇L ∇Lt ≥ Ws, the matrix Ws +∇L ∇Lt has at most one
negative eigenvalue, so it is sufficient to show that its determinant is positive if and only if (B.1) holds.
The rest of the proof is inspired by [1] (Lemma 3.3). We have

det
(

Ws + ∇L ∇Lt
)

= det Ws det
(

Id + W−1
s ∇L ∇Lt

)
= 2−2d det Vs det

(
Id + W−1

s ∇L ∇Lt
)

and since det Vs < 0, it only remains to show that

(B.1) ⇐⇒ det
(

Id + W−1
s ∇L ∇Lt

)
< 0.

Now it is easy to see that(
Id + W−1

s ∇L ∇Lt
)

|∇L⊥ = Id and
(

Id + W−1
s ∇L ∇Lt

)
∇L · ∇L =

(
1 + 2V−1

s Lx · Lx + 2L2
v

)
|∇L|2.

Hence, det
(
Id + W−1

s ∇L ∇Lt
)

= 1 + 2V−1
s Lx · Lx + 2L2

v which is negative if and only if (B.1) holds
true. □

Lemma B.2. Recall the notations (1.11) and (4.7). For γ ∈ [γ1 + ν, 1] and y ∈ (0, 1), we have

det Hs
γ,y = (1 + y)2d−2

(4y)d

(
1 +

(
1 + 2|Ls

γ,v|2
)
y
)2

| det V|.(B.2)
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Proof. We drop some exponents and indexes s in the notations for shortness. Let us begin by writing

Hγ,y =

V 0 0
0 (y+1)2

4y
y2−1

4y

0 y2−1
4y

(y+1)2

4y


Id +

V−1 0 0
0 1 1−y

1+y

0 1−y
1+y 1

Lγ,x Lγ,x

Lγ,v 0
0 Lγ,v

(Lt
γ,x Lt

γ,v 0
Lt

γ,x 0 Lt
γ,v

) .(B.3)

Clearly, the determinant of the first factor is (4y)−d(y + 1)2d det V. Denoting

H̃γ,y =

V−1 0 0
0 1 1−y

1+y

0 1−y
1+y 1

Lγ,x Lγ,x

Lγ,v 0
0 Lγ,v

(Lt
γ,x Lt

γ,v 0
Lt

γ,x 0 Lt
γ,v

)
,

it is also clear that H̃γ,y has rank 2, so it has at most 2 non zero eigenvalues. Besides, using Lemma 3.1,
one can easily check that

H̃γ,y

(1 + y)V−1Lγ,x

Lγ,v

Lγ,v

 = −2
1 + y

(
1 +

(
1 + |Ls

γ,v|2
)
y
)(1 + y)V−1Lγ,x

Lγ,v

Lγ,v


and

H̃γ,y

 0
Lγ,v

−Lγ,v

 = 2y|Lγ,v|2

1 + y

 0
Lγ,v

−Lγ,v

 .

Hence, the determinant of the second factor from (B.3) is

−(1 + y)−2
(

1 +
(
1 + 2|Ls

γ,v|2
)
y
)2

and we get (B.2). □

Appendix C. Multivariate gaussian moment

Using the formulas of the first moments of the one dimensional gaussian, we easily establish the following.

Proposition C.1. If A is a real symmetric matrix, then∫
Rd′

Ax · x e− x2
2 dx = (2π)d′/2 Tr(A).

Appendix D. Laplace’s method

Here we give a precise statement of Laplace’s method that we use to approximate h-dependent integrals.

Proposition D.1. Let x0 ∈ Rd′ , K a compact neighborhood of x0 and φ ∈ C∞(K) such that x0 is a non
degenerate minimum of φ and its only global minimum on K. Denote H ∈ Md′(R) the Hessian of φ at
x0.

• If ah is a function bounded uniformly in h on K such that

ah = O
(

(x − x0)2n
)

,

then
h−d′/2

∫
K

ah(x)e− φ(x)−φ(x0)
h dx = O(hn).

• If ah ∼
∑

j≥0 hjaj in C∞(K), then the integral

det(H)1/2

(2πh)d′/2

∫
K

ah(x)e− φ(x)−φ(x0)
h dx

admits a classical expansion whose first term is given by a0(x0).
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