An equioscillation theorem for multivariate Chebyshev approximation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

An equioscillation theorem for multivariate Chebyshev approximation

Résumé

The equioscillation condition is extended to multivariate approximation. To this end, it is reformulated as the synchronized oscillations between the error maximizers and the components of a related Haar matrix kernel vector. This new condition gives rise to a multivariate equioscillation theorem where the Haar condition is not assumed and hence the existence and the characterization by equioscillation become independent of uniqueness. This allows the theorem to be applicable to problems with no strong uniqueness or even no uniqueness. A technical additional requirement on the involved Haar matrix and its kernel vector is proved to be sufficient for strong uniqueness. Instances of multivariate problems with strongly unique, unique and nonunique solutions are presented to illustrate the scope of the theorem.
Fichier principal
Vignette du fichier
Equioscillation_20231002.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04224541 , version 1 (02-10-2023)
hal-04224541 , version 2 (17-10-2023)
hal-04224541 , version 3 (22-08-2024)

Identifiants

Citer

Alexandre Goldsztejn. An equioscillation theorem for multivariate Chebyshev approximation. 2023. ⟨hal-04224541v1⟩
328 Consultations
230 Téléchargements

Altmetric

Partager

More