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An equioscillation theorem for multivariate Chebyshev
approximation

Alexandre Goldsztejn

aCNRS, Ecole Centrale de Nantes, Nantes, France

Abstract

The equioscillation condition is extended to multivariate approximation. To
this end, it is reformulated as the synchronized oscillations between the er-
ror maximizers and the components of a related Haar matrix kernel vector.
This new condition gives rise to a multivariate equioscillation theorem where
the Haar condition is not assumed and hence the existence and the charac-
terization by equioscillation become independent of uniqueness. This allows
the theorem to be applicable to problems with no strong uniqueness or even
no uniqueness. A technical additional requirement on the involved Haar
matrix and its kernel vector is proved to be sufficient for strong unique-
ness. Instances of multivariate problems with strongly unique, unique and
nonunique solutions are presented to illustrate the scope of the theorem.

Keywords: Chebyshev approximation problem, multivariate
approximation, equioscillation theorem, convex analysis

1. The multivariate equioscillation theorem

Given f : X → R continuous, we consider the Chebyshev approximation
problem

min
a∈Rn

max
x∈X

∣∣ n∑
i=1

ai φi(x)− f(x)
∣∣, (1)

where basis function φi : X → R are continuous. The index set X is
just assumed to be a compact topological space, so that continuity is well
defined and entails the existence of the maximum (typically, we will just
consider boxes in Rn). The basis function vector φ : X → Rn is defined by
φ(x) = (φ1(x), . . . , φn(x)). We define e(a, x) = aTφ(x)− f(x) and

m(a) = max
x∈X

|e(a, x)|, (2)
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so that the Chebyshev approximation problem is mina∈Rn m(a). We will
suppose that this minimum is not 0, otherwise the problem and the charac-
terization of the its solutions are meaningless.

Given x1, . . . , xk ∈ X, we define the Haar matrix

H(x1, . . . , xk) =
(
φ(x1) φ(x2) · · · φ(xk)

)
∈ Rn×k. (3)

When x1 < · · · < xk and φ(x) = (1, x, . . . , xk), a Haar matrix is a Van-
dermonde matrix. The Haar condition holds for X and φ if and only if for
all x1, · · · , xn ∈ X the square Haar matrix H(x1, . . . , xn) is nonsingular.
When X = [x, x] ⊆ R is a compact interval, the equioscillation condition is
satisfied for a ∈ Rn if and only if there exist x1 < · · · < xn+1 ∈ X such that
|e(a, xi)| = m(a) for all i ∈ {1, . . . , n + 1} and e(a, xi) e(a, xi+1) ≤ 0 hold
for all i ∈ {1, . . . , n}. Values of x ∈ X that satisfy |e(a, xi)| = m(a) will be
called active indices at a ∈ Rn. With this settings, the equioscillation theo-
rem characterizes the solutions of the Chebyshev univariate approximation
problem: if the Haar condition holds then the Chebyshev approximation
problem has one strongly unique1 solution, which is equivalently character-
ized by the equioscillation condition.

Both the Haar condition and the equioscillation condition don’t extend
to multivariate approximation. This is somehow related the existence of sev-
eral minimizers to multivariate Chebyshev approximation problems, and one
way to overcome this situation is to restrict the scope of the approximation
problem, so that uniqueness holds. This was successfully done by [1, 2, 3].
Instead, we aim here at weakening both the Haar condition and the equioscil-
lation condition so that they can apply to multivariate Chebyshev approxi-
mation problems, including instances that enjoy infinitely many minimizers.
While the Haar condition and the equioscillation condition are interleaved
in the univariate case, where existence and uniqueness always hold together,
they need to be separated in the multivariate case so that existence and the
equioscillation characterization can be proved independently of the unique-
ness. An additional technical condition that is tested on the minimizer only
will be proved sufficient for strong uniqueness.

First, the Haar condition cannot be assumed anymore in the context
of multivariate approximation: it is well known that it entails that X is
either a circle or a compact interval [4] (up to homeomorphism), hence it

1Strong uniqueness means that not only m(a) − m(a∗) > 0 for a 6= a∗, but that
m(a)−m(a∗) ≥ c ‖a−a∗‖ for some c > 0 and the norm ‖a−a∗‖ = maxx∈X ‖(a−a∗)Tφ(x)‖.
The definition is in fact independent of the norm since all norms are equivalent in Rn.
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cannot hold for multivariate approximation with other index sets. We still
need a similar but weaker condition, and define the weak Haar condition as
follows: it holds for X and φ if and only if there exist x1, · · · , xn ∈ X such
that the square Haar matrix H(x1, . . . , xn) is nonsingular. The weak Haar
condition is likely to hold in most situations, e.g., X = [−1, 1] × [−1, 1],
φ(x) = (1, x1, x2) and H

(
(0, 0), (1, 0), (1, 1)

)
is nonsingular. The weak Haar

condition has several consequences, among which card(X) ≥ n, the existence
of a minimizer of the Chebyshev approximation problem (cf. Section 3.1),
the fact that ‖a‖X,φ = maxx∈X |aTφ(x)| is a norm on Rn (the triangular
inequality and absolute homogeneity are trivial, the positive definiteness
follows directly from the weak Haar condition), with the consequence that
strong uniqueness implies uniqueness.

Second, the equioscillation condition requires an order on indices and
does not make any sense for multivariate approximation, so we need to
reformulate it in a way that can apply more generally. To this end, we rely
on the following observation, which generalizes the well-known fact that
Vandermonde matrices with one more column than rows have kernel vectors
with oscillating signs. It’s proof is given in Appendix A.

Lemma 1. If φ : [x, x]→ Rn is continuous and satisfies the Haar condition
on [x, x] then all Haar matrices H(x1, . . . , xn+1) ∈ Rn×(n+1), with x1 <
· · · < xn+1 ∈ X, have a one dimensional kernel span{u} with 0 6= u ∈ Rn+1

having nonzero components with alternating signs, i.e., ui ui+1 < 0 for all
i ∈ {1, . . . , n}.

This observation allows reformulating the equioscillation as a synchro-
nized oscillation between the error at active indices and the components
of the corresponding Haar matrix kernel vector: e(a, xi)ui ≥ 0 for all
i ∈ {1, . . . , n+1}. Note that e(a, xi)ui could be all negative as well, but the
opposite of a kernel vector is also in the kernel, hence we don’t loose any
generality by requiring e(a, xi)ui ≥ 0 for some kernel vector. Under this
form, the equioscillation condition can be used for multivariate Chebyshev
approximation problems. Uniqueness is not granted anymore in the context
of multivariate Chebyshev approximation, so a technical sufficient condition
for uniqueness is added below for the definition of the strong equioscillation
condition, which will be proved to be sufficient for strong uniqueness.

Definition 2 (Multivariate equioscillation condition). The (multivariate)
equi-oscillation condition is satisfied at a ∈ Rn if and only if there exist
x1, · · · , xK ∈ X, K ≥ 1, such that |e(a, xi)| = m(a), and a kernel vector
0 6= u ∈ RK of H(x1, . . . , xK) such that e(a, xi)ui ≥ 0 hold for all i ∈
{1, . . . ,K}.
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The strong (multivariate) equioscillation condition holds if and only if
furthermore H(x1, . . . , xK) is full rank, hence K ≥ n + 1, and u no zero
components.

First note that by Lemma 1 the Haar condition and the (univariate)
equioscillation condition together imply the strong multivariate equioscilla-
tion with K = n+ 1. We observe several direct consequences of this defini-
tion: the active indices x1, · · · , xK ∈ X need not to be ordered anymore, so
the definition can be applied in the context of multivariate approximation.
In fact, the definition is not affected by any permutation the active indices
x1, · · · , xK ∈ X: indeed, the columns of the Haar matrix, together with
the components of its kernel vectors, permute simultaneously with permu-
tations of the active indices, so the sign synchronization e(a, xi)ui ≥ 0 is
not affected by permutation of the active indices. Another observation is
that K < n+1 implies that H(x1, . . . , xK) not full rank. Indeed in this case
H(x1, . . . , xK) has more rows than columns and has a non trivial kernel. In
particular, if K = 1 then H(x1) has to be a zero matrix (see Example 10
for such a non trivial situation with infinitely many minimizers).

The connection of the multivariate equioscillation condition to the opti-
mality of the Chebyshev approximation problem can be seen by introducing
the matrix

G(x1, . . . , xd) =
(
ε(x1)φ(x1) · · · ε(xd)φ(xd)

)
. (4)

The capitale G is for ”G”radient, since one can see that the columns of G
are gradients of |e(a, xi)|, provided that |e(a, xi)| > 0. Furthermore observe
that by definition we have

G(x1, . . . , xd)λ = H(x1, . . . , xd)u , with ui = ε(xi)λi. (5)

Therefore, the multivariate equioscillation condition corresponds to the non
negativity of a kernel vector of G. We see will the later that the columns of G
are actually subgradients of m(a) so the multivariate equioscillation condi-
tion is directly related to 0 belonging to the convex hull of some subgradients,
that is to the optimality condition for unconstrained convex optimization.

These conditions lead to the following generalization of the equioscilla-
tion theorem to multivariate Chebyshev approximation problems, where X
is not restricted anymore to be any interval or circle.

Theorem 3 (Multivariate equioscillation theorem). Let φ : X → Rn be
continuous. If the weak Haar condition holds for φ and X then there exists
an optimal solution to the Chebyshev approximation problem. Furthermore,
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a ∈ Rn is a minimizer of this problem if and only it satisfies the multivariate
equioscillation condition (MEC). Finally, if the strong MEC holds then the
minimizer is strongly unique, hence unique.

The usual equioscillation theorem for univariate approximation is a sim-
ple consequence of Theorem 3: on the one hand by Lemma 1 the equioscil-
lation implies the multivariate equioscillation, on the other hand the Haar
condition implies both the weak Haar condition and, together with Lemma 1,
the strong multivariate equioscillation.

The rest of the paper is organized as follows: some basic definitions and
properties of convex functions are presented in Section 2. Section 3 presents
the proof of the multivariate equioscillation theorem. Finally, several in-
stances of multivariate problems are presented in Section 4 to illustrate the
scope of the theorem.

2. Standard convex properties of m(a)

The function m : Rn → R in (2) is called a pointwise supremum, and it’s
properties are well known in the context of nonsmooth convex optimization.
First not that the function |e(a, x)| is convex, and the pointwise supremum of
convex functions is convex, hence m(a) is convex. Convex functions defined
in Rn being continuous, so is m(a). The subdifferential of m(a) is of central
importance here. It is denoted by ∂m(a) and is made of all subgradients:
u ∈ Rn is a subgradient at ā if it gives rise to a affine under-estimator, i.e.,
m(a) ≥ m(ā)+uT (a−ā). The optimality condition for unconstrained convex
optimization then reads a∗ is a minimizer of m(a) is and only if 0 ∈ ∂m(a∗).

When |e(a, x)| is defined in Rn×X with values in R, and X is compact,
the pointwise supremum is actually an unconstrained maximum2 and its sub-
differential enjoys a simple explicit expression: ∂m(a) = conv{∂a|e(a, x)| :
x ∈ act(a)} with act(a) = {x ∈ X : |e(a, x)| = m(a)} is the set of active
indices. Let us illustrate this formula on a simple finite pointwise maximum
example.

Example 4. Let U ∈ R2×3 with columns u1 = (−2, 1)T , u2 = (1, 1)T and
u3 = (1,−3)T . Define the pointwise maximum m(a) = max{uT1 a, uT2 a, ut3a} =
‖UTa‖∞, which is a piecewise linear function. Figure 1 shows the level sets

2In the convex analysis litterature, the wording pointwise supremum applied to infinite
possibly compact index sets, and the working pointwise maximum is restricted to finite
index sets.
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Figure 1: Pointwise maximum of Example 4, with the subdifferential evaluated at several
points.

of m(a). From darker to lighter level sets correspond to areas where uT1 a,
uT2 a or ut3a is active. Dashed line are the place where to linear functions
are equal, and the three linear functions are equal at the origin. The subd-
ifferential are represented in blue: when one linear constraint is active, the
pointwise maximum is differentiable and the subdifferential contains only
the gradient. On dashed lines, where two linear constraints are active, the
subdifferential is the convex hull of the two corresponding gradients, hence a
segment. Finally, at the origin where the three functions are actives, the sub-
differential is the convex hull of the three gradients, hence a triangle. From
this analysis, we see that the origin is the only point where the subdifferential
contains zero, hence the only minimizer of m(a).

In the typical situation where mina∈Rn m(a) > 0, we have that m(a) >
0 and |e(a, x)| differentiable for all a ∈ Rn and x ∈ act(a). Therefore,
∂e(a, x) = {ε(x)φ(x)} with

ε(x) = sign
(
e(a, x)

)
, (6)

whose value is inside {−1, 1} for x ∈ act(a) since in that case |e(a, x)| > 0
by assumption, and finally

∂m(a) = conv{ε(x)φ(x) : x ∈ act(a)}. (7)

Also note that ε(x)φ(x) for x ∈ act(a) are subgradients at a.
This section is ended with the following two simple lemmas. The first

provides a sufficient condition for the uniqueness of the minimizer of some
pointwise maximum of linear functions. It applies directly to the pointwise
maximum function of Example 4. In the sequel, the maximal component of
the vector a u is denoted by maxu.

6



Lemma 5. Let U =
(
u1 u2 · · · ud

)
∈ Rn×(d), d ≥ n + 1, be full rank and

suppose that λ ∈ ker(U) with λi > 0 for all i ∈ {1, . . . , d} = I. Then the
piecewise linear function l(a) = max

(
UTa

)
= max{uT1 a, . . . , uTd a} has the

origin as unique minimizer.

Proof. By way of contradiction, suppose a 6= 0 and l(a) ≤ 0, i.e., aTui ≤ 0
for all i ∈ I and in matrix form UTa ≤ 0. Now UTa 6= 0 (because UT is full
rank and a 6= 0) therefore exists i∗ ∈ I such that aTui∗ < 0. Finally, aTui∗ =
−
∑

i∈I\{i∗}
λi
λi∗

aTui ≥ 0, since λi
λi∗

> 0 and aTui ≤ 0, a contradiction.

The second lemma is a matrix formulation of the property that the null
vector belongs to a the convex hull of some given vectors.

Lemma 6. Let U =
(
u1 u2 · · · um

)
∈ Rn×m. Then 0 ∈ conv{u1, . . . , um} if

and only if 0 6= λ ∈ ker(U) with λi ≥ 0.

Proof. The only if part is a direct application of the convex hull definition.
Now suppose that 0 6= λ ∈ ker(U) with λi ≥ 0 and define µ = 1

‖λ‖1λ.

Then µ ∈ ker(U), i.e.,
∑
µiui = 0, µi ≥ 0 and

∑
µi = ‖λ‖1

‖λ‖1 = 1 hence

0 ∈ conv{u1, . . . , um}.

3. Proof of the multivariate equioscillation theorem

First, if mina∈Rn m(a) = 0 then by the weak Haar condition there is a
unique solution (aTφ(xi) = f(xi) with n linearly independent vectors φ(xi)
uniquely defines a), which is trivially identified with a vacuous multivariate
equioscillation condition. We now suppose that mina∈Rn m(a) > 0, hence
the subdifferential formula (7) holds true.

3.1. Existence of a minimizer

By the weak Haar condition, there exists n distinct points x1, . . . , xn ∈ X
such that H(x1, . . . , xn) is nonsingular. We now build consecutive lower
bounds for m(a). First note that m(a) ≥ maxx∈X

(
|aTφ(x)| − |f(x)|

)
≥

(maxx∈X |aTφ(x)|) − M where M is an upper bound of the continuous
function f inside the compact X. Finally performing the maximum over
{x1, . . . , xn} ⊆ X we obtain the lower bound (maxx∈{x1,...,xn} |aTφ(x)|)−M .

The pointwise maximum in this last lower bound is ‖H(x1, . . . , xn)Ta‖∞,
which is coercive since the Haar matrix is nonsingular (indeed

√
n ‖HTa‖∞ ≥

‖HTa‖2 ≥ λmin(HHT ) ‖a‖2 while λmin(HHT ) > 0 because H is nonsingu-
lar). Continuous coercive functions defined in Rn have a minimizer.
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3.2. Necessity of the multivariate equioscillation condition at the minimizer

Consider a minimizer a∗ ∈ Rn, hence 0 ∈ ∂m(a∗) = convA, where is A
given in (7). By Carathéodory theorem, 0 is the convex hull of d ≤ n + 1
vectors of A, i.e., by Lemma 6 we have

G(x1, . . . , xd)λ = 0 with λ 6= 0 , λi ≥ 0 and x1, . . . , xd ∈ act(a∗). (8)

Therefore from (5) we obtain H(x1, . . . , xn+1)u = 0 with ui = ε(xi)λi. Fi-
nally ui ε(xi) = ε(xi)

2 λi ≥ 0 proving that the multivariate equioscillation
condition holds.

3.3. Sufficiency of the multivariate equioscillation condition for a minimizer

Now, we prove that the multivariate equioscillation condition (MEC) at
a∗ implies 0 ∈ ∂m(a∗). The MEC at a∗ means there exists x1, . . . , xd ∈
act(a∗) and a kernel vector u 6= 0 of H(x1, . . . , xd) such that ε(xi)ui ≥ 0.
Again from (5) we have G(x1, . . . , xd)λ = 0 with ui = ε(xi)λi, so that λ 6= 0
and by the MEC 0 ≤ ε(xi)ui = ε(xi)

2 λi = λi. Finally, Lemma 6 proves that
0 is in the convex hull of the columns of G(x1, . . . , xd) which are subgradients
of m at a∗. Therefore 0 ∈ ∂m(a∗) and a∗ is a minimizer.

3.4. Uniqueness

Consider a minimizer a∗ ∈ Rn, so 0 ∈ ∂m(a∗). We restart at (8) but
with the additional assumption that the strong multivariate equioscillation
condition holds: H(x1, . . . , xd) is full rank, hence so is G(x1, . . . , xd) and d ≥
n+1, and u and λ have at least n+1 nonzero components. Since the columns
of G(x1, . . . , xd) are subgradients at a∗ we have a piecewise affine lower
bound m(a) ≥ m(a∗) + l(a− a∗) with l(a) = max

(
G(x1, . . . , xd)

T (a− a∗)
)
.

Finally all hypothesis of Lemma 5 hold, and it shows that this piecewise
affine lower bound has a unique minimizer a∗, therefore a 6= a∗ implies
m(a) > m(a∗) proving the uniqueness of the minimizer.

3.5. Strong uniqueness

We proved so far that m(a)−m(a∗) ≥ l(a−a∗), which is not as strong as
strong uniqueness, but we prove it entails strong uniqueness. The maximum
is homogenous for positive scalar hence we have the lower bound l(a −
a∗) = ‖a − a∗‖1 l

( (a−a∗)
‖a−a∗‖1

)
which is in turn less than α‖a − a∗‖1 with α =

min‖a−a∗‖1=1 l(a−a∗) > 0. Now, ‖a‖X,φ = maxx∈X |aTφ(x)| is a norm on Rn

(the triangular inequality and absolute homogeneity are trivial, the positive
definiteness follows from Haar condition) which is therefore equivalent to
‖a‖1, hence ‖a‖1 ≥ β‖a‖X,φ for some β > 0. We finally obtain the lower
bound αβ‖a− a∗‖X,φ, that is strong uniqueness.
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Figure 2: Four directional restrictions of m(a) in blue and its piecewise linear lower bound
l(a) in orange, showing a unique non-strongly unique minimizer.

4. Some multivariate problem instances

The first example shows an instance with a strongly unique solution.

Example 7. Let X = [0, 1] × [0, 1], f(x) = x21 + x22 and φ(x) = (1, x1, x2),
so that we approximate f by affine functions aTφ(x) = a1 + a2x1 + a3x2.
The weak Haar condition is satisfied since H

(
(0, 0), (1, 0), (1, 1)

)
is non-

singular, so there is an optimal solution. Let us test the approximation
a∗ = (−1

4 , 1, 1) using the multivariate equioscillation theorem. The error
absolute value |e(a∗, x)| has five maximizers (0, 0), (0, 1), (1, 0), (1, 1) and
(12 ,

1
2), whose error values are respectively (−1

4 ,−
1
4 ,−

1
4 ,−

1
4 ,

1
4). The Haar

matrix for these active indices is

H
(
(0, 0), (0, 1), (1, 0), (1, 1), (12 ,

1
2)
)

=

1 1 1 1 1
0 0 1 1 1

2
0 1 0 1 1

2

 . (9)

We can extract the kernel vector u = (−1,−3,−3,−1, 8), which satisfies
the multivariate equioscillation condition. Therefore the sincoscillation the-
orem proves that −1

4 + x1 + x2 is one optimal solution of this Chebyshev
approximation problem. Furthermore the Haar matrix is full rank and the
kernel vector has at least 4 nonzero components, hence the strong multivari-
ate equioscillation condition holds and this solution is strongly unique.

The second example shows an example where the strong multivariate
equioscillation condition does not hold, but where further numerical in-
vestigations let us conjecture there is a unique solution. This is related
to the singular Chebyshev approximation problems that were investigated
in [5, 6, 7, 8].

Example 8. Let X = [0, 1] × [0, 1], f(x) = x21 + 2x22 − 1
2x1 x2 and φ(x) =

(1, x1, x2), so that again we approximate f by affine functions aTφ(x) = a1+
a2x1 + a3x2. Again the weak Haar condition holds and implies the existence
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of a minimizer. Let us test the approximation a∗ = (− 3
16 ,

3
4 ,

7
4) using the

multivariate equioscillation theorem. The error absolute value |e(a∗, x)| has
three maximizers (0, 1), (1, 0) and (12 ,

1
2), whose error values are respectively

(− 7
16 ,−

7
16 ,

7
16). The Haar matrix for these maximizers is

H
(
(0, 1), (1, 0), (12 ,

1
2)
)

=

1 1 1
0 1 1

2
1 0 1

2

 . (10)

We can extract the kernel vector u = (−1,−1, 2), which satisfies the multi-
variate equioscillation condition. Therefore − 3

16 + 3
4x1 + 7

4x2 is one optimal
solution of the Chebyshev approximation problem. The Haar matrix is not
full rank, so the multivariate equioscillation theorem does not allow prov-
ing the uniqueness. Let us investigate in more details this situation. The
subgradient matrix is

G
(
(0, 1), (1, 0), (12 ,

1
2)
)

=

−1 −1 1
0 −1 1

2
−1 0 1

2

 , (11)

whose kernel vector λ = (1, 1, 2) is positive as expected. The three columns
of G are three subgradient, which give rise to a piecewise linear lower bound
l(a) = max

(
GT (a − a∗)

)
as defined in Subsection 3.4. But in the present

case, l(a) does not allow to prove uniqueness because it is constant in the
direction v = (−1, 1, 1), which is a kernel vector of GT . Figure 2 shows
four directional restrictions of both m(a) and its lower bound l(a). The
first three directions are columns of G, hence steepest ascent directions of
the lower bound. The fourth direction is the kernel vector v of GT , so as
expected l(a) is flat in this direction. However, we can see that a second
order curvature make the minimizer unique.

The following example shows a case with infinitely many solutions to the
Chebyshev approximation problem.

Example 9. Again X = [−1, 1] × [−1, 1] and φ(x) = (x1, x2). We now
build a function that will have infinitely many best approximations. Let
f̄(t) = 2 t2−1 be the degree 2 Chebyshev polynomial, with 0 as best Chebyshev
approximation in [−1, 1], and f̂(t) = exp(−10 t). Finally, we define f(x) =
f̄
(
x1+x2

2

)
f̂
(
abs(x1−x2)

)
so that f is the degree 2 Chebyshev polynomial on

the line x1 = x2 and the quickly converge to zero with the distance to this
line. Its graph is shown in the left graphic of Figure 3. Let us test a∗ =
(0, 0, 0) using the multivariate equioscillation theorem. The error absolute

10



Figure 3: Four directional restrictions of m(a) in blue and its piecewise linear lower bound
l(a) in orange, showing a unique non-strongly unique minimizer.

value |e(a∗, x)| has three maximizers (−1,−1), (0, 0) and (1, 1), whose error
values are respectively (1,−1, 1). The Haar matrix for these maximizers is

H
(
(−1,−1), (0, 0), (1, 1)

)
=

 1 1 1
−1 0 1
−1 0 1

 . (12)

We can extract the kernel vector u = (1,−2, 1), which satisfies the mul-
tivariate equioscillation condition. Therefore 0 is one optimal solution of
the Chebyshev approximation problem. Now, neighbor affine approxima-
tions satisfying a2 + a3 = 0, so that its value is zero when x1 = x2, will
show the same maximizers for the error absolute value (this is due to the
non-differentiability of f on the line x1 = x2, as see on the right graphics
of Figure 3, which fixes the local maximizer independently to small linear
perturbations3) and same Haar matrix, hence will be optimal as well.

The following example shows an untypical case where there is only one
active index and the multivariate equioscillation theorem succeeds. It is
presented to show that K = 1 actually makes sense in the multivariate
equioscillation definition.

Example 10. Let X = [−1, 1] × [−1, 1], f(x) = 2 − x21 − x22 and φ(x) =
(x1, x2), so that we approximate f by linear functions aTφ(x) = a1x1+a2x2.
The weak Haar condition is satisfied since H((1, 0), (0, 1)) is nonsingular.
Let us test the approximation a = (0, 0) using the multivariate equioscillation

3For example in 1D, the minimizer of differentiable function x2 changes with linear
small perturbations x2 + εx, but the minimizer of the nondifferentiable function |x| is not
affected by small linear perturbations |x|+ εx.
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theorem. The error is 0 on the four corners of the box, and has a unique
maximizer at (0, 0) with error 2. The Haar matrix is

H
(
(0, 0)

)
=

(
0
0

)
(13)

with kernel vector 1. multivariate equioscillation is satisfied, therefore 0 is
one best linear approximation of f(x) in X. In fact, this seemingly strange
situation is quite normal from the point of view of convex analysis: the
column of the Haar matrix is a subgradient, and having a null subgradient
entails being a minimizer.
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Appendix A. Proof of Lemma 1

It is well known if φ : X → Rn is continuous and satisfies the Haar con-
dition on X then the determinant of all square Haar matrices H(x1, . . . , xn),
with x1 < · · · < xn ∈ X, have the same sign, see [9, proof of lemma page
74]. Now, the Haar matrix H(x1, . . . , xn+1) is full rank (because Haar con-
dition entails detH(x1, . . . , xn) 6= 0) so its kernel is dimension 1. Let us
consider one kernel element 0 6= u ∈ Rn+1, i.e.,

∑n+1
i=1 ui φ(xi) = 0. For an

arbitrary i ∈ {1, . . . , n + 1}, we have ui 6= 0 otherwise
∑

j 6=i ui φ(xj) = 0
and Hi := H(x1, . . . , xi−1, xi+1, . . . , xn+1) would be singular contradicting
Haar contidition. For i ∈ {1, . . . , n} we have φ(xi) = −

∑
j 6=i

uj
ui
φ(xj) and

replacing the column φ(xi) in Hi+1 by this sum shows that detHi+1 is equal
to∣∣∣ φ(x1) · · · φ(xi−1)

(
−
∑
j 6=i

uj
ui
φ(xj)

)
φ(xi+2) · · · φ(xn+1)

∣∣∣ = −ui+1

ui
detHi,

(A.1)
the last equality obtained using the multilinearity and alternativity of the
determinant. The determinants detHi and detHi+1 having the same sign,
we conclude that ui and ui+1 have opposite signs.
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