On optimality conditions for multivariate Chebyshev approximation and convex optimization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

On optimality conditions for multivariate Chebyshev approximation and convex optimization

Résumé

We review state-of-the-art optimality conditions of multivariate Chebyshev approximation, including, from oldest to newest, Kirchberger’s kernel condi- tion, Kolmogorov criteria, Rivlin and Shapiro’s annihilating measures. These conditions are then re-interpreted using the optimality conditions of convex opti- mization, subdifferential and directional derivative. Finally, this new point of view is used to derive new optimality conditions for the following problems: First for the multivariate Chebyshev approximation with a weight function. Second, the approximation problem proposed by Arzelier, Br ́ehard and Joldes (26th IEEE Symposium on Computer Arithmetic 2019) consisting in minimizing the sum of both the polynomial approximation error and the first order approximation of the worst case evaluation error of the polynomial in Horner form.
Fichier principal
Vignette du fichier
AlternationNewton.pdf (510.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04224541 , version 1 (02-10-2023)
hal-04224541 , version 2 (17-10-2023)
hal-04224541 , version 3 (22-08-2024)

Identifiants

Citer

Alexandre Goldsztejn. On optimality conditions for multivariate Chebyshev approximation and convex optimization. 2024. ⟨hal-04224541v3⟩
328 Consultations
230 Téléchargements

Altmetric

Partager

More