Non-convex functionals penalizing simultaneous oscillations along two independent directions: structure of the defect measure - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Non-convex functionals penalizing simultaneous oscillations along two independent directions: structure of the defect measure

Résumé

We continue the analysis of a family of energies penalizing oscillations in oblique directions: they apply to functions $u(x_1,x_2)$ with $x_l\in\mathbb{R}^{n_l}$ and vanish when $u(x)$ is of the form $u_1(x_1)$ or $u_2(x_2)$. We mainly study the rectifiability properties of the defect measure $\nabla_1\nabla_2u$ of functions with finite energy. The energies depend on a parameter $\theta\in(0,1]$ and the set of functions with finite energy grows with $\theta$. For $\theta<1$ we prove that the defect measure is $(n_1-1,n_2-1)$-tensor rectifiable in $\Omega_1\times\Omega_2$. We first get the result for $n_1=n_2=1$ and deduce the general case through slicing using White's rectifiability criterion. When $\theta=1$ the situation is less clear as measures of arbitrary dimensions from zero to $n_1+n_2-1$ are possible. We show however, in the case $n_1=n_2=1$ and for Lipschitz continuous functions, that the defect measures are $1\,$-rectifiable. This case bears strong analogies with the study of entropic solutions of the eikonal equation.
Fichier principal
Vignette du fichier
CharacterizationOf1dFunctions_Part2_final.pdf (572.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04222463 , version 1 (29-09-2023)

Identifiants

  • HAL Id : hal-04222463 , version 1

Citer

Michael Goldman, Benoît Merlet. Non-convex functionals penalizing simultaneous oscillations along two independent directions: structure of the defect measure. 2023. ⟨hal-04222463⟩
28 Consultations
28 Téléchargements

Partager

More