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Non-convex functionals penalizing simultaneous
oscillations along two independent directions:
structure of the defect measure

M. Goldman* B. Merlet!

September 29, 2023

Abstract

We continue the analysis of a family of energies penalizing oscillations in oblique
directions: they apply to functions u(z1,x2) with z; € R™ and vanish when u(x) is
of the form uq(z1) or ua(ze). We mainly study the rectifiability properties of the
defect measure V1Vau of functions with finite energy.

The energies depend on a parameter 6 € (0, 1] and the set of functions with finite
energy grows with 6. For § < 1 we prove that the defect measure is (ny — 1,79 — 1)-
tensor rectifiable in 21 x Q5. We first get the result for ny = no = 1 and deduce the
general case through slicing using White’s rectifiability criterion.

When 6 = 1 the situation is less clear as measures of arbitrary dimensions from
zero to ni + no — 1 are possible. We show however, in the case n; = ny = 1 and for
Lipschitz continuous functions, that the defect measures are 1 -rectifiable. This case
bears strong analogies with the study of entropic solutions of the eikonal equation.

1 Introduction
As in [GM21], we decompose the euclidean space X = R™ as,
R"=X;8¢X,, with n:=dmX;>1 forl=1,2.
The spaces X; and X, are assumed to be orthogonal. We then set
K =X, UX;.

We consider a domain 2 C R"™ which writes as 2 = Q; + Qy where, for [ = 1,2,
), C X; is a nonempty bounded domain. In this paper, we push further the analysis of
the differential inclusion

Vxv=0 and veK ae. (1.1)
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Here V x v = 0 means that d;v; = O;v; for 1 < 4,5 < n. Writing then v = Vu
and using the notation V; for the derivatives with respect to the variable in X, is
equivalent to

|Viu||Vau| =0  almost everywhere in €. (1.2)

As noticed in [GM21], even under an L* assumption on v (correspondingly in the class
of Lipschitz functions u), is far from rigid. In particular it is not strong enough
to characterize the subset of functions u € Lip(Q2) of the form wu(zy + x2) = ui(x2) or
u(zy + x2) = ug(xs) for x; € Qy, x9 € y. This motivates the introduction of an energy
based on a discrete version of (see also [GR19] for another motivation). We fix
01,65 > 0 and assume

= Ql + 92 S 1.

We also fix a radial function p € L'(R",R;) supported in By and such that [p = 1.
Denoting L(£2) the space of measurable functions over 2, for ¢ > 0 and u € L(Q2), we

define the energy:
D )| D 0
wem [ [ PRI G ) a (13)
n € Z

where we use the following conventions.

(1) pe(z) = e7"p(e7"2);

(ii) for [ = 1,2, z; denotes the component in X; of z € X; + Xy;

(iii) we use the notation
Du(z,z) == u(z + z) — u(x);

(iv) and we integrate over the restricted domain[]

Q= Q5 + Q5, where Q= {x € Q2 d(x, X\ ) > e}

We then send ¢ to 0 to obtain the energy:
E(u) := liminf & (u).

el0
Remark 1.1. The definition of [GM21] allows for § > 1 and involves another parameter
p > 0 which corresponds to the exponent of |z| in the denominator of (1.3). Here we have
fixed p = 2 which is the relevant value in the case § < 1 as shown in [GM21].

Remark 1.2. As we will see in Proposition [B.1] if u is Lipschitz continuous with £(u) < oo
then v = Vu satisfies (1.1)). However, while (1.1)) requires at least v € L', i.e. u € Wt!
to make sense, £(u) is well defined as soon as u is measurable.

Remark 1.3. Consider some parameters §; > 6, > 0 for | = 1,2 and assume that ¢’ :=
01 + 6, < 1. For u € L*>(f2) we have, with obvious notation,
5<91’92)(u) <oo = 5(9/1’9,2)(u) < 0.

In particular, the larger 61, 65 are, the less coercive the energy is. In the limit case 6 = 1,
the set of functions with finite energy is much larger and we will see that the results are
of a different nature than in the case 0 < 6 < 1.

INotice that ° is empty when ¢ is too large.



In [GM21], Theorem I], we established the equivalence £(u) = 0 if and only if u depends
only on x; or only on x5. That is, u lies in the non conver set

S(Q):={ue L(Q): 3l e{1,2}, FJu, € L() such that u(z) = w(z;) in Q}.

We also established some quantitative versions of this fact by showing that £(u) controls
the distance of u to S(€2) in a strong sense, see [GM21, Theorem R & Theorem S]. In
the proofs of these results a key step is the control of the X; ® Xy-valued distribution

plu] == V1Vau.

We established [GM21l, Proposition M(a)] that if u € L*(€2) has finite energy then puu
is a Radon measure with

[u]|(Q) < ull 7€ (). (1.4)
Obviously, the functions for which pfu] = 0 are exactly the functions of the form u, (x;) +

ug(z2), that is the elements of span(S(£2)). The distribution pfu] measures how much the
function u deviates from span(S(€2)).

The aim of this paper, is to study the regularity and geometric structure of pfu| that
we call from now on: the defect measure. As a by-product of our analysis, for n = 2 and
0 < 1, we are able to improve the quantitative results obtained in [GM21, Theorem R].

Before going further let us recall a useful result from [GM21].

Proposition 1.4 ([GM21, Lemma 3.4, Remark 3.5)). If u € L}, () is such that £(u) <

00, then up to a change of variables, there exist:

(i) sequences e > 11, > 0 tending to 0;

(i1) orthonormal bases (e1,--- ,en,) of Xy and (f1, -, fn,) of Xo;
such that’

E'(u) := limsup Z /m a(@,reles + J;)) dr < E(u), (1.5)

2
oo 1<i<ng, 1<i<ns "k
with the notation
q(z, 2) = (|Du(z + 22, 21)|" + |Du(z, 21)|”*) (|Du(z + 21, 22)|” + | Du(z, 2)|) . (1.6)

As a consequence, if u € L,

€"(u) :=liminf Y /Q DLl )@ reel (o pnogwy. (17)

k—o0 . . 7“]%
1<i<ng, 1<j<n3

Throughout the article we implicitly assume that the sequences 7y, €; and the bases
(e1,-++ ,eny), (f1,-++, fny) are those provided by the proposition. There are however
some exceptions where the symbols ey, 71, are used for other purposes (as in Lemma ,
Remark or Proposition but this is clear from the context.

When n; = ny = 1, we can take (eq, fi) to be the standard basis of R* and we denote it
by (e1, €2).

Remark 1.5. In [GM21] we actually derive from the stronger estimate, |pfu]|(€2) <
E"(u), see [GM21], Lemma 3.6].

2We use the notation a < b to indicate that there exists a constant C' > 0 which can depend only on
ni, na, 01, 02 and p, such that a < Cb.




1.1 The case 0 < 1

We first consider the case 6 < 1 with ny = ny = 1 so that 2 = I; x I, with I; open
intervals. As shown in [GM21, Proposition P|, the typical example of a function with
E(u) < oo in this case is given by the characteristic function of a polyhedron with sides
parallel to the axes (see Figure[l] left). The defect measure is then a sum of Dirac masses
sitting at the vertices of the polyhedron that lie in 2.

In the setting of characteristic functions the situation simplifies in the sense that we only
need the following consequence of (L.4).

plu] = 010hu € M(Q2) and wu(z) € {0,1} almost everywhere in €. (1.8)
7
0 o’ Q
8 z°
[ { ]
4 3
A e o A
[ J [ ]
zt 7

Figure 1: A polygon A with 14 of finite energy and with u[la] = 0,1 — dp2 + Jp3 — 0pa +
20,5 — 046 — 0,7 and a set A’ with the same defect measure but with infinite perimeter.

Theorem 1.6. Letn; =ny =1, Q = I, x I, C R? be a nonempty open box and let A C Q)
be measurable. If u =1, satisfies (L.8) then the following properties hold.

(i) There exist finite sequences my, -+ ,my € {*1,4£2} and z*,--- 2V € Q with the
xt’s pairwise distinct such that

N
plu] = ijéﬂ.
=1

(i) The set A is the union of finitely many polygons with sides parallel to the axes and
stripes which are either all vertical or all horizontal. We can thus find measurable
subsets Ay C I, Ay C Iy with either H°(0A;) < oo or H°(0A,) < oo and such that

w(z) = 1a, (1) £ 1a,(22) + w(x) where  w(x) := pfu]((0, x1] x (0, z5]).

Besides w = 0 (and plu] = 0) whenever |pfu]|(Q) < 1 (see Figure[d in Section
for an example with u(x) = 14, (z1) — 1a,(x2)).

(11i) As a consequence, there exists ¢ > 0 such that if E(u) < ¢ then u € S(Q), that is,
up to a negligible set,

A=ILxA or A=A x1, forsome measurable set A’
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Remark 1.7. Notice that point (iii) improves [GM21, Theorem R| when u is a characteristic
function. Such result does not hold for functions which can take values into a set with
more than two elements. For instance, if for [ = 1,2, A; is a finite union of intervals with
@ # A; & I, the function u(x) := 14, (x1) + 14, (22) satisfies p[u] = 0105u = 0 (and even
0 < &(u) < 00) but u ¢ S(Q).

Remark 1.8. Let us stress that the theorem does not state that assumption implies
that wu is the characteristic function of a finite union of polygons. This is only true up to
vertical or horizontal stripes since such stripes do not contribute to pfu] (see Figure [1)).

We now turn to the case of generic functions v when 6 < 1. Unlike the case of
characteristic functions where (|1.8)) is rigid, we need the stronger assumption &£(u) < oo.

Theorem 1.9. Let ny = ny = 1 and let Q@ = I, x I, C R? be a nonempty open box.
Assume that 0 < 1 and let uw € L*>®(Q) with £(u) < co.
Then plu] =37, M0 for some 27 € Q and m; € R\{0} and we have the estimate

> Imyl” S Ew). (1.9)
j>1
Moreover, if we assume that u is integer-valued then the m;’s are integers.

The proof of Theorem [1.9]is based on the following observation. For every r > 0 and
almost every x € Q such that Q,, := x + [0,7)? C Q, there holds,

plu](Qzr) =u(z +r(er + e2)) —u(x + rey) — u(x + rea) + u(z)
=D[Du(-,res)|(x,req).

For a rigorous justification, see Lemma [2.1] By Proposition [I.4] this shows that

liminf/m Mdmﬁg(u)

kToo TL

Lemma [2.4] then implies that p[u] is atomic and that the estimate ((1.9) holds true.

Remark 1.10. We see from Remark that p[u] = 0 does not imply E(u) = 0. In
particular we cannot expect the energy &€ to concentrate on supp pful.

Building on the structure of u[u] provided by the theorem, we are able to improve [GM21],
Theorem RJ. In order to state the result let us introduce the set SBVj(2) as the subset
of functions of bounded variation in Q (see [AFP00]) whose distributional derivative has
only jump part, i.e. Vu = (uy —u_)v,H" 'L J,, and such that

Vulg:= [ |uy —u_|?dH"™ < 0.
Ju

Theorem 1.11. Assume that ny = ny = 1, that Q = I, X I is an open box and that
0 <1. Letu e L*(Q) with E(u) < oo and ||u| < 1.

(1) There exists u € S(Q2) such that u — u € SBVy(2) N L>®(Q2) with the estimate
= ]| oo + [V — @l]6(Q) < (1+ H(L) + H (L)) <€(u) + \/S(u)> . (1.10)
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(11) If moreover p[u] = 0 and u ¢ S(Q), then there exist two non-constant functions
w € SBVy, (1)) forl =1,2 such that u(x) = ui(x1) + us(x2) and

[Vuile, (1) [Vuale,(I2) S E(u). (1.11)

(111) As a consequence, if u € L*(Q2) N BV (Q) is such that £(u) < oo and Vu has no
Jump part then u € S(Q).

We now turn to the higher dimensional case n > 3. Our main result is the (n — 2)-
rectifiability of u[u], more precisely, its (ny — 1, ny — 1) -tensor rectifiability.

Theorem 1.12. Assume 6 <1 and u € L>®(Q) with E(u) < oo then the following hold.

(1) plu] is a (n — 2) -rectifiable measure, i.e. there exist a (n — 2) -rectifiable set ¥ C €
and a Borel mapping m : 0 — R such that:
(x) the approximate tangent space at H" % -almost every x € X is of the form
(v1(x), va(z)) where v(z) € X;\ {0} forl=1,2,
(*)
plu) = m(v; @ vy) H' 2L Y.

(i1) We have the estimate,
Ma(ule) i= [ ml’ a2 5 £(w)
s

(11i) We can choose ¥ such that X C 31+ Xy for some (n,— 1) -rectifiable subsets ¥ C
forl=1,2. We say that plu] is (ny — 1,ny — 1)-tensor rectifiable.

The main two observations in the proof of (i) and (ii) in Theorem are the fol-
lowing. First, we can identify the defect measure p[u] with a (n — 2)-current T[u| (see
Proposition [2.6]). Moreover, since pfu] = Vi Vau is a finite measure, we get that 7'[u] is a
finite mass cycle, i.e. (T [u]) = 0 and M(T[u]) < oo.

We then argue by slicing (Theorem and apply the slicing rectifiability criterion of
White [Whi99b], see also [Jer(2]. For this we have to show that that the 0-slices of T'[u]
are rectifiable.

(¥) We first notice that as a consequence of the formula ulu] = V;Vau, all the slices
of T'[u] with respect to coordinate (n — 2)-spaces orthogonal to a plane of the form
span(e;, , €;,) or span(f;,, f;,) vanish.

(*) Next, we consider instead a 2-plane of the form span(e;, f;). On the one hand, slicing
and partial boundary operations commute, see . On the other hand, by Fubini
and Fatou, the energy £”(u) (recall (1.7))) also behaves well with respect to slicing.
We may thus apply the two dimensional result Theorem to conclude that the
0-slices of T'[u] are rectifiable.

Once rectifiability is obtained, (ii) follows from the corresponding bound in the
case n; = ng = 1. The proof of (iii) is considerably more involved and motivated the
development of the theory of tensor-rectifiable flat chains in [GM22b]. In a nutshell, the
idea of the proof of [GM22b, Theorem 1.3] is to first treat the case ny = 1, ny > 2.
In this case, based on the decomposition of Tu| in indecomposable components proven
in [GM22a] we obtain in [GM22Dh, Proposition 6.2] the stronger result below (rephrased
in the language of the present paper),



Proposition 1.13. Let ny = 1 and ny > 2 so that 2 = I; 4+ €2y for some open interval
I. Assume that 0 <1 and that u € L>(2) is such that £(u) < oco.
Then there exist sequences y, € I, and uy, € SBVY(Qy) for j > 1 such that

plu] =6, ® Vaus (1.12)
and '
My (pfu]) = Z [Vauslo(€22). (1.13)

As a consequence, there exist u € L*°(I;) and uy € L>(Qy) such that

u(z) = uj(z1) + uy(ws) + Z Lo uty(71) uj(x2).

In the general case ny,ny > 2, we can formally interpret T'[u] as a (n; — 1)-flat chain
over 2y with coefficients in the infinite dimensional space of (ny — 1) -flat chains over €.
By we see that if we slice this flat-chain with respect to a hyperplane of X;, we
obtain a 0-rectifiable flat chain in ©; (still with coefficients in the space of (ny — 1)-flat
chains over 2y). Applying White’s rectifiability criterion then concludes the proof.

Remark 1.14. Let us point out that for n;,ny > 2 we cannot expect a decomposition
analog to ([1.12)) satisfying also the counterpart of identity ((1.13)) (see the counterexample
of [GM22b| Proposition 6.5]).

Remark 1.15. The energy My coincides with a so-called h-mass studied for instance
in [Whi99a, [CDRMSI17]. Partly due to its connection with branched transport models,
this type of functionals has received a lot of attention in the past few years, see e.g. [BW1S|
CEM19, [CDRM21]. Tt would be interesting to understand further this connection with
the energy &(u).

Remark 1.16. Let us finally observe that since p = plu] = V1 Vau, it satisfies the linear
PDE constraints
Vixu=0 and Vo x pu=0,

where for instance V; x p = 0 means that for every i, k € [1,n;] and every j € [1,ns,

a:ui,j . aﬁbk,j

Oey, Oe;

Letting A be the associated symbol, we have for £ = & + & € R™ with & # 0

ker(A(£)) = R& @ &

and for & # 0, ker(A(&)) = & ® Xy and similarly for ker(A(&;)). In the language
of [ARDPHR19], we thus find A”{ > = {0} so that we could appeal to [DPR16,[ARDPHR19]
and obtain that the most singular part of p is (n — 2)-rectifiable. In comparison with
Theorem this would however not exclude the presence of a more diffuse part of the
measure.



1.2 The case 6 =1 (with ny =ny =1)

As proven in [GM21], Proposition P|, when 6 = 1 the set of possible measures p[u] is much
richer. The study being much more difficult, we restrict ourselves to the case ny = ny = 1.
Indeed, besides atomic measures we can also have measures concentrated on lines (or a
mixture of both). The typical example is given by the “roof” function u(xi,zs) =
min(z;,2;). It has finite energy (when restricted to cubes) and pfu] = (1/vV2)H'L L
where L = {x; = x4} is the diagonal. It turns out that pfu] cannot be more diffuse. We
establish this through a far-reaching refinement of the method used for Theorem 1.8 (but
now in the case 6 = 1).

Theorem 1.17. Let ny = ny =1 and 0 = 1. Let u € L}, () be such that £(u) < oo.

loc

Then pulu] = plu] L A for some Borel subset A C Q such that H' A is o -finite.

Remark 1.18. Measures of all dimensions between zero and one are possible. Indeed, fix
v a finite measure on (—1,1) and, for [ = 1,2, let y; : (—1,1) — (—1,1) be a smooth and
increasing function. Setting for z = (z1,z2) € (—1,1)%,

1
@) = [ L)L az) (),

1

then u has finite energy and plu] = (y1 ® y2)x v.

From the examples discussed above it seems then natural to restrict ourselves to the
case of Lipschitz functions. Our last main result states that for such functions, the defect
measure is 1 -rectifiable.

Theorem 1.19. Let ny =ny =1 and 0 = 1. Let u € L®(Q2) be such that ||Vulls. < 1
and p := plu] is a Radon measure. Then y is H'-rectifiable, that is

pw=mH LY

for some 1 -rectifiable set > C 2 and some Borel measurable function m : ¥ — R.
Moreover, Vu has strong traces on > of the form

(v7°,0) and (0,v5°) (1.14)

with v° # 0, v3° # 0 and

Gl
VIR + o5

For the proof of Theorem [1.19] we first show in Proposition that if u satisfies
the hypothesis of the theorem then v = Vu satisfies the differential inclusion with
the additional constraints that |[v| < 1 and that p[v] is a measure. We then prove in
Theorem the analog of Theorem but for bounded vector fields v satisfying

and plv] € M(Q). Writing v = Vu for some Lipschitz function w, the idea is to use the
layer-cake formula to decompose it on its superlevel-sets w; := {u > t}. Defining

m| =

Ky = p[ly,] = 01091,

o] = / o d.

8
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In particular, for almost every ¢, k; is a finite measure. Therefore, 1,, satisfies the
differential inclusion . Applying Theorem we conclude that w; is a finite union
of polygons with sides parallel to the axes and k; is nothing else than the sum of the
Dirac masses located at the corners. Moreover, |u[v]|-almost every point Z is given by
such a corner corresponding to a level ¢ at which the function ¢ — |w| is continuous.
As a consequence, up to discarding sets of small measures, for ¢ close to ¢, every w;
contains exactly one corner z(t) in a small neighborhood of z, see Lemma . This gives
a sort of local parametrization of pfv] around Z. The main point is then to prove that
x is differentiable in an appropriate sense at ¢ = ¢. The central insight is that since
u(z(t)) = ¢, the velocity 2/(t) is governed by Vu. We prove in Lemma [3.16| that, with the

notation (|1.14)),
1

vpe(x (1))
Remark 1.20. We call entropy any mapping ® : R? — R? which writes as ®(v) =

v1(ve)er + pao(vy)es for some pair of smooth functions 1, : R — R. We say that
v is an entropy solution to (|1.1)) if for every entropy ®,

z)(t) = forl =1,2.

fp =V - [B(v)] € M(Q).

It is then not hard to see that if v satisfies it is an entropy solution if and only if
p[v] := pgo is a measure for the entropy ®° associated with (9, ¢9) = (Id,0). In this
light our result can be compared with [ODL03|] where a similar question is addressed for
entropic solutions of the eikonal equation. This corresponds to replacing

KN By = ([-1,1] x{0}) U ({0} x [-1,1])

by 0B as the nonlinear constraint. Thanks to the strong constraint on the level-sets of
the stream function u the analysis in our case turns out to be substantially simpler than
for [ODLO3|. In particular we are able to obtain a stronger result which is the rectifiability
of the defect measure pfv]. This is still a major open problem for the eikonal equation,
see [Mar21l [Mar22] for recent results for related models.

Partly motivated by this analogy with the Aviles-Giga functional, we investigate in
Section the compactness properties of sequences in

S5°(Q) :={v € L¥(LR?*) : |v]|oo <1, VXxv =0, v €K ae. and plv] € M(Q)}.
Proposition 1.21. If v* € §%°(Q) is such that

sup |uf™]](9) < oo,

(i) Then, up to extraction, v® —s v for some v € S*®() in the weak-+ topology of L.

(i1) If moreover
lim sup [ [v*]](2) = 0
k—o0
then for some | € {1,2}, v = ve; with vi(x) = v(x;) and v converges strongly to 0

in L' (here {I,1} = {1,2}).



The proof follows the same scheme as in [DKMOOI] using the div-curl lemma and
Young measures.

For z € R* and r > 0 we set Q,.(z) := = + (—r,7)? and simply write @Q for (—1,1)>.
Returning to the setting (and to the notation) of Theorem , we introduce for z* € Q
the family of blow-ups of v := Vu at z* as the functions v* " € S*(Q) defined for
0<r<dzR?\ Q) by

v (2) = vzt 4 rx) = Vu(z® + rr) for z € Q.
We notice that for every Borel subset A C () we have
. 1 .
p o] (4) = Tl + )

so that the assumption |p|(2) < oo implies by [AFP00, Theorem 2.56] that for #!-almost
every z* € Q\ ¥ there holds

i sup o 71| (@) = i sup )
0 rl0 r

=0.

Applying Proposition to the family v € S*°(Q) we deduce that for H!'-almost
every z* € Q\ X, there exists | € {1,2} such that, up to extraction of a subsequence
ri 4 0, there hold

le*’rk converges weakly- in L*°(Q) and v;—r*’rk — 0 in L'(Q). (1.15)

These points parallel the “VMO points” of [ODLO03] in the setting of the eikonal equation
which are conjectured to be H!-almost all Lebesgue points of v = Vu (see [LM23] for
recent results in this direction).

A natural question is whether we can choose the integer [ = 1,2 in ((1.15) independently
of the choice of the subsequence. In such a case, 2* would be a Lebesgue point of v;. The
answer is no in general. Indeed, we construct in Proposition a vector field v € S*(Q)

satisfying
s J11(2:0)
rl0 r

but such that the integer [ € {1,2} in (|1.15]) does depend on the choice of the subsequence.
In particular 0 is neither a Lebesgue point of v; nor of vs.

=0

1.3 Conventions and notation

In all the paper, we consider 6,6, > 0, we note § = 6, + 05 their sum and we assume that
0 <1. For z,z € R" and u : 2 — R we define

Du(z, z) == u(x + 2) — u(x).

We denote by (e, ,e,,) (respectively (fi,---, fn,)) an orthonormal basis of X; (re-
spectively of X,).
If ny =ny =1, for x € R? and 2 € (0, +00)?, we write

Qu» = [T1,71 + 21) X [T2, T2 + 22).

10



We also use the notation @, , := z + [0,7)" for z € R” and r > 0.

The open ball in R with radius > 0 and centered at x is denoted B,.(z) and we write
B, when x = 0. The dimension n is always clear from the context.

Given § C X where X is some vector space, span(S) is the space spanned by S. We
denote H*(A) the k-dimensional Hausdorff measure of a set A C R™ and if A C R" is a
measurable subset, we note |A| its volume.

We write a < b when a < Cb for some C' > 0 which may only depend on 6,65, n or on
the kernel p.

We use standard notation for functional spaces such as LF(w), W'?(w), BV (w). M(w) is
the space of Radon measures on w.

Unless otherwise specified the sequences are indexed from 1. We often write supa; as a
shortcut for sup,, a; and similarly for series, we write ) a; for ) 10

1.4 Outline of the paper

The paper is organized as follows. In Section [2| we consider the case # < 1 and start
by treating the two dimensional case in Section 2.1 We first prove Theorem on the
structure of the defect measures for characteristic functions. We then consider the case
of arbitrary functions, i.e. Theorem [I.9] Finally, we use it to prove Theorem [I.11] In
Section [2.2| we consider the higher dimensional case and prove Theorem [I.12| In Section
we turn to the case # = 1. We first prove Theorem for arbitrary functions and in
Section [3.2] we consider the case of Lipschitz functions. We derive the differential inclusion
satisfied by functions of finite energy in Section before proving Theorem about
the rectifiability of the defect measure in Section We finally prove the compactness
result, Proposition [1.21]in Section [3.2.3]

2 The case 0/ < 1

2.1 The two-dimensional case

In this section we assume that ny = ny = 1. We first show the following simple lemma
used in several places.

Lemma 2.1. Let ) = 602575 C R? be a nonempty open box (that is T € R* and z €
(0,+00)?) and let u € L, () be such that u[u] = 0105u is a Radon measure.
Defining w as

w(z) = p((T1, 1] X (T, x2)) for xz € Q, (2.1)
we have w € BV () with the estimate
[w]loo + [Vw|(€2) S (1 + |2[)|p[u]|(€), (2.2)

and there exist functions uy(x1) and ug(z2) in S(Q) (which are bounded if u is bounded)
such that
w(x) = ug (1) + uz(z2) + w(z) for almost every x € Q. (2.3)

As a consequence, for every z € (0,400)?, we have for almost every x € Q with Q,, C ,

plul(Qrz) = DIDu(, 22)|(2, 1) and |p[u][(0Qs.) = 0. (2.4)
In particular, |plu](Qu..)] < 4|t so-
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Proof. Estimate is a direct consequence of the definition of w. Since 010s(u—w) =
0, is also readily obtained (see for instance the proof of [GM21, Theorem 3.7]). We
thus only need to show ([2.4)).

Let I, := (z;,7; + Z) for [ = 1,2 (so that Q = I} x I3). Since p := ulu] is a Radon
measure, there exist J; C I; and Jy C I, with full Lebesgue measures such that for every
x1 € Ji, |u|({x1} x 1) = 0 and for every xo € Jo, |u|(ly X {z2}) = 0. Hence, for every
box @ with vertices in J; x Jo, we have |u](0Q) = 0. We may assume moreover that all
the points of J; are Lebesgue points of u; for [ = 1, 2.

Then, using , for every box @), . with vertices in J; x J, we have

D[Du(-, )](x, 21) = D[Dw(:, 22)](, 1)

= w(x) —w(xy, T + 29) — w(x1 + 21, x2) + w(x + 2).

By definition of w this implies (2.4]). Eventually, if z € (0, +00) is fixed then almost every
box @, . C € has vertices in J; x Jy. This concludes the proof. O

Let us prove Theorem which deals with the case of characteristic functions.

Proof of Theorem[1.6. Let u = 14 be such that u := 9,05u € M(Q) as in the theorem.

(i) We first prove that p is atomic. Notice that since u € {0,1}, (2.4) implies that for
every fixed z, Lebesgue almost every rectangle (), . C (2 satisfies

1(Qs.2) € {0, £1, £2} (2.5)

and by approximation this actually holds for every @), . C 2. Therefore, if md, is a non
trivial atom of p, we deduce that m = p({z}) = lim, pu(Qux .+) € £{1,2}, where we
take the limit over a sequence of boxes (). .» with x € Q.+ and ]zk| — 0. Since p
is a finite measure on (), its atomic part writes as a finite sum p® = Zj\[:l m;od,; with
m; € {£1,£2}, 27 € Qand N < > |my| < |u|(Q).

Let us prove that p(Q,,.) = 0 for every rectangle @, , C Q' := Q\ supp u*. Let us assume
by contradiction that p(Q,.) # 0 so that p(Q,.) € {£1,£2}. We split @, . into four
equal disjoint rectangles Q1 ,1,- -+, Q4 4. By , we have p(Q.i) € £{0,1,2} for
j=1,---,4. Since > p(Qui i) = 1(Qqz) # 0, we can pick j with p(Qi i) € {1, £2}.
We note Q' := @, .; and iterate the construction to produce a sequence of nested boxes
QF with p(QF) € {£1,£2} for k > 1 and diam Q* — 0. We deduce from the monotone
convergence theorem that NyQ* = {z*} for some z* € Q,, with u({z*}) # 0. This
contradicts @, . N supp u* = & and proves the claim. Eventually, since the rectangles of
the form @, . C @ generate the o -algebra of Borel sets of V', we conclude that ;L' =0
so that u = p® as claimed and (i) is proved.

(ii) We turn to the proof of (ii). Without loss of generality, we may assume that
I;=(0,4) for 1 =1,2.
We start with the following simple observation. If @)y, C € is such that pL Q. = 0,
then wL Q. = 0 (recall the definition (2.1))) and thus by (2.3)),

uw(z) = uy (1) + ug(z2) for x € Qo .

for some functions uy, us € S(Qo.). However, since u takes only two values this implies
that u € S(Qo.) (see [DM95] for an application of this argument in a different context).
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QO,(Zl,lz)

(0, 1) — ﬁ

(07 22) """"

: z
E } QO,(ll,ZQ)

(Zla O) (l17 0)

Figure 2: The L-shaped domain £ = Qo (¢,,2,) U Qo,(z,0,)- Here u = 1 on the gray zones.

Notice that since u is quantized this implies in particular (iii).

Let z be such that p does not contain any Dirac mass in the L-shaped domain £ :=
Qo,(01,20) UQo, (21 12), See Figure . By the above observation applied in Qo (, -,y and then in
Q0,21 ¢, and using obvious notation, there exist u}, u € S(Qo ¢ 20)) and uy, uy € S(Qo ., .0,)
such thatf]

Bxy) + ub(xy) for z € Qo,(t1,2)
\1,(1’1) + u;(xg) for x € Q07(217£2)'

In the intersection () ., there holds
up (1) + uy () = u(x) = wy(21) + uz(w,),

and substituting (u} — ¢, uy + ¢) for (uy, uy) for some ¢ € R we may assume that u} = ul
in Q. for [ = 1,2. Then, setting u; = u' and uy = uy we have

u(z) = ui(xy) + ug(xe) forx e L and u € S(Qo,t1,20)) N S(Qo,(21,0))-

If u; is not constant in (0,¢;), then uy is constant in (0, 23). Up to the addition of a
constant, we may assume without loss of generality that uy = 0 in (0, z2). This implies
that u = u; in Qo z,) and since u is a characteristic function we see that in any case
uy = 14, for some measurable set A; C (0,¢;). The exact same considerations in Qo,(s, ¢,)
show that uy = 41 4, for some measurable set Ay C (0, 3). Eventually, since 002 (u—w) =
0 = 0102(uy + usg) in the rectangle €2, the identity u — w = uy + us, valid in £, propagates
to €2. This concludes the proof. m

We now establish an elementary measure theoretical lemma used in the proofs of
Theorem [[.9] and Theorem [[.17

3Throughout the article, the superscripts " and _V stand for “horizontal” and “vertical”.
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Lemma 2.2. Let X be a locally compact, complete and separable metric space, let p be a
finite Radon measure on X. For k > 1, let Q% be a collection of pairwise disjoint Borel
subsets of X such that dj, := sup{diam Q : Q € QF} goes to 0 as k 1 co. Then,

ul (Ne U Q) <liminf } | [4(Q)].
QeQF

Remark 2.3. The lemma is false if we do not assume that the elements of QF are disjoint.
In the sequel we apply the result with X = €, a bounded open set of R and with QF a
finite set of disjoint boxes.

Proof of Lemma[2.3 In the proof we denote Y* := UQF and Y := N I*.
Writing p = (|u| the polar decomposition of p, the function ¢ is Borel measurable and
takes values in {—1,1}. Let ¢ > 0, there exists (. € C.(X,[—1,1]) such that

16 = 1€l Lr(a,pun <€ (2.6)
For k> 1 and Q € QF, we set

(Q) = W/QQ} d|lp|  with the convention ( (@) = 0 if |u|(Q) = 0.

By construction, —1 < (.(Q)) < 1 and we deduce

> @)z Y cu@= [ car 3 [ c@-ca @)

QeQk QeQk QeQk

The last term is bounded from below by

—|pl(X) max{[C() = C(y)] s 2,y € X, & —y| < di}

By uniform continuity of (. and the assumption dj, | 0, this goes to 0 as k 1 oc.
Taking the infimum limit of (2.7) as k 1 oo, we obtain,

liminf Y |u(Q)] > liminf/ Codp > /Cdﬂ—gz (V) —e.
1 Gear He o Y

Recalling that € > 0 is arbitrary, the lemma is proved. O

In the proof of Theorem [I.9 we use the following characterization of discrete measures.
Let us first recall the notation @, , = x 4 r[0,1)" for z € Q and r > 0 and let us notice
that for x € Q° and 0 < /nr < ¢, we have Q,, C .

Lemma 2.4. Letn > 1, Q C R" be a bounded open set and p be a finite Radon measure
on 2 such that there exist 0 < 0 < 1 and sequences ry, e, with 0 < v/nr, < e, | 0 for
which

0
liminf/ [1(Qur )1 dx < 0. (2.8)
kToo QFk TZ
Then there exist sequences ¥ € Q, m; € R\{0} such that u =3 m;d, with the estimate
0
Z Im;|? < lim inf/ (@) dx. (2.9)
kToo Qfk T?
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Remark 2.5. In the statement of the lemma, the sequences ¢, and r, are not a priori
those of Proposition [1.4]

Proof of Lemmal[2.]  For y € Q, we define
Mi(y) := sup {|p|(Qury,) : * € Q such that y € Q,,, C Q}.

and then for n > 0,

X, = {y € Q : limsup My(y) > 17} .
k1oo

For every y € 3, we have |u({y})| > n and thus 3, is a finite set. Taking the union of
the nested family {¥,},>0, we see that the set

Se={J%, ={ye: jul{y}) >0}

40

is at most countable.
We claim that |p|(2\ 3) = 0. By definition, for every ¢ > 0,

QE\E:{yGQ‘E : %:iTka(y):O}.

By Egoroff theorem, there exists a Borel set ) C ¢\ ¥ with |p[(Y) > |u|(£2°\ ¥)/2 and

limt, =0 where ¢ := sup My (y). (2.10)

For k£ > 1 and = € Qy,, we consider the set
Q" :={Q : Q= Quirpor, forsomez€Z" QC QandQNY # I}

Using the definition of QF, we have,

6
/ Z |p, |dq: < —/ Z |'u |9dl' < tl 0/ |M(Q:T;rk)’ dy,
@ k

0,7 QEQk O Tk QEQ’“ Q°k
where we used Fubini for the last identity. Taking the infimum limit as k 1T oo, we see
that by assumption ({2.8]), the right-hand side tends to zero. In particular, there exists a
sequence (z¥);>; with 2% € Qo such that

hmmf Z | (Q

QeQk,

By (2.10)), Q% covers Y for k large enough (as soon as ry, < €/+/n). Applying Lemma
to the measure p and to the sequence {Q",}, we obtain

Al \ )2 < [nl(V) < liint 37 1u(@)
QeQk,

Since € > 0 is arbitrary we conclude that p = pL X,
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Recalling that ¥ is at most countable, we write ¥ = (27);>1 with 2/ pairwise distinct.
We then have 1 = Y m;d,; for some summable sequence of real numbers (m;). For every
N € N and every t > 0, there exists (N, t) > 0 such that for 0 < r < r(N,t) and = € Q,

Q. N {z', -+ 2"V} has at most one element
and if 27 € Qg for some 1 < j < N then |u(Qq,)| > (1 —t)|my].

We thus have

lim inf / LU L PA dx > hmlnf (z) e d >(1-1) m
}j §:| i

kToo

Sending t | 0 and N 1 oo, we obtain (2.9)). ]

Proof of Theorem[1.9. The proof goes as explained in the introduction. Using Lemma
the theorem follows from Proposition [1.4] and Lemma [2.4] together with the trlangle in-
equality in the form of

q(z,2) 2 |nlu)(Qu,:)|".

Finally, if u is integer-valued, we can argue as in the proof of Theorem that for every
x € supp pfu] there exists a sequence ¥ — x and 2¥ — 0 such that (2.4)) holds. Therefore

plul({2}) = limpoo p[u)(Qur o) = limy o0 D[Du(-, 25)](2*, 27) € Z 0

Proof of Theorem[1.11.  The proof is a refinement of the proof of [GM21, Theorem 4.1]
using the additional information given by Theorem [I.9, Without loss of generality, we
assume that I; = (0,4;) for { =1,2. Let u € L*>®(Q) with [|ul|s < 1 and E(u) < oc.

Proof of (i), Step 1. Decomposition of u and control of ||w||e + |[Vw|a(2).
Let us first recall that by (2.3)), there exist u; € L*>(1;), ug € L*(I3) such that

w(x) = uy(21) + ug(w2) + w(w) a.e. in . (2.11)
By Theorem [1.9] p := p[u] = &105u is a finite Radon measure which writes as
o= Z M0 with Z Im;|? < E(u). (2.12)
By direct computation, the definition of w yields the identities
81w:2mj7-[1|_1f, 82w:ij’H1I_I§,

where, for j > 1, we denote, I/ := {z]} x (0, 2}) and I} := (0, 2]) x {23}. We deduce that
w € SBVp(£2) with the estimate

212

Vwlo() =D (23] + |3 )lmy|” < (6 + ) Y Imy° < (6 +6)E(w). (2.13)
Besides, by definition of w we have w € L*(£2) with

[wlloo < 11l(€2) < E(w). (2.14)
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Eventually, let us notice for later use that by Lemma [2.1] there holds, for every j > 1,
Im;| < sup [u(Q)] < 4ufl < 4. (2.15)
QCQ

Proof of (i), Step 2. Control of the oscillations of uy or of us.

We proceed as in the proof of [GM21], Theorem 4.1]. For every fixed z € R?, almost every
r € Q with Q.. C § satisfies Du(z, z;) = Duw(x;,2) + Dw(x, z) for | = 1,2. Since,
Dw(z,z1) = p((x1, 21 + 21] X (0,23]) and Dw(x, z3) = u((0,21] x (0, 29 + 23]), we deduce
from the triangle inequality,

(e, 20) 1= || Dur(en, 2)] = ul((@n,a0 + 2] x B)| | < [Du(e,2)], (2.16)
Po(xa, 29) == [|Du2(x2,22)| — |pu|(Iy X (w9, 0 + 22])]+ < |Du(z, z9)], (2.17)

where, as usual, a; := max(a,0) denotes the positive part of a. Raising inequality (2.16)
to the power 6; and (2.17)) to the power 0,, taking the product and integrating, we have
by Proposition 1.4}

: [1 (1, 21)]™ [V2(22, 23)]"
hrichs;lp </1fk de1> (/ng le’g) < E(u).

We obtain that either for [ = 1 or for [ = 2 and up to extraction,

INK
limsup/ Mdml < E(u). (2.18)
Ik

koo Tk

Let us assume for instance that (2.18)) holds with [ = 1 and let 6, € [#,1]. Since 6, < 1,
the function s € R, + s’ is subaddititive and we have for every k > 1,

/Ek | Duy (21, rk)\e* dxy

Il
= /ak [th1 (1, rer)]™ day + /Ek () (@1, 21 4 ) x L))" day. (2.19)
Il Il
To estimate the second term in the right-hand side, we use the atomic decomposition of
p and the subadditivity of s € Ry + s%. We have,

O+

L (o +n)x @) = [ | Y ml| o

Il Il F

0. 0.—0 6
< /fk Z |mj dl’l < (Sup ’m]|) /Iﬁk Z |mj| d{El

! {0<x{—x1§rk} ! {j:0<x]i—x1§rk}
| |
< (sup [m; )0 [Im " H (2] = riowl)] S m€(w). (2:20)
To recover the conclusion of [GM21, Theorem 4.1], we first pick 6, = 1. Dividing (2.19)
by rg, taking the superior limit as k 1 oo and using (2.18) and (2.20]), we obtain

D
limsup/ Mdm < Ew)V? + E(u).
ktoo Ik Tk
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This readily yields u; € BV(I;) and up to the subtraction of a constant, we have
lurlloo + [Vaua|(11) S E()'? + E(u). (2.21)

Next, we use 0, = 0 to get

D 0
lim sup/ Dy (21,7 dry < E(u)? 4 E(u).
Ik

kToo Tk

We apply Lemma with n = 1 to the measure p; := 0., u;, we can write

M1 = Z mjdgg

for some sequences (77) C I, and m; € R with 3 |m,|’ < co. We deduce that u; €
SBVy(I), with

(Viulo(L) < E(u)? + E(u). (2.22)
Eventually, we set @(z) = uz(zs), we have u € S(2) and u(x) — a(x) = uy(x1) + w(x).
Collecting (2.13), (2.14), (2.21) & (2.22)), we conclude that u — u € SBV,(2) with the
estimate (|1.10)).
Proof of (ii).
Let us now turn to the proof of the second part of the theorem and assume that p[u] =0

as well as u ¢ S(€2). This implies that w = 0 in (2.11). By Proposition [1.4] we have

D o D 62
lim sup / [Dus (21, 21)) dzq / | Duz(za, 22)) dzs | < E(u).
ktoo 15k Tk I;k %

1

Therefore, there exist constants A1, Ay € [0, 00] such that A Ay < E(u) and for [ = 1,2,

D 2
lim inf / Mdm <\
I’k

kToo Tk

Since both u; and wuy are not constant, this implies that A\; > 0 for [ = 1,2 and thus
also A, Ay < 0o. Arguing exactly as in (i) we get that v, € SBVp,(I;) for I = 1,2 with
Vg, (1) < A with the estimate (L.11)).

Proof of (iii).

We finally assume that u € L>(Q2)N BV (1) has finite energy and that moreover]] Viu = 0.
We have Viw = Vw, so that 0 = Viu = dyw 4+ Viuy. Taking the derivative with respect

to @y, we obtain 0 = 001w = plul. By (ii), u € S(€) since otherwise we could write it
as u = u; + uy where u; € SBVy,(;) are non constant functions for [ = 1,2 and would
contradict the hypothesis Viu = 0. O]

2.2 The higher dimensional case

We now turn to the case n = ny +ny > 2. We recall that we have fixed orthonormal bases
(e1,-++ ,en,) and (f1,- -+, fn,) of X; and Xy and have set

82
o] =Vivou= > — o 2ez®jy— N e f. (2.23)
1<i<ng 1<i<ni
1<j<n2 1<j<ns

4we note Viv the jump part of the distributional gradient of a BV function v.

18



As outlined in the introduction we will identify pf[u] with a (n — 2)-dimensional current.
To this aim we recall some notation from Geometric Measure Theory, see [Fed69, [KPOS].
We note D¥(2) the space of smooth and compactly supported k -differential forms on €
on which acts the differential operator d : D¥(2) — D¥1(Q). Its dual space is the space
of k-currents Dy (£2) on which acts the dual operator 0 : Dy(Q2) — Dy_1(£2). We use the
standard notation A for the exterior product. We recall that a k-current 7T is rectifiable
if there exists a k-rectifiable set ¥ C () oriented by a unitary simple k-vector field £ and
a Borel measurable multiplicity function m : ¥ — R such that for w € D*(Q),

(T, w) = /Em (w, &) dH". (2.24)

We introduce the “partial” differentials d;, do as follows:

d1 : Dkl (Ql) N DkQ (Qg) — Dkl+k2+l(Q) dg : Dkl (Ql) A\ Dkg (QQ) — Dk1+k2+1(9)
w1 Awy +— dwy A ws, w1 Awy — wy A dws.

For 0 < k£ < n, we then extend by linearity and density the operators d;, dy on

D*(Q) = span (&, D'(Q1) A DFH(y)).
By duality, this defines continuous partial boundary operators on the space of currents:
(O T, w) = (T, dw), (0T, w):= (T, dyw), forT € Di(Q), we D Q).
For u € L;,.(Q), we define the current
[ul :=wuer Ao~ ANew, ANfi Ao+ A fr, € Dp(2),
from which, we derive the (n — 2)-dimensional current
Tu) := 010s[u].

For every (n — 2)-current 7' we define the 6 -mass of T" by

/ |m|? dH™ if T is rectifiable,
M@(T) = 2

400 otherwise.

We say that a rectifiable (n — 2)-current is tensor-rectifiable if we can choose the set X
from such that ¥ C X! + X2 where X! C € is (n; — 1) -rectifiable. Notice that in
this case, the k-vector field £ tangent to 3 must be of the form & = ¢! A¢? with ¢ tangent
to X', For [ = 1,2 we set

da’ :dxll/\---/\dxlm

and introduce the following simple multi-covectors for 1 < i < ny,
dol = dxll/\---/\d:cﬁ_l/\dxéﬂ/\---/\dxf”.

Similarly, we define the simple multi-vectors

egi=e1 N ANei Nepr A Nepy, fr=H N AN AN A A Sy
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We define the Hodge star operator on Xi, first on the simple (n; — 1)-vectors e; by
xe; = (—1)’e;, and then extend it by linearity. Similarly we set xf; = (—1)7 f;.
Every w € D"%(Q2) decomposes as

w= Z wijde; Nda?| +w Ada? + dzt A w. (2.25)
1<i<ny
15520,

Proposition 2.6. For every u € L}, (Q) we have with the notation (2.23),

Tlu] = Z (=) e A fy. (2.26)
1<i<ng
1<j<n2

As a consequence, plu| is rectifiable (respectively tensor-rectifiable) if and only if T[u] is
rectifiable (respectively tensor-rectifiable). Moreover 0T [u] = 0 (we say that T[u] is a

cycle),
M(T[u]) S |pu]|(2)  and — My(Tu]) = Mo (u[u]). (2.27)

Proof. We first establish (2.26). Fix w € D"%(Q) and decompose it as in (2.25]). Since
dy(wy A dx?) = wy Ad(dz?®) = 0 = dy(dz* A wy), (2.28)

we have

(T[u),w) = ([u], dadyw) = Z ([u], dody (w;; dzf A da?))

i,J
o 02w o
=S (-1 i d:}j—l“ﬂ/i-di.
Z’]( ) anlaxQu T ( ) QwJ lu,]

This proves (2.26)).
Assume now that T[u] is rectifiable. Let (X,&,m) be as in (2.24). First, by (2.26)) we can

write £ = &1 A €2 for some simple (n; — 1) -vectors € of X;. We let v = ¢! € X; be the
normals to X. If we decompose &' as

¢h= Z 51161
we have by definition of the Hodge star operator ! = (—1)'v}. Similarly fjg = (_1)3';/]2,
Using ([2.26)) we find
Mij = m(—l)”jf%ﬁ; H LY = myilyf H' ALY

This proves that u[u] = mv' @ ¥ H" 2L Y and thus that pfu] is rectifiable. If moreover
T'[u] is tensor rectifiable we see that also u[u] is tensor rectifiable. Since we can revert the
argument, this also proves that if pfu] is rectifiable (respectively tensor rectifiable), then
T'[u] is rectifiable (respectively tensor rectifiable).

Since on D* () A D*2(Qy), d = dy + (—1)"dy we have dadid = 0 and thus 9T [u] = 0.
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We finally prove (2.27)). For the first identify we write using the decomposition ([2.25)
and (2.20),

M(T{u]) = sup (Tfu) ) = sup 31" [ s dey S 10l

<1 wl<1 55

By the previous discussion, the equality My(T[u]) = My(u[u]) is immediate (notice that
both terms are finite only if T[u] is rectifiable). O

Thanks to Proposition 2.6, we can reduce the proof of Theorem to the analog
result for Tul.

Theorem 2.7. Let u € L>(Q2) be such that

DIDu(-,rf; NG
E"(u) := liminf Z / | DIDuf ,rkf;)](:x,rke ) dr < o0.
o0 Cicnmii<i<ny Y Ok "

Then T[u] is a tensor rectifiable cycle with

M(T[u)) $ |ull:ic€"(w)  and — My(T[u]) S E"(w). (2.29)
Moreover, if u is integer-valued then T[u] is integer rectifiable.

Proof. Step 1. Preliminary observations. We first notice that by Remark [I.5] we have
|p[u] () < ||ul|l%€”(u) and thus by Proposition T'[u] is a normal current and the
first inequality in (2.29) holds. We thus need to show that T[u] is tensor rectifiable and

the second inequality in (2.29)).

Step 2. The case where §2 is a cube.

In this step we prove the claim assuming that €2 is a n-cube. By scaling we assume with-
out loss of generality that Q = Q™ := (0, 1)".

We start by recalling the definition of slicing of currents by coordinate (n — 2)-planes
(see |[GMSOS, [Fed69, Whi99bl, [Jer02] for more details). For this we introduce some nota-
tion. For o' C {1,--- ,n1} and a® C {1,--- ,na} we set

a:=o U (n + az) and a:={l,--- ,n}\a

We then define X1 = span{e; };cqt, Xo2 = span{f;};ecqa2 and set X, = X1 ® X,2 so that
R™ = X, & X;5. We decompose correspondingly every x € R™ as x = 2 + 2% With a
slight abuse of notation we set Q% = Q" NX,. For a function v € L'(Q") and z € Q™ we
set uza (x®) := u(r) so that by Fubini u,a € L'(Q?) for almost every z®. For every a with
la| = 2 and every T € D,_5(Q"), we define the slices SIZ” T' € D°(Q®) by the requirement
(see [Fed69, Theorem 4.3.2] or [GMS98, Section 2.5]) that for every w € D°(Q™),

(T, wdz®) = / <Slgi T, wxa> dx®. (2.30)
Here dz® denotes the canonical (n — 2) -form.

Step 2.1. We claim that for every o with |a| = 2 and almost every z®, the slices SI2* T'[u]
are 0-rectifiable. Using White’s rectifiability criterion [Whi99bl [Jer02] this would prove
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that T'[u] is (n — 2) -rectifiable. )

By (2:26), if oy = 0 or ay = (), then SIZ" T'[u] = 0 and there is nothing to prove. Indeed,
if for instance ap = @ then {n; + 1,...,n} C @ so that for every w € D°(Q™) we have
wdx® = w; Adz® in the decomposition ([2.25)). Hence, using as in the proof of ([2.26),
we compute

(Tu],wdz®) = ([u]), dad; [wdz®]) = ([u], d20) = 0.

We conclude by the definition that SIZ" T[u] = 0. The case o; = () is similar using
dody = —dqds.

We may thus assume that oy = {i} and oy = {j} so that dz® = dz} A da?. Let us first
prove that the operator 0,0, commutes with slicing in the sense that

SIZ" Tlu] = (—1)"90105[uze] ~ for ae.2® € Q7 (2.31)
Indeed, for w € DY(Q"), we compute using (2.26]) and (2.23))

2
(T, wiy A da5) = (1) / wipey = () [ O

n gn 0207 "
Then by Fubini,

2,y
(ti st sy = 0f [ [ Gy |
a fed 'L ]

= (_1)i+j/a (010s[[uga], wea) da®.

By definition (2.30) of SIZ° T'[u], this concludes the proof of (2.31)).
We now prove that for almost every z® € Q% T|uzs] = 010:]ugs] is 0-rectifiable. To
simplify notation we write Q7 for (Q")°. Let us prove that

E"(u) > /a E" (Uga) dx®. (2.32)

For this we use Fubini and Fatou to obtain

E"(u) > liminf/ | D[Du(:,re f)] (w, ries)|* d
Q

2
fee Jay, T :
& DD z " j a, ) 0 A
= lim inf/ 1ga (z%) / | DD rk];j)](x rici)| dz®| dz®
kTOO o k Q?k Tk

i D[Duga (-, i ;)] (22, r4es)|? i
> / liminf 1gs (%) / | DD ’Tké]”(x Tk dx®| dz®

(. . « YL _
— / hIH Hlf [/ ‘D[Duxo‘( ,’f’kf])](l' ’rkel)‘ dl’a d[L’a
a Q

koo r?

a
€k

= [ &"(uga) da®
Q&
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This proves (2.32)). Therefore, for almost every z® € Q%, £”(uya) < oo. By Theorem [L.9]
for every such x%, there exist countable sequences 2! € Q® and m; € R\ {0} with
Tugza] = >, mid, and such that

> "l S lullls € (uga) and My (T(uga]) = > |’ S E(ugs).  (2.33)
l l

In particular, Tu,a] is 0-rectifiable. Moreover, if u is integer-valued then by Theorem ,
so is T'uga].

Step 2.2. We now prove the second inequality in (2.29). For this we notice that if
(33,&,m) are as in (2.24)) for T' = T'[u], then as in the proof of Proposition we can
write & = &' A €2 for some simple (and unitary) (n; — 1)-vectors &' € X;. We write

=3 &e and  E=3&f

so that by triangle inequality
Mo(tlul) = [ fmf’ 12 = [ mple n g < 3 [ il ane . 2.3
b b 7 /Y

Fixie{l,---,ni1},j€{l,- - ,no} and let oy = {i}, ap = {j}. By the co-area formula
for rectifiable sets (see [Fed69, Theorem 3.2.22] or [KP0S, Theorem 5.4.9]),

Limeggrane= [ S0 i = [ Mo Tl

.’EQEEQ(QO‘+$O_‘) Q&

Using (2.31)) and (2.33]) we find

-32)
<

/|m|9\§ilfj2-\d7{"2§/ E" (uga)dx® E"(u).
Z o

Plugging this in ([2.34) proves
My(T'[u]) S E"(u).

Step 2.3. We finally show that T'[u] is tensor-rectifiable. Since it is a local statement it
is enough to prove that around each point = € Q™ there is a ball B,.(Z) C Q™ such that
T'[u] L B,.(Z) is tensor rectifiable. As T'[u] is normal and rectifiable, T, = T'[u] L B,(z) is
also a normal and rectifiable current for every z € Q™ and almost every r > 0 (depending
on z) such that B.(z) C Q™. In particular T}, is a rectifiable flat chain (notice however
that in general 7%, is not a cycle). Moreover, the tangent (n — 2)-vector £ to ¥ can be
written as £ A €2 with € € X! so that for H" %-every z € ¥ N B,(Z) the approximate
tangent (n — 2)-plane T, % is of the form L'(z) x L?(z) for some the hyperplanes L!(z) =
(EHt N X! for [ = 1,2. Therefore we may appeal to [GM22h, Theorem 1.3] which yields
that 7%, is tensor rectifiable.

Step 3. The general case.
In this final step we use a covering argument to prove the claim in a more general domain
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). For this we need to introduce localized versions of the energy. For any open set
A=A+ Ay CQ, we set

E"(u, A) := lim inf Z / |D[Du('a7"kfj)]($77‘k€i)|0 de.
A%k

koo , , 3
1<i<ng  1<5<ny

We then set for u € L>®(Q), uy := uly € D,(A) so that as elements of D, _5(A) (this is
of course not true in D,,_5(2)),

Tlua] = Tu] L A.

Let Q" be a Whitney partition of Q, see e.g. [Graldl Appendix J|. By definition, there
exists A = A(d) > 0 such that

Q={\Q : Qe Q'}
is a cover of €} with finite overlap, i.e.
10< ) 1g S 1o (2.35)
Qe

Therefore, letting

2 )
T

R = Y | DIDu, e f;)](x, raes)|

1<i<ng,1<j<nz

we have

gll(u) = hg%olonf /st lg(x)Fk(fL‘) dx 2 ll%%;onfzg: 1Q($)Fk<$) dx

Qck
> limian/ Fi(z)dz > Zlim inf/ Fy(z)dx = ZE”(U,Q).

As a consequence, for every ) € Q we have £"(ug) = £"(u, Q) < oo so that by Step 2,
Tug] is tensor rectifiable with

My(Tlug]) S €"(u, Q).

On the one hand this yields that T'[u] is also tensor rectifiable. On the other hand,

by ([2.35),
My (T[u]) < My(Tu]LQ) = > My(T[ug)) £ &"(u,Q) < E"(u).
Q Q Q

This concludes the proof. O

3 The case 0 =1

When 6 = 1, we only consider the case ny = ny = 1. In this last section we assume
without loss of generality that Q = (—1,1).

24



3.1 The general case

In the case § = 1 (and n; = ny = 1) the defect measure does not in general concentrate
on a set of Hausdorff dimension n; +mn, —2 = 0. The examples of Remark show that
it may concentrate on a set with Hausdorff dimension s for any s € [0, 1]. We establish
that 1 is the largest possible dimension provided u is integrable and &(u) < oo.

Proof of Theorem[I.17. Let u € Lj,.() be such that £(u) < oo. By (1.4), we know

that u = 0;0ou is a measure with |p|(Q2) < £(u). By Lemma [2.1| we have for k£ > 1 and
almost every = € (2%,

w(Qury.) = Du(x + rreq, rrer) — Du(z, rres) and | (0Qzr,) = 0. (3.1)

Recalling the definition of ¢(x,z) in (1.6) and the subadditivity of s — s%, we deduce
that
1(Qur )" (|Du(w, 23)| + [Du(z + 21, 25)])™ < q(x, 2¥).

Here we used the notation 2z := rpey, 25 := rpes where (e1, ey) is the standard basis of
R?. Denoting z* := 2% + 25 = (1, r1), the inequality (1.5 then leads to
01 D k D k LkY[\02
kToo Qck T

The rest of the proof is of the same flavor as the proof of Lemma [2.4] but the construction
of the partitions of {2 into rectangles in Steps 2.1—2.3 below is more involved.

Step 1. For y € ), we define

Ny (y) == sup {MKQ—“’“) :x € % such that y € ka} :
Tk

Then for n > 0, we consider the set

X, = {y € Q : limsup Ng(y) > 7)}.
kToo

By Besicovitch covering theorem [AFP00, Theorem 2.17], we have H'(X,) < |u|(©2)/n.
Next, the sets {3, },~0 form a decreasing family of Borel sets and their union is

Y= {y € Q : limsup Ni(y) > O} .
kToo

We deduce that ¥ is a Borel subset of 2 and that the measure H!' LY is o -finite.

Step 2. Let us show that |u|(2\X) = 0. Let £ > 0. By definition, a point y of Q¢ belongs
to Q\X if and only if

lim {sup {M D Qury, CQ withy € kaH = 0. (3.3)

Z,T'k
kToo Tk

By Egoroff theorem, there exists a measurable set ) C Q¢ \ ¥ with
1Y) = [ul 27\ %)/2
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such that (3.3) holds uniformly in ). In particular, there exists a sequence t; > 0 with
tr 4 0 and

11| (Qury) < tgry  for every x such that Q,,, NY # @ and every k > 1. (3.4)

Substituting max(tx, ry) for ¢, we assume without loss of generality that ¢, > ry.

Step 2.1. Covering of Y. Let us fix k > 1 and = € Qo and let us consider the sets
PF=1{Q : Q= Quyrpr, for some z € Z? such that x +rpz € Q% },
Q={QePr:QnY# 2}

We then define V¥ := UQF. Notice that by (3.4)),

for k large enough, ) C V¥ for every z € Qo - (3.5)

Our task is now to build a covering of some V¥ (with 2 depending on k) by a collection
of boxes @ such that > |u(Q)] tends to 0 as k goes to +o00. For this, we introduce a large
number A > 1 and we cover QF with a disjoint union, Q% C G* U B defined as follows.
For @ of the form @, ,,, let us note y = ¢ its bottom left corner. We set,

Gt = {QeQ:: Du(wq, )|+ |Dulug+ 4, = Ar},  (36)
B = {Q€ QF : |Du(xg,z5)| +|Du(xg + 27, 25)| < Atyry.}. (3.7)

Step 2.2. Estimation of |u| on the good set GF and selection of v = z*.

We first bound the average over x of the sums »_ .. [1(Q)]. By (3.6) and using ¢ =
01 + 6, = 1 we get,

1
— )| d
T}z/@ ZLU ) dx

0,7 Qegk

02
<[ S m@PueplPre B D)y,
Q

0,7 Qegk (Atk}rk)OQ

By (3.5) we can use ({3.4)) for £ large enough. We obtain,

1
= > (@) da
k QO Tl Qeglzg
< g ), QP (Du(ng, )|+ |Du(ag + =L e
r Qo,ry QePk
L[ @) (Duty, )|+ [Duly + 2, )
- AGQ 2 yu
QEk Tk;

where we used Fubini for the last identity. By (3.2)) the last integral is of the order of
O(E(u)/A%) as k 1 co. Hence, there exists a sequence =¥ € @y, such that

lim sup Z | (@ £u ) (3.8)

/'\./ A92
kToo QEQI;
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Moreover, we may assume that (3.1)) holds for every square @ C 2 of the form @,
for some z € Z2.

From now on, we select = z¥ and we drop the subscripts z*: we write P* for Pfk,
QF for Q’;k, G* for g’;k and B for B];k.

Step 2.3. Covering of UB¥.
Let zy € Z, we denote 7752 the row of squares @ € P¥ such that xg = % + rp.(21, ) for
some z; € Z. The set Pk2 is totally ordered by the relation “<” defined by

z

ktrpzre

Quptri(z1,22) < Quptr(4,22) whenever z; < 2.
Let us define
1%z2,1 l%z%z
A 7 A T /)
Qi QF Q, ’/ Q3
[3327L 15522,.

Figure 3: The covering B of the bad set. The gray squares are the elements of B*.

Bt = B"NPL.

It is easy to see that B%, admits a partition into a sequence B, |, - ,8527822 with the
following properties.

(a) sz S 1/(A%0);

(b) every subset BE | satisfies diam (UBk Q) < A%ty
’ 29,8

(c) thesets BY, ;,---,BY,,  areordered as follows: if 1 < s; < sy < s, then max B%, ;| <
min BY .
Let s € {1,---,s.,} we denote Q; = minB¥ ., QF = maxB}  and we define the box

R,, s by gluing together the elements of Q’; between @7 and @, namely (see Figure ,

R..=|J{Qe Q. <@ <@}

By construction the sets R,, ¢ are disjoint, satisfy diam(R,, s) < A%ty, their number, for
2y fixed is s,, < 1(A%#;,) (so that their total number is estimated by 1/(r,A?t)) and their

~
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union covers UB’Z‘“Q. Moreover, for s fixed, denoting =7 = xg-, T = Tg+, we have
S S

(12.4] _ _
(R )] = u(ay) —ulad +27) +u(a] +2%) —u(ag + 2)]

= |Du(z} + 28 28 — Du(zy, 25)‘ < 2Atgry,
by triangle inequality and because Q; and Q7 belong to B*. Denoting B* the collection
of the sets R,, s for zo € Z and 1 < s < s,,, we deduce from the above discussion that

1 1 1
Z lu(R)| < e Atpry < X and max diam(R) < A%, (3.9)
K Nt

ReBFk

ReBFk

Moreover, by construction |JB* C |J B~

Eventually we define G* as the set of elements Q € G* such that Q ¢ ng and set
QF .= GF U BF.

Step 2.4. Sending k 1 co. By construction the elements of OF are disjoint rectangles in

2 and recalling (3.5)), (3.8)),(3.9), we have

yelUe ¥ @is S

QeQF

1 -
+= and maxdiam(Q) =3 0.

Applying Lemma to the measure p and to the family {@k}, we obtain

& 1
) < timint 3 (@) 5 Sy L

QeQ*

Since A > 1 is arbitrary, we obtain that |u|(©2°\ ¥) < 2|u/()) = 0 and sending ¢ to
0 we conclude that g = pL_X. Recalling Step 1, H'L X is o-finite and the theorem is
proved. O

3.2 The case of Lipschitz continuous functions

From now on we assume that u is Lipschitz continuous with |Vu||« < 1. The results of
this section are stated for v = Vu instead of u (we always assume that u and v are related
by the identity Vu = v).

Let us recall that Q = (—1,1)? and letting K = (R x {0}) U ({0} x R), we are interested
in the mappings v € L>®(Q2, R?) such that

V xv= 811)2 — 821)1 = 0, (310)
v(z) € K for almost every = € (). (3.11)

Setting u[v] = 01vs (which coincides with p[u]) we consider the setf]

S52(Q) == {v e L¥(QR?) : |v]l <1, (B.10),(3-11) hold and ufv] € M(Q)}.

5This set was already defined in the introduction.
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3.2.1 Derivation of the differential inclusion

Our first result states that if w is Lipschitz continuous with ||Vu||, < 1 and £(u) < oo
then Vu € S*(€). We actually prove a stronger statement.

Proposition 3.1. Let u. be a sequence of 1 -Lipschitz functions such that
& = liminf & (u.) < oo.
e—0

Then, up to extraction and subtraction of constants, u. converges uniformly to a 1 -
Lipschitz function u. Moreover Vu € S*(Q) with |u[Vul|(2) < &.

Proof.  Since the functions u, are 1-Lipschitz, up to extraction and subtraction of con-
stants, they converge uniformly to a 1-Lipschitz function u. Let v := Vu. Using Fatou
and the rescaling z = €z’ we obtain

D E 91 D - 092
/ p(z) [liminf/ | Duc(z,e2)[? | Duc(z,e20)[™ ) 1 o o
R £

2 22 | En0 e

Arguing as in [GM21], Proposition M], we find the existence of oy € X; \ {0} and oy €
X5\ {0} such that

D 01D 62
limiglf/ | Due(@, £01)| |2 Ue(, £02)| dz < &, (3.12)
E—> e E
D D e\ )
limiglf/ [ D] Du Zl)](x ) e < &, (3.13)
e—> .

Step 1. ulv] is a measure.
We now prove that ufv] € M(Q) (with |pu[v]|(Q) < &). Fix ¢ € C2(Q), set ¢ =
—&(o1 + 02) and consider

1
Ne : 5 1Q0,—z€ .

oulloale
Then u, * 7. still converges to u uniformly and we have
(ulv], p) = / wO1Oap =lim [ (ue *n.)01020p
Q e—0 Qe
1

—tin [ o0t o] et d

=0 Joe |o1][oa]e?

i 1 /
:111'11 —2
e=0 Jqe |o1||osle [ Q
1

0109¢0(x) dx] ue(y) dy

y,2€

=i ————D[Dy(-, — - (y)d
o9 o= |o1]]o2]e? (Dl —eon)|(y, —eo2) uely) dy
1
— i — —  _D[Du.(,, : da.
Jm o [o1][oa]e2 [Du.(-,e01)|(x,e09) p(z) dx

In combination with (3.13)) we obtain that indeed pufv] € M(Q) with |u[v]|(Q2) < &.

Step 2. Proof that v(x) € K almost everywhere.
Let us denote here w := Q* = (0,1)%. We claim the following.
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Claim. Let a € (0,1), there exist g¢, c,0 > 0 satisfying the following property.
Let p = (p1, p2) € R? with |p1|, |p2| > a and let u : w — R be a 1-Lipschitz function. If

lu(z) —p-z| <6 for every = € w, (3.14)
then there holds, for 0 < € < €,

| Du(z,e01)|% | Du(z, c09)|% |D[Du(-,e01)](x, c09)]
o dx + =
welel welal

de >c.  (3.15)

Step 2.1. Proof that v(x) € K almost everywhere, assuming the claim.

Let us first derive from the claim the conclusion v € K almost everywhere. For this we
argue by contradiction and assume this is not the case. Recalling that v ¢ K means that
v1ve # 0 we see that there exists 0 < a < 1 such that the set M = {|v| > a, |vs] > a}
has positive Lebesgue measure. For € ) such that Z 4 rz € Q we set

W (z) = u(Z +re) — u() and similarly ult(x) =

Ue(ZT + 1) — u ()
r € r '

Then, at every point of differentiability z of u we have

liH(l] [u""(z) —v(T) - x| =0 uniformly with respect to z.

r—

By Egoroff we may further assume that this limit is uniform in M. Let 6 > 0 be given
by the claim. We deduce that for r small enough, there holds for every z € M and every
x € Q? such that z + rz € Q,

[u"" (x) —v(T) - 2| < /2.

Let us fix such r. Since ||u. — u||oc — 0 we deduce that there exists ey > 0 depending on
0 and 7 such that for 0 < ¢ < &1, we have

uz"(z) —v(z) -2 <6
for 7 € M and z € Q? such that z + rz € Q.
Therefore, ul® satisfies (3.14)) with p = v(Z) and moreover min(|p|, [p2]) > « as in the
statement of the claim. Furthermore, since u is 1-Lipschitz, the functions u™* are also
1-Lipschitz.
Let us now show that we can find & € M such that (3.15) is violated for u’* and
e small enough. Thanks to the claim, this would provide the desired contradiction.

From (3.12)), (3.13), Markov inequality, Fubini and Fatou, we find Z € M such that

/ |Dua(x,601)|91|2Du5(:v,802)|92 dg;+/ |D[Du5(.75c;1)](1:,502)|dxggmg'
Qi,r E Qi,'r 6

lim inf
e—0

Notice that using the change of variable x = ry and denoting & = £/r, we have

1/ \Dug(x,501)|91]Du5(x,502)\92d / |Du:’§(y,5’01)\91|Du:’§(y,€’02)\92d
T = Y.
Qi,r 2

r g2 (e")?
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Therefore

lim inf dzx < &
e—0

/ | Duy (2, 01)|" | Dupt (2, e0) |
2 g2
Arguing similarly for the second term and choosing r > 0 and then £ > 0 small enough, we

get that u;* contradicts the claim. Hence v € K almost everywhere in €. This establishes
the proposition assuming that the claim stated at the beginning of Step 2 holds true.

Step 2.2. Proof of the claim.

As a preliminary remark, notice that if the claim holds for some constants a, &g, ¢, 9, it
also holds for o, gq,,d’, for 0 < ¢ <cand 0 < ¢ <.

We argue by contradiction. Let o € (0,1), ¢ > 0 and 6 > 0. Let p = (p1, p2) be such that
Ip1], [p2] > «. Assume that there exists u such that holds true but not for

some sequence € = ¢, with g, | 0. We show below that this leads to a contradiction.

Taking into account the preliminary remark we decrease 6 > 0 or ¢ > 0 or both if

necessary to ensure

« 043

5 < Z and c < ? (316)

Moreover, to simplify a bit the notation we denote ¢ for ¢, and we assume from now on
that o7 = e; and oy = e,.

Recalling that assumption (3.15)) does not hold and using the following identity valid
for every integrable function f,

/wa/QO‘E > fla+z) | da,

2€(eZ)?N(w—=z)
we see that there exists 2° € Qo such that with the notation 2(3) = 2% + 2, we have

> [[Du(z®), ee1)|” | Du(z'?, ee5)|* + | D[Du-, ee1)] (2, ee2)|] < e (3.17)

z€(eZ)?N[w—ac]®
Let us assume without loss of generality that 2° = 0. Analogously to Lemma [2.1] we set
w(x) =u(z) + u(0) — u(xy,0) — u(0, z2). (3.18)

We thus have
uw(x) = wy(x1) + ug(x2) + w(z)

with uy(21) = u(x1,0) —u(0) and ug(z2) = u(0, x2). We check by direct computation that
for x € w® and s,t € R with |s|, |t| < € we have the identity

D[Du(-, seq)|(x, tes) = D[Dw(-, se1)](z, tes).
Let us now establish the estimate

> ellDw(a®, ger)| + [Dw(z?), ges)|] < 2. (3.19)

2€(eZ)2Nwe

We focus for definiteness on the first term. Using (3.18]), we compute

Dw(z®) ge) = Du(z® eer) — Duy (a7, €) = Du(z®, e1) — Du(al?, eey).

31



This leads to

Z | Dw(z' cey)| = Z e|Du(z), ee;) — Du(a!? gey)|
2€(eZ)?Nw® 2€(eZ)?Nwe
< X = X IDDulze)](at? + jes cen)

2€(eZ)’Nw®  je(e2)N(0,25) —¢)
GBI
< Z |D[Du(-,ce1)] (2P, ee5)| < e

2€(eZ)?Nwe

To get the first inequality of the last line, we used Fubini (for sums) and the fact that for
21 € €Z fixed, the cardinal of the set {zo € €Z : (21, 22) € w®} is bounded by 1/e.
Let us now define

so that from (3.19)),
HO(F) < —. (3.20)

Next, let
1
El = {21 € (EZ) le : |DU1(Z1a€)| Z §|p1|€}

and define similarly F,. Let us estimate from below H°(E;). Recall that u(z,) =
u(z1,0) — u(0) and thus (3.14) implies

|1 — pry || Lo (gry < 0

with |p1| > a. Moreover since u; is 1-Lipschitz, there holds |Du;(zq,¢)| < e. With these
observations, we compute

Pl =< () —m©Ol =] Y Duia,e)
z1€(eZ)N(0,1—¢)
< EZ | Duy(21,€)| + ; |Duy(21,€)] < HUE))e + %HO(ED&.
Now since HO(ES) = ¢! — HO(E}), we deduce that
LR AN
BI0) o
HWE)> [ 22— -5 = 3.21
( 1) = ) @ c Ae ( )
2
A similar estimate holds also for H°(E,). Then by (3.20) and (3.21]),
o a? P
HO((Ey x Ey) N F) > HUE)HY(Ey) —HO(F) > — — — = —. (3.22)

4e?2 Qe Re?
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Eventually, let us estimate |Du(z®), ;)| for I = 1,2 and z € (E; x Ey) N F¢. Using the
the triangle inequality and the definitions of F;, Es and F, we compute

|Du(z®),ee))| = |Duy(z\?, e) — Dw(z?, ce))| > |Duy(x), )| — |Dw(z?, ey
2% 24c\  (B16)
>l Ze (9——)5 = %. (3.23)

2 a? 2 a?
We conclude with (3.17)) that

ac @22 o

: :
c> > |[Du(a) zer)|" |Du(z), cey) " = ’HO((EleQ)ﬂF)4 > oo

ZE(El XE2)QFC
which gives a contradiction for € = ¢, small enough. This concludes the proof of the claim
and therefore of the proposition. m
3.2.2 Rectifiability of the defect measure

Let us state the main result of this section which is a detailed version of Theorem [1.19]

Theorem 3.2. Let v € S®(Q) and assume that = pfv] € M(Q). Then, for |u|-a.e. T,
there exists v™° = (v{°,v5°) € (R\ {0})? such that letting

[0l lvs°]

L := span (v5°, v{°) and c(z) = N
UOO

)

we have for every ¢ € C.(R?),

r—0 17

lim = K (""” - x) il (z) = c(gz)/L<de1. (3.24)

As a consequence i = mH LY for some 1-rectifiable set ¥ and some Borel function m
with |m| = c¢. Moreover, denoting

signm o oo

V.= W(_Ul ;U5 )s

a unit normal to X at T and then

oo L (?}fo,()) Z‘fy-l/>0,
= {(O,US") ify-v <0,

we have

hm—/ 0(Z +y) — V>(y)| dy = 0. (3.25)

r—0 7’2

Therefore v has traces on .

Remark 3.3. Let us point out that the sign of m(z) cannot be directly computed from
the values of v*°. Indeed, for both u(z1, xs) = min(xq, x9) and u(xq, x2) = max(z, o) we

have v™° = (1,1) on ¥ = {2, = 25} but pu] = —pfa] = (1/vV2)H' LE.
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We start with some preliminaries. Let v € S>°(€2) such that pfv] € M(Q) and u be
such that v = Vu. For t € R, we let I'; = {u = t} and w; = {u > t}. The function
t — |wy| is bounded and decreasing thus have bounded variationﬂ By the co-area formula
(see for instance [ABCI3]), we have that for almost every ¢, w; is a set of finite perimeter
with, up to a H!'-negligible set, dw, N Q = I';. We have moreover

/RHl(Ft)dt:/Q|Vu| < 9. (3.26)

Our first goal is to establish that the measure ;1 decomposes naturally on the level sets
of u. For this purpose we introduce a measure ji on {2 X R defined by the property:

/Q Sl ) di, ) = /ng(x,u(:c)) du(z)  for € Cu(Q x R). (3.27)

Notice that the definition makes sense since u € Lip(§2) C C(2). The next result charac-
terizes [i it in terms of the family of measures

Ky = 01021, for t € R. (3.28)
Proposition 3.4. For almost everyt € R there holds ky € M(Q2) and we have the identity

As a consequence, for every Borel set A C €,

l(A) = / el (A) dt. (3.30)

Proof. Since €2 is bounded and w is Lipschitz continuous, after possibly adding a constant,
we assume that infu = 0 and we set T := supu > 0.

Step 1. Let us establish that for every ¢ € C°(2) and every ¢ € C'(R),

T
[ ettt dute) = [ o0 () a. (331)
0
For this we first prove that, denoting W(t) := fot ¥(s) ds, we have the identity

/ ()b (ule)) dul) = / (), o (3.32)
Q Q
Since ¢ € C°(), there exists an open set ' compactly supported in © and such that
p € C(§Y). Up to replacing u by xu where x € C°(£2) with x = 1 on €’ we may assume
that u has compact support in 2. We then let u. = u* p. so that 0;0,u. — p as measures,
ue — u in C(Q) and Vu, — Vu almost everywhere. Therefore

/Q Pl (u@)) dua) = iy | () (@)Oh00, do

e—0

= —lim [ Qﬁlgo(m)zb(ue(:c))ﬁzue dx + / o(2)Y (us(x))Oudoue d |

Q

6Since |wy| = |©2] > 0 for ¢t < infu, the function ¢ € R + |w;| is not integrable over R, so, strictly
speaking, it is only locally BV.
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On the one hand we have
lim [ O1o(x)Y(u-(z))dhu. do = / O1p(2)(u)dru du.
e=0 Jo Q

On the other hand, by dominated convergence theorem, we get

lim [ @(2)Y (ue(x))O1uou. doe = / o(2)Y (u(z)) Orudou dx = 0.

e—0 Q Q
=0 a.e.

Thus
/Qso(x)l/z(u( /81g0 w)Oyu dr = — /(%go )0s [¥(w)] d.

Integrating by parts once again we obtain (3.32)). Finally, using the layer-cake formula,
see [LLO1, Theorem 1.13], we deduce

/Q\P(u)alaggodx:/: [/w alawdx] b(t) dt.

By definition of x; this concludes the proof of (3.31)).
Step 2. We now prove (3.29)). In light of the definition (3.27)) of i and of the identity (3.31]),

we have to check that r; is a measure for almost every ¢ and that the function t — |r|(£2)
is integrable with respect to the Lebesgue measure on R.

Let us disintegrate i along the level sets I';. We obtain i = p; ® A where X is a finite
positive measure supported in u(€) and || () = 1 for A-almost every t. For ¢ € C®(Q)
and ¢ € C'(R), we have

/0 Tw(t) ( /Q ¢(r) dﬂt<l’)> d\(t) = /Q o(x)(u(z)) du(x) /0 TW) (e, ) dt.

Therefore, for fixed ¢, we have, as measures,

( /Q () dut(x)) dN(t) = (ke, @) dt. (3.33)

Decomposing A into absolutely continuous and singular parts with respect to the Lebesgue
measure, we write A = f(t)dt + A\*. Putting this in (3.33) and identifying, we get the
identities

(@) (e, ) = </€t, ©) for almost every t,
<Mt, 90> d)\s( ) = as measure.

We deduce that k; is a measure for almost every ¢ with x; = f(t)u; so that t — |k|(£2)
is integrable. Moreover the contribution of p; ® A* in the disintegration vanishes, hence
A* = 0. This concludes the proof of identity (3.29). O

We deduce from Theorem that for almost every level ¢ the set w; is a polygon.
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Proposition 3.5. There exists I,qy C R of full measure such that for a.e. t € L,qy, the
set wy is a finite disjoint union of open polygons with sides parallel to the coordinate azes.
Moreover, for such t, N(t) := |k|(2) is the number of vertices of I'y in Q. More precisely,

N(t)

ko= ki(w])d,, (3.34)

Jj=1

where the xi s are the vertices in ) of the polygons forming w; and /ft(x{) = +1.
In the following these inner vertices are called corners and we denote

Clw) == {a]: 1 <j < N(t)}.

Remark 3.6.

(i) Let us point out that Proposition implicitly states that @; is also made of a finite
disjoint union of polygons. In particular, this excludes polygons intersecting at a corner
as in Figure [T} In other words, we excluded the multiplicities £2 from Theorem [1.6]

(ii) For shortness, in the proof of Proposition below we deduce this simplification from
the general result]’| [ABCT3, Theorem 2.5).

Proof of Proposition|3.5. By Theorem applied with u = 1,, we have for a.e. t,
Wy = CL)?Oly U St

where:

(i) wPY is a finite union of polygons with sides parallel to the coordinate axes and which

may intersect only at the corners,
(ii) S; is a union of stripes, either all vertical or all horizontal.

Moreover, by [ABCI3| Theorem 2.5], for almost every ¢, the closure of the connected
components of w; °Y are actually disjoint. Besides, by St is a finite union of stripes
for almost every t and since wy = {u > t} is open we conclude that this set is a disjoint
finite union of open polygons with sides parallel to the coordinate axes.

Eventually, recalling and Proposition , we have k; = 01021, which yields iden-
tity and the related properties. O

Thanks to Proposition studying the measure p = pu[Vu| reduces to studying the
mapping s — Ks. The next lemma allows us to focus on levels ¢ near which s +— N(s) is
(almost) constant and such that we can follow individually the trajectories s — x7. Later,
establishing the approximate differentiability of these trajectories is an important step in
the proof of the 1-rectifiability of u.

Let us introduce some further notation.

"We could also give a more elementary proof in our context based on the following observation. Since
w is 1-Lipschitz continuous, the erosion rate of w; as t increases is bounded from below. Namely,

ws C {x€w:d(x,(w)) >s—t} CCuw for 0 <t<s<T,
(ws)¢ C {x € (w)f:d(mywy) >t—s} CC(w)® for0<s<t<T.
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Notation 3.7. From now on for z € R? and \,r > 0, we denote
Q, = (—r,1)% Q-(z) =z+Q, and AQ () =z + AQ,.

Besides, for a measurable set J C R, we define the set of points of density of J as

1 _
dens(J) := {tEJ:limH(Jm(t 77,t+77)):1}.
nl0 2n

Notice that, as opposed to the standard definition, we enforce dens(.JJ) C J. However,
with the present definition, the set J \ dens(JJ) is still Lebesgue negligible.

Lemma 3.8. Let t € L., be such that |I'y] = 0 (i.e. a point of continuity of t — |wi|).
Then, there exist T = T(t) such that the following statements hold true.

(i) For every 0 < r <T there exists ¢ = (t,r) > 0 such that

L=|r(@)] < Y |r(y)l forse (t—et+e)NTyy and x € C(w).
yEQr(z)

(ii) As a consequence, for every such s, N(s) > N(t).
(1i) If moreover t is a Lebesgue point of N then, denoting, for 0 <r <T,
Ji(1r) = {s € Ipory : N(s) = N(t) and |k,|(Q,(x)) =1 for every x € C(wy)},
we have t € dens(Jy(r)).

Proof. We start with the proof of (i) and (i7). Let t € Z,,y, such that |I';| = 0. We then
have |w;Aws| — 0 as s — t, that is 1,,, — 1,, in L'(Q). Since T'; is a polygon, there exists
7 > 0 such that if € C(w;), there is no other corner of w; in Q(x) and the squares Qz
for z € C(wy) are pairwise disjoint.

Now let 0 < r < 7. Recalling that x, = 9,0,1,, and that 1, — 1., in L' as s — t we
get that s € R — k4 € D'(Q) is continuous at t. Therefore, for every x € C(w;),

[ki(z)| = sup /C(y — ) dri(y)

CECE(Qr.[-1,1]))
I¢I<1

— sup lim/g(y—x) drs(y) < liminf |k|(Q.()).
CeCe(Qr,[—1,1]) s—t s—t
I¢I<1

Since the quantities |xs|(Q,(z)) are integers we see that there exists € > 0 such that for
s € Loty N (t — €, +€) and every corner x € C(w;) there holds,

|re(2)] < [rs|(@r(2)). (3.35)
This proves (i). Eventually, summing (3.35)) over = € C(w;) and recalling that the squares
Q. (x) are disjoint, we get
Nty = Y lml@) < Y 5l@@) < ) Isl(y) = N(s), (3.36)
z€C(wt) z€C(wy) yeC(ws)
which establishes (i7).

Finally, we prove (ii7). If N(s) = N(t) the chain of inequalities in (3.36]) are identities and
we get that (3.35)) is also an identity. Thus, assuming that ¢t € 7, is a Lebesgue point
of N (notice that by (3.30), N € L'(R)), we get that t € dens(J;(r)) as claimed. O
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Even after the preceding lemma, we still need to select further the levels sets. Indeed
the continuity of the trajectories s + z’ does not imply the continuity of the shape
of the polygons forming w, and unfortunately shape changes are associated with non-
differentiability of the corner trajectories. The following example illustrates this fact

Ezample 3.9. Let us consider the function defined on Q = (—1,1)2, by

-2 for 1 <0,
u(x1, x2) = < min(zy, T2) for x1 > 0, x9 > 0,

max(—zy,xe) for x; >0, zy < 0.
For this function and ¢ € (—1,1), the level set w; is given by, see Figure [4]

< x(t > xo(t if t <0,
Y€ w yr < x1(t) or yo > o(t) 1
x1 < —tor [y > x(t) and yo > xo(t)] ift > 0.
Let us highlight the following facts.
(1) wy is connected for ¢t < 0, but has two connected components for ¢t > 0.

(2) The set w; switches from locally concave to locally convex in the neighborhood of the
vertex x(t).

(3) In any case, C(w;) has a single element z(t) = (|t|,t) with s.(z(t)) = 1 but the
derivative of ¢ — z(t) jumps at t = 0.

(4) The function s — H(T,) is discontinuous at ¢ = 0.

Wy _ °

Figure 4: Left: the vector field Vu. Middle and right: some sets w;,, t- <0 < t;.

The third fact described in the example is the situation we wish to avoid. To this
aim it turns out that the last fact is the most useful. Indeed, the co-area formula
provides some control on the quantities H'(T'y). The idea is then to exclude the points
of discontinuity of s — H!(T'y). More precisely, we consider a sequence of local versions
of this constraint: we impose that ¢ is a Lebesgue point of s — HY(T', N Q) for a dense
countable collection of squares (). However, this is still not sufficient to ensure the dif-
ferentiability of the trajectories of the corners at t. For this, we also need to enforce the
differentiability of the functions s — |ws N Q|. These observations lead to the following
definition.
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Definition 3.10. We set
Q :={Q,(y) C 2 :such that y;,y, and r are rational numbers} .
Moreover, for () € Q we define the function Volg : R — R, by
Volg(s) = |ws N Q).

The functions Volg are bounded and nonincreasing, hence BV. We decompose their
distributional derivatives D Volg(s) in their absolutely continuous and singular parts with
respect to the Lebesgue measure:

DVolg = Vol'Q dt + D* Volg .

Recall that by [AFP00, Theorem 3.28], Vol is differentiable almost everywhere and its
derivative coincides with Vol’Q. We are now ready to introduce the subset of levels of
t — |w;| meeting the constraints we have just outlined.

Definition 3.11.

To = {t € R: for every ) € Q, Volg is differentiable at ¢,

moreover ¢ is a Lebesgue point of Volj, and of s — HY(T, N Q)}

Lemma 3.12. The set Zg is of full measure in R.

Proof.  As a consequence of the co-area formula (i.e. (3.26)) with @ in place of ) the
function s — H(T;NQ) lies in L'(R) and the set of its Lebesgue points is of full measure.
Recalling that Q is countable we get the result. O]

We can then define the set of good levels t.
Lemma 3.13. Let T be the set of t such that
(1) t € Ipoy and |I'y] =0,
(i) t is a Lebesque point of s — N(s) (consequently t € dens(J;(r)) for r <7(t)),
(iii) t € To,
(iv) H'-almost every point of Ty is a Lebesque point of Vu.

Then T is of full measure in R. As a consequence (see (3.29) ), for |p|-a.e. x there exists
t € Z such that x € C(wy).

Proof.  Points (i) and (i) follow from Lemma [3.8, Point (i) from Lemma [3.12] The
last point is the consequence of Vu € L'(Q) and of the co-area formula 1q|Vu|dz =
(11"tH1) ® dt. ]
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We may now embark on the proof of Theorem By Lemma [3.13] for |u|-ae. T
there exists ¢t € Z such that T € C(wr) and £¢({Z}) = 1. Up to a translation we assume
without loss of generality that ¢ = 0 and = 0. Moreover, possibly replacing u by +uo R
where R is a rotation of angle k7/2 for some k € {0,1,2,3} we assume that for some
7 > 0 there holds

woNQr={y € Qr : y1 > 0,12 > 0}. (3.37)
From now on, we denote (recall the definition of Jy(r) from point (iii) of Lemma
Jo = Jo(F/4) NI = {t € T : there exists x € Q54 such that C(w;) N Qr = {a}},
and for t € Jy, we denote z(t) = (z1(t), x2(t)) the unique element of C(w;) N Qr so that
k| L Qr = dg) for t € Jp. (3.38)
By Lemmas [3.8] & [3.13] there holds
0 € dens(Jp). (3.39)

Our first goal is to identify the trajectory t € Jy — x(t) as the restriction of a mapping
t € (—t,t) — h(t) differentiable at 0. For instance, for the second coordinate xo(t) we
could use the square QY := (7/2,7) x (—=7/4,7/4) and the identity

Volgs () = Volgu(0)
To(t) = 7/2 = 1 (2),

which is valid for ¢ € J. Unfortunately, we have no guarantee on the differentiability of
the function t — Volg(t) at 0 for a general square ) unless @) € Q. To overcome this, we
substitute for QB a square Q}}r € Q such that (see Figure [5)),

{F/2} x [-F/4,7/4 C QY C (F/4,7) x (-T,7). (3.40)
Such square exists by density of Q in the set of squares inside (2. Symmetrically, to control
x1(t) we pick QY € Q with

[—7/4,7/4) x {F/2} C Q% C (-7,7) x (T/4,7). (3.41)
Next, denoting /" and ¢V the respective side lengths of Q}}r and QY , we set for t € R,
B VOIQ\J/r (0) — VOlQi (t) B VOIQ& (0) — VOIQIJF (t)
N At ’ N (b

and then set h := (hq, hy). The functions h; are bounded and nondecreasing, thus BV
Besides, from the definition of Zg, they are differentiable at 0 and writing Dh; = hj(t) dt +
D?h; we have that 0 is Lebesgue point of h; and

ha(t) : ha(t) : (3.42)

1
h;(0) > 0, D?h; >0, and lim —D%hy([—n,n]) = 0. (3.43)
70 21

Next, in order to check the absence of shape changes as in Example|3.9] we introduce two
other squares Q", QY € Q which are in symmetric position with respect to Q" QY.

{—7/2} x [-7/4,7/4] C Q" C (—F,—7/4) x (=7,T),
[—7/4,7/4] x {-7/2} C QY C (-F,7F)x (—7,—F/4),

40

(3.44)



_______

Figure 5: The set wy N Qy and the four control squares Q'}, QY (dashed lines) inside Q.

see again Figure 5| Eventually we define

J=NInIing ng, (3.45)
where
T ={teR:H(QLNTy) =M}, Jy ={teR:H QL NT}) =0},
Jho={teR:H(Q" NTy) =0}, JY ={teR:H(Q" NT}) =0}

The Figure [7] illustrates the definition.

Figure 6: Left: the set wy N Q7 together with the squares QI}F, QY. (dashed lines). Middle:
a set w;_ N Qr for some t_ < 0 such that t_ € J. Right: a set w;, N Q7 for some £, >0
with ¢, € J7 (and also t; & Jp).

The following result proves that we have achieved our first objective.
Lemma 3.14. There holds x(t) = h(t) fort € J, we have 0 € dens(J) and consequently,

lim

t—0,t#£0,tcT | t

ﬂﬁ_wmﬂzg (3.46)

Moreover, denoting Q- := (—7/4,F)2, there holds

we N Qr = (z1(£),F) X (2(t),7) forte J. (3.47)

41



The example of Figure [7] illustrates the lemma.

Wt _

Figure 7: Left: example of trajectories {h(t)} (thin) and {x(t)}ics (thick) with their
tangent L at 0 (dashed). Middle: t_ € Z so x(t_) = h(t_). Right: t; ¢ J and x(t,) is
not defined.

Proof of Lemma |3.1J).
Step 1. Proof of the identity x(t) = h(t) fort € J.
Let ¢t € Jy we have C(w;) = {z(t)} with z(t) € Qr/4. If moreover t € J?P', we see that

TN QY = [{z2} x RINQ".

Hence

. { either {y € Q% : yo > 22(t)},

weNQL =
or {y e QM :yo < xa(t)}.

Recalling we see that for ¢ = 0 the first case holds and by monotonicity of ¢ — wy,
we get that the first case holds for every t € Jy N J. }: Recalling the definition of
hi(t), ha(t) we deduce that z5(t) = ho(t) for t € Jo N JP. Arguing similarly with QY we
obtain z1(t) = hy(t) for t € Jop N JY. We conclude that z(t) = h(t) for t € J.
Step 2. Proof that 0 € dens(J) and of (3.46)).
First, by we have 0 € J and recalling (3.39), we have 0 € dens(Jy). Next, for
t € Jo, there is no corner of w; in Q% so Q% Nw; is a (finite) union of stripes and
Hl(Qi NTy) = k" for some integer k; > 0. Since by assumption, 0 is a Lebesgue
point of ¢t — HY(Q% NT}), we have 0 € dens(J}). With the same argument, the same
property holds for the three other sets [J7, Jh JY and we deduce that 0 € dens(7).
Eventually, follows from the differentiability of A at 0.

Step 3. Proof of the identity (3.47)).
Using again that for ¢ € J,, we have C(w) N Q7 = {x(t)} we see that, for t € 7,

Ty N [(21,7) x (22,7)] = [(21(£),7) x {z2(t)}] U {z(t)} U [{z1(t)} x (22(2),7)] .
where {Zl = max (inf{y;,y € Q" },inf{y1,y € Q1 }).,

29 = max (inf{yg,y € Q) inf{ys,y € Qljr}) )

From the constraints (3.40)),(3.41)&([3.44) on Q% and QY, we have z;, 2z, < —T/4 and we
get

TN Qr = (21(1),7) x {a(t)} U {z(t)} U {z(D)} x (2a(1),7).
Eventually, we deduce (3.47) by monotonicity of t — w;. ]
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Let us describe further the trajectory t € J +— x(t) and express its derivative in terms
of the values of Vu on the sets I';. For this we introduce some more notation. For t € 7,
we denote

Th o= (2,(t),F) x {wa(t)} and Y = {a1()} x (22(t),7), (3.48)

hence, N
L,NQr=Tru{z(t)}UTY.

Remark for later use that for ¢ € J, since z(t) € Q74 the lengths of the segments I'} and
[} are bounded from below by 37/4 > 0.

We start with a simple result.
Lemma 3.15. For every s,t € J, s <t andl = 1,2, there holds
t—s <a(t) —xi(s) = h(t) — hi(s) = Dhy((s,t)).

Proof.  Without loss of generality, we assume that [ = 1. Let y» € (7/4,7). By
Lemma [3.14] for s,t € J, we have (z1(s),y2) € I'V and (z1(¢),y2) € I'Y. Hence, us-
ing the fact that u is 1-Lipschitz continuous, we get

t—s=u(xi(t),y2) — u(x1(s),y2) < |z1(t) — 21(9)|,

and since x; is nondecreasing we can remove the absolute value in the last term. For the
other inequality, we recall that x1 = h; on J and that h; is BV and continuous at any
point of Jy D J. O

We now identify the derivatives h;(0) in terms of v = Vu.

Lemma 3.16. Let [ € {1,2}. The function h; is differentiable at any point t € dens(J)
and
h(t) > 1.

Moreover:
(i) For almost every ys € (x2(t),T) there holds
vi(z1(t)er + yae2) =0 and hy(E)va (a1 (t)er + yaea) = 1.
As a consequence v = Vu is well defined and a.e. on F? with v1 = 0 and vy > 0.
(ii) Symmetrically, for almost every y, € (z1(t),T) there holds
Ryt vy (yrer + xo(t)es) = 1 and va(y1e1 + x2(t)ez) = 0.
As a consequence v is constant a.e. on I'} with vy > 0 and vy = 0.
In particular, since 0 € dens(J) we have for almost every yy,ys € (0,7),
v(y1,0) = (0,v5°) and v(0,y2) = (v1%,0),
where we have used the notation

vy° = W0 vgo = . (3.49)
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Proof. ~ We consider | = 1, the case [ = 2 being identical. Let ¢ € dens(J). For
almost every y; € (z1(t),7), the function u is differentiable at (y;,zo(t)) € T'}. Since
u(f1, w2(t)) = t for §; in the neighborhood of y;, we have dyu(y;,z2(t)) = 0. Moreover,
writing u (g, x2(s)) = s for s € J, the chain rule leads to

() oy, zo(t)) = 1,

as claimed. Consequently dyu(yi,z2(t)) # 0 and up to a H'-negligible set, v = Vu is
constant on I''. Eventually, the inequality h4(¢) > 1 follows from Lemma m O

We are now ready to establish the first part of Theorem namely (3.24)).
Proposition 3.17. For every p € C.(R?),

lim - wr@mmm»:éwwwmm&

r—01r R2

Remark 3.18. Let us point out that (3.24)) indeed follows from Proposition since we
have, with the change of variable s = o /|h/(0)| and using (3.49),

VPVS°
R'(0))ds = do = 12 dH",
| et S|M|/‘(vv )“ o /%

L :=span h'(0) = span(1/v7°,1/v5°).

Moreover by the rectifiability criterion of [Mat95, Theorem 16.7], the existence of approx-
imate tangent measures to |u| provided by the proposition yields the H!-rectifiability of
|p| and thus of p.

Proof of Proposition[3.17. Fix ¢ € C.(R?) with supp ¢ C Q, for some ¢ > 0. By (3.29)
we have for r > 0,

F e =1 [ ] () dd) a

Notice that for r < 7/¢ we have Qy C Qr. For almost every ¢t € R, if |k|(Q-) # O then
Ty N Qe # 0, i.e. there exists © € @y, such that u(z) = ¢t. Using that «(0) = 0 and the
fact that u is 1—Lipschitz we deduce that

with

Q) A0 = [t = [u(@)] < ol < b
Thus,

| et dinlw) it <
Qor

0 for [t| > Or.

/ o (rYy) dlsl(v) =
Qer

Hence for r < 7/,

> [ et ) - /'/T (r~"0) disl(y) dt

B33) 1 _ _
= —/ @ (rlz(t)) dt + —/ / w (rty) dlr(y) dt
T Jgn(—erer) T J(—trer\T J Qr
= q1(r) + q2(r). (3.50)
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Let us treat the first term. We write

1 1
1(r) == r1th'(0)) dt + = rtx(t)) — p(r 'th'(0))]d
0w =g [ ety L[ e ) o o) i

=:q1(r) + qu2(7).

Using the change of variable ¢ = rs and recalling that 0 € dens(J), we can pass to the
limit in gy 1(7):

= sh’' s sh’' s. :
wa0)= [ s [ o) (3:51)

Notice that we used that h(0) > 1 by Lemma and thus sh/(0) ¢ Q, for |s| > ¢.
To show that ¢y 2(r) is negligible. We introduce a modulus of continuity 7, € C(R4,R;)
of ¢, increasing and with 7,(0) = 0. We also define

5(r) ::sup{ @-h’(@)‘:tej,oqlﬁkr}.

Remark that by (3.46]), d(r) — 0 as r — 0. We then have

lq1,2(r)] < l/jm([ Z )mJ (r~'(z(t) — th'(0))) dt

<, (65(6r)).

Sending r to 0, we get lim, o ¢1 2(r) = 0 and with (3.51)) we conclude that

lim g, (r) = /R o(sh'(0)) ds. (3.52)

rl0

We still have to establish that the second term in the right-hand side of ([3.50)) is negligible.

Let us write

()] < ”90““/ Il (Qr) dt < %/ N () dt.
(=err)\T r (—tr tr)\J

r

Recalling that 0 € dens(7) and that 0 is a Lebesgue point of the L' function ¢ — N(#),
we get that ¢o(r) — 0 as r — 0. Together with (3.50) & (3.52)) this yields the result. [

We can finally end the proof of Theorem by establishing the trace identity (3.25]).
Denoting

we set .
(UIOO7O)Z(W’O> lny>O,

1
0,v5°) =0, ——== if y-v <O.
( 7U2) ( 7h/2(0>> 1 y v

Notice that V A V> = 0 in the sense of distributions.
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Proposition 3.19. There holds

llm—/ lv—=V*>=| =0. (3.53)

rl0 72
Proof.  Let 0 < r <7 and let us denote (see Figure ,
B ={yeB. :y -v<0} and B :={yeB,:y-v>0}

Figure 8: The vector field V>, the half balls BY (light gray) and BY (dark gray) and, as
in Figure [7} the trajectory {h(t)} (solid curve) with its tangent at 0 (dashed line).

We split the integral in (3.53)) as
1 oo 1 o0 1 o v
S [ vl =5 [ o= 4 [ o= 0R0] =)+ 0 0).
T B, T Bf} T BY
We show that ¢"(r) goes to 0 with r (the treatment of ¢V(r) is identical). Since hy is

differentiable at 0 and h5(0) > 1, there holds (—r,r) C ho((—2r,2r)) for r > 0 small
enough. Setting

we have by Fubini,

1 2r
&) <~ / / (1, 92) — (0,05°) | dys dys.
ha((—2r,2r)) J A

T Y2

We split the domain of integration with respect to y» in a “good” and a “bad” set:
Dy(r) == ho((=2r,2r)NT) and Dy(r) := ho((=2r,2r)\ J).
We have ¢"(r) < qy(r) + ¢i:(r) where

1 2r -
) = / / 01, 2) — (0, 05°)] dyn d,
r Dg(r) J Ay2
= 2/ / v(y1,y2) — (0,v5°)] dyr dys.
r Db 7‘) )\
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Let us first consider the term g}}(r). For y, € Dy(r) there exists a unique ¢ such that
ho(t) = yo. We denote T(y») := t and then Xi(y2) := h1(T(y2)) = h1(hs'(y2)). Taking
into account that |vl, [v>°] < 1 we get

1
3_2/ / v(y1, y2) — (0,05°)] dyr dys + —/ | X1 (y2) — Aye| dys
T" JDg(r) J X1 (y2)

= 92,1( >+qg,2< )

Recalling the definition (3.48)) of I'' and I'}, we have by Lemma that for t € J,
v is constant on H!-almost all T and H!-almost every point of '} is a Lebesgue point
of v. Let yi € (7/4,7) such that y* := (y7,0) is a Lebesgue point of v. In particular
v(y*) = (0,v3°) and we have the estimate,

1 . 10
@Aﬂé——/ () — o) dy =5 o.
Q2r (y*)

2
Then, since h is differentiable at 0 with h5(0) > 1, we have

Xi(y2)  M0) _ Xi(ya) A\

Y2 B hé(o) Yo

Using again that hy is differentiable at 0 we have for » > 0 small enough (and using
h3(0) > 1> 0)

Y240

0.

Dy(r) C ha((=2r,2r)) C (—4h5(0)r, 4h5(0)r).

We infer, for r > 0 small enough,

2 ly () 8hy(0) [0
92,2(7"):;/1)()72 22— X dyy < —2 /

Y2 r —4h4 (0)r
We conclude that

X1 (y2)
Y2

—)\‘ dys 2% 0.

l;i[r)lqg( r) = 0. (3.54)

Eventually, we estimate ¢(r). Using |v|, [v°>°] < 1 and recalling that h, is increasing, we
have

(1) < 2H (haf(~2r,20)\ 7).

Recalling the decomposition of Dhy = hyH! + D?hy and that hy is increasing, we claim
that for I C (—7,7) Lebesgue measurable (notice that since hs is increasing, hao(I) is also
measurable), there holds

M (ha(1)) < w(I) + /I B (s) ds, (3.55)

wherd|v(I) := inf{D*hy(J) : J open subset, I C J}. Indeed, the inequality holds true for
open subsets with equality and then extends to every measurable set since, by regularity
of hyH?,

/h’Q(s) ds = inf {/ hy(s)ds : J open subset, I C J} :
I J

81 is the smallest outer measure built from D*hs.
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Applying inequality (3.55)) with I = (—2r,2r) \ J we compute

2 2
Q) < Zo((—2r 20\ T) + 2 / Ky (s) ds
r T J(=2r2r)\J

2r

2at0) I (5) — B0} s

2
< —D’hy((—2r,2r)) +
T

H(=2r,2r)\ ) +§/

—2

Sending r to 0, the first term goes to 0 by , so does the second term because
0 € dens(J) as well as the last term because 0 is a Lebesgue point of h}. We conclude
that ¢f'(r) goes to 0 and with the proposition is established. This ends the proof
of Theorem [3.21 O

3.2.3 Compactness of S>(Q)
We now prove Proposition about the compactness properties of S°(£2).

Proof of Proposition [1.21]
Step 1. Compactness of finite energy states.
Let v* € S°°(Q) be such that
sup |ul™]](9) < oo

Since |v| < 1, up to extraction there is |v| < 1 such that vy converges to v in the weak-x
topology of L>®. By weak convergence we have that V xv = 0, that u[v*] weakly converges
to plv] and the estimate
|[v][(€) < lim inf [p[o*]](22) < co.
—00
Therefore, to prove that v € S*(2), we just need to show that v € K for almost every

z. Let ¢, € CY(R) for [ € {1,2}. We consider the entropies ®;(v) = ;(vs)e; and
Oy (v) = @a(vy)eg. For I = 1,2 we have

[V (@u(o")IQ) < eillocluv*1(€2)- (3.56)

We deduce that the two sequences (®(v*)) and (®y(v¥)) are compact in H=1(Q) (see
e.g. [DKMOOQI, Lemma 6]). Thus, by the div-curl lemma we have as weak limits,

i 1)) = (imeen(eh)) (tm b)) (357

Applying this with ¢; = @9 = Id we find 0 = vyv; and thus v € K.

Step 2. The case of vanishing defect measure: compactness in the strong topology.

We now assume that ufv] = 0. We have 0yv1 = 0109 = 0 so that vy(z) = v (z;) for I = 1, 2.
Since v € K almost everywhere this leads to v; = 0 or v = 0. We now improve the weak
convergence of v¥ to strong convergence of v’f or v§ to zero.

Let (A;)zeq be the Young measure generated by v¥, i.e.

lim gp(x,vk(x))dx:/

(/ oz, 2) d/\x(z)) dx for every p € C.(Q x R?).
kteo Jo o \/B,
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Arguing as in [DKMOO1], we see that A, is a probability measure on K with
v(x) = / zd\, for almost every x € €.
K

After localizing, we can write (3.57)) as

[ eatiane = ([ atane) ([ o).

Therefore A, is tensorized and thus supported on {0} x R or on R x {0}. Let us prove
that, up to a set of Lebesgue measure zero, it is either always supported on {0} x R or
always on R x {0}. We decompose A, as

with a, > 0 and AP, AY positive measures on R such that \2({0}) = A\Y({0}) = 0 and
az; + A(R) + AY(R) = 1. Let

Ww'={zecQ : \'(R) > 0}, w'={xeQ A\ (R)>0}.

We claim that either |w"| = 0 or |w¥| = 0. Assume instead that |w®| > 0, |w"| > 0. Notice
first that since )\, is tensorized for almost every x, we have

W Nw’| = 0. (3.59)

Now, since pfv] = 0, the estimate (3.56) with v in place of v¥ leads to the following
identities, in the sense of distribution,

o | [ et —o o | [ e =o

for every ¢1,p2 € CH(R). Using ¢1(22) = |22|* in the first identity and substituting the
decomposition of \,, we get

O {lwv(x)/ | 22| d)\;(z)} = 0.
K
We deduce that for almost every z5 € (—1, 1), the function

y1 € (=1,1) — 1, (yl,a:Q)/ |22 dNY, .\ (2) is constant (in the a.e. sense).
K

(y1,72)
As the two factors either both vanish or are both positive we deduce that the function
y1 € (—=1,1) = 1w (y1, 22) is constant for a.e. xo € (—1,1). (3.60)

By assumption w’ have positive measure, hence, by Fubini, there exists Jo C (—1,1)
measurable and with positive length such that for every x5 € J5 the set

{y1 € (—=1,1) : (y1,22) € w"¥ for some x5 € Jo}
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has positive length. We deduce from ([3.60)) that, up to a negligible set,
(—1, 1) X J2 Cw'.

Similarly using the second identity, we obtain a measurable subset J; C (—1, 1) of positive
length such that J; x (—=1,1) C w" As a consequence J; X Jo C w" N w" and since
|J1 X Jo| > 0 this contradicts (3.59). We conclude that either [w"| =0 or |w"| = 0.

If for instance |w"| = 0 we obtain from that the projection of A\, on the vertical
axis is a Dirac delta at 0 and thus v§ — 0 in L}(Q). O

As a final observation we construct v € S*(Q) such that |u[v]|(B,) goes to 0 faster
than r but such that 0 is neither a Lebesgue point for v; nor for vs.

Proposition 3.20. Let us consider a sequence 1 > rqg > r; > ... decreasing to 0 such
that 1/2 > r1/rg > 1r9/r1 > ... also decreases to 0, see for instance the family of examples
of Remark below.
Then, there ezists v € S®(§2) such that
lim HLNB) _ (3.61)
710 r ' '
and forl=1,2
1 "too 2 3
5 v L qi==— £ > 0. (3.62)
| 7‘2k/+l| Br2k/+l 3 27
Proof.  Let us set
) 1= L for k > 1. (3.63)
Tk—1
By assumption, we have 1 > ¢; > g5 > ... and &; goes to 0. Let v® be given as in

Figure @ Denoting R the rotation of angle /2 in R? we define the vector field v by

Figure 9: The vector field v°. It takes values in {0, £ee;, £ey}.

V= o where T;k(a:) = RFytr (Rk£> for k> 0 and = € R2.
Tk
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Thanks to (3.63), the functions v* have essentially disjoint supports (they overlap on
segments), see Figure More precisely, for j > k, ¥’ is supported in the central square

[—71/2,71/2]* where T* vanishes.

27"0

2T0

Figure 10: The support of the vector field v.

We deduce that the sum v =}, ., 9* is well defined. Since moreover, for ¢ > 0,
V xv® =0, [0 <1  and  ojv5 =0,
we also have that V x v = 0 and that v takes values in
K nBi = (-1,1] x {0}) U ({0} x [~1,1)).

Let us check that (3.62)) holds true. Let k£ > 2 be an even integer, we have

: _ o ! Sl
| By, | By, fval = |B;, | B, 5] + |B,., | /(_:&ﬂi Z|U2| = qk + M-

272)2j>k

For the first term, a look at Figure [I1] shows that as k goes to 400,

€ B : >1/2 o)
MBI (e
| By Tk

2 3
=342

o1



For the remainder 7;, using the bound |v| <1 and the fact that ), 9/ is supported in
[—7hi1s Tha1) X [—75/2, 7 /2] (see again Figure [L1]), we obtain

< 27541 BB3) Expy1 koo

e = — 0.
™ Tk ™

This proves (3.62)) in the case [ = 2 (that is 2(k’ + ) even). The case of odd integers is
the same up to a rotation.

|
|
|
:
|
: Tk 2Tk
|
|
|
|
|
|

Figure 11: The vector field v5e; € {0,4ey} in a neighborhood of B,, for some (large)
even integer k. The support of > sk v/ (dark gray) and the ball B,, (light gray).

We are left with the proof of the vanishing energy limit (3.61)). Let us first notice the
following scaling identity. There holds for € > 0, r > 0 and A Borel subset of R?,

plos(-/r)] (A) = rufot]((1/r)A).
In particular we have for 7 > 0 and r > 0,
uF)(B,) = rylo)(Buyr,) (3.64)
Next, by direct computation, we get for € > 0 and s > 0,
|u[o7]] (Bs) < des and [l (v9)]] (R?) = 4.
With , we deduce for 7 > 0 and r > 0,
|u[@]| (B,) < 4e;r and |u[(@)]] (R?) < 4r;. (3.65)

Now we fix r € (0,70/2] and we denote k = k(r) the unique positive integer such that
ri/2 < r < rp_1/2. Taking into account the supports of the ?7’s, we compute

w[ol|(By) = [u[*)] (By) + > |ul@]] (R?) 4w+4 o (3.66)
Jj2k+1 j>k+1
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To estimate the second term in the right-hand side we deduce from (3.63)) the following
chain of inequalities: 7; < 1;_1/2 < -+ < 141 /277F 1 = g4 17 /277F for j > k+1. Hence,

1
Z T < Ek4+17k ( Z W) = Ek+17k-

J>k+1 j=>k+1
Using this estimate in ([3.66)) we obtain,
|e[v]|(By) < degr + degary < 12egr.

Dividing by r and sending r to 0, the condition 74,y < 2r leads to k(r) — 4+o0c. Thus
exry — 0 and (3.61)) follows. This ends the proof of the proposition. O

Remark 3.21. Let o > 0. The sequence defined recursively by
ro = 2" Ve and Tha1 = rg“ for k>0

complies to the assumptions of the proposition. With this choice we have

1
B.) < 4818 ith =2 - —
ull|(B,) <487°  with P

As we can make 3 arbitrarily close to 2 by choosing « large enough we conclude that even
a constraint of the form

ulv]] (By) < Cr*s,

for some € > 0 and C' > 1 does not ensure that 0 is a Lebesgue point of either v or vs.
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