Scattered wavefield in the stochastic homogenization regime - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Scattered wavefield in the stochastic homogenization regime

Résumé

In the context of providing a mathematical framework for the propagation of ultrasound waves in a random multiscale medium, we consider the scattering of classical waves (modeled by a divergence form scalar Helmholtz equation) by a bounded object with a random composite micro-structure embedded in an unbounded homogeneous background medium. Using quantitative stochastic homogenization techniques, we provide asymptotic expansions of the scattered field in the background medium with respect to a scaling parameter describing the spatial random oscillations of the micro-structure. Introducing a boundary layer corrector to compensate the breakdown of stationarity assumptions at the boundary of the scattering medium, we prove quantitative $L^2$- and $H^1$- error estimates for the asymptotic first-order expansion. The theoretical results are supported by numerical experiments.
Fichier principal
Vignette du fichier
Article1.pdf (18.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04220919 , version 1 (28-09-2023)

Identifiants

Citer

Josselin Garnier, Laure Giovangigli, Quentin Goepfert, Pierre Millien. Scattered wavefield in the stochastic homogenization regime. 2023. ⟨hal-04220919⟩
191 Consultations
22 Téléchargements

Altmetric

Partager

More