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Abstract

In the context of providing a mathematical framework for the propagation of
ultrasound waves in a random multiscale medium, we consider the scattering
of classical waves (modeled by a divergence form scalar Helmholtz equation)
by a bounded object with a random composite micro-structure embedded in
an unbounded homogeneous background medium. Using quantitative stochastic
homogenization techniques, we provide asymptotic expansions of the scattered
field in the background medium with respect to a scaling parameter describing
the spatial random oscillations of the micro-structure. Introducing a boundary
layer corrector to compensate the breakdown of stationarity assumptions at the
boundary of the scattering medium, we prove quantitative L?- and H?*- error
estimates for the asymptotic first-order expansion. The theoretical results are
supported by numerical experiments.

Keywords: Helmholtz equation, quantitative stochastic homogenization, transmission
problem, boundary layer



1 Introduction and context

The emergence of quantitative medical imaging techniques that can map the numer-
ical value of a physical parameter in a biological tissue constitutes a major shift of
paradigm for the theory of inverse problems. Imaging modalities are now expected not
only to produce images that are anatomically accurate (structural images) but also
stably and quantitatively reconstruct parameters of interest that can help discriminate
pathological states.

Medical ultrasound imaging is a powerful, safe, portable and cheap imaging modal-
ity that is used in countless physical exams. Ultrasonic pulses (in the MHz range)
are transmitted into the region of interest and the images are obtained by numeri-
cally backpropagating the echoes generated by the tissues and recorded on a receiver
array. Each tissue and its pathological state will be characterized by a distinct type
of speckle on the image.

The technique relies on the fact that most soft tissues have a mass density and
compressibility close to those of water (and ultrasonic waves travel in these tissues
almost as in water) yet have echogenic properties that can be explained by the presence
of acoustic heterogeneities of characteristic size much smaller than the wavelength, see
[1].

The quantification of these echogenic properties (known in the literature as
backscattering coefficient estimation [2]) relied until now on the introduction of an
ultrasonic reflectivity [3] and approximations of the scattered field derived under a set
of restrictive hypotheses that do not hold in many practical situations (usually assump-
tions of the low scatterer concentration, single scattering regime, strictly homogeneous
mass density in the medium, uniformity of the excitation beam ... [4]). Recently, using
a formal approach based on a separation of scale in the scattering process, Aubry &
al. have recently obtained spectacular results in quantitative speed of sound imaging
on experimental data [5].

In this paper, we aim at providing a mathematical framework for the propagation
of ultrasound waves in random multiscale media. Using the tools of stochastic homog-
enization, we provide a mathematical model for the acoustic properties of a soft tissue
as well as quantitative asymptotic expansions of the scattered field with respect to the
scale of the acoustic heterogeneities in the medium.

1.1 State of the art

Homogenization techniques are an essential tool to address the study of partial dif-
ferential equations with rapidly oscillating coefficients that exhibit periodic [6] or
stochastic [7, 8] variations, allowing to derive effective coefficients or asymptotic
expansions for the solutions.

In the case of stochastic homogenization, the recent quantification of convergence
rates in the case of the Poisson equation in unbounded domains, obtained indepen-
dently by Armstrong et al [9] as well as Gloria and Otto [10, 11] has initiated a
leap in results on the subject, relaxing some of the hypotheses of the aforementioned
papers. Using multiscale inequalities to quantify ergodicity, quantitative convergence
rates were obtained for correlated coefficients with long range correlations [12, 13] or



in the case of bounded domains [14, 15]. Additionally, the emergence of a theory of
fluctuations in stochastic homogenization has lead to introducing a new quantity : the
homogenization commutator. In the series of articles [16, 17] the authors have shown
that the fluctuations of the two-scale expansion error of the so-called commutator
characterizes the fluctuations of all the observables of interest (flux, gradient. .. ).

Classical wave scattering by a medium containing periodically distributed penetra-
ble objects has attracted a lot of attention in the recent years [18-20] with a particular
focus on the asymptotic analysis of the boundary corrector [21] and the construction of
effective transmission conditions [22]. We also refer to [23-25] for major contributions
to the study of the boundary layers for the Poisson equation.

1.2 Main contribution

In this paper, we are interested in the scattering of classical waves by a bounded
object with a random composite micro-structure embedded in an unbounded homoge-
neous background medium. The problem considered is modeled by a divergence form
scalar Helmholtz equation with discontinuous rapidly oscillating (at some scale € much
smaller than the wavelength) stochastic coefficients.

Building on the methods developed in [12, 26] we establish a first-order (with
respect to the parameter ) asymptotic expansion of the scattered field inside the
object (proposition 2). Introducing a boundary layer corrector to enforce transmission
conditions at the boundary of the object we prove L?- and H'-norm convergence rates
(proposition 6). Using the Lippman-Schwinger equation and results on fluctuations of
the commutator [16], we derive a quantitative first-order expansion of the scattered
wave outside the object. We also present numerical illustrations of the solution of
the multiscale problem as well as the correctors, and the first-order expansion of the
solution. Numerical convergence rates are computed to support the theoretical claims.

The article is organized as follows:

® In section 2 we present the model for the propagation medium and the stochastic
framework required to prove stochastic homogenization results.

® Section 3 is devoted to proving L2?- and H'- quantitative estimates of the
error between the solution of the original problem and the first-order two-scale
expansion (proposition 7).

e Using the expansions of the solution and its gradient inside the composite medium
established in the previous section in conjonction with the Lippman-Schwinger
equation satisfied by the scattered field eq (78), we derive in section 4 an explicit
integral representation formula for an H'- approximation of the scattered field
outside the composite medium of order (d + 1)/2 (Theorem 10), where d is the
dimension. This theorem along with Corollary 11 is the main result of the paper.
It makes it possible to relate the small-scale fluctuations of the composite medium
and the scattered wavefield that can be measured outside the medium. This
paves the way towards the resolution of quantitative inverse problems that aim
at characterizing the statistics of the composite medium from the statistics of the
scattered field.

® In section 5, we show numerical results on the original problem, the effective
coefficients and the homogenized problem, as well as the different correctors. We



compute the different norm errors between the solution of the original problem
and its various approximations to confirm the claims of proposition 8 and theorem
10.



Contents

1

g a w »

Introduction and context

1.1 Stateof theart . . . . . . . . . . . . . . e
1.2 Main contribution . . . . . . . . ...

Presentation of the model

2.1 Description of the distribution of scatterers . . . . .. ... .. ..
2.2 Stochastic setting . . . . . . ... L

Two-scale asymptotic expansion of the field

3.1 Homogenized problem . . . . . ... ... 0oL
3.2 Two-scale expansion error and boundary layer. . . . . . . ... ..
3.3 Two-scale error - boundary corrector . . . . . ... ... ... ...
3.4 Convergence rate of the two-scale expansion . . . . . . ... .. ..

Asymptotic expansion of the scattered field

4.1 Mainresult . . . . . .. e
4.2 Representation formula for P . . . ... ...
4.3 Proof of Theorem 10 . . . . . . . . . . . . ... ... ... .....

Numerical illustrations

5.1 Geometry and choice of parameters . . . . . . . .. ... ... ...
5.2  Computation of the reference solution . . . . ... ... ... ...
5.3 Computation of the correctors and effective parameters . . . . . .
5.4 Numerical results . . . . . . . .. .. .. ...

Well-posedness of the scattering problem and H?-regularity
Qualitative homogenization
Homogenization with a less regular solution

Proof of Lemma 12

[\V]

g o

25
25
30
34

40
40
40
41
43

49

50

52

59



inhomogeneities randomly

distributed in D

Fig. 1: Scattering by an obstacle in the stochastic homogenization regime

2 Presentation of the model

We consider a bounded acoustic medium D C R%, d € [1,3] with a C*- boundary D
and we study the scattering of a time-harmonic plane wave

u'™(z) := exp(ikd - x) for x € R? (1)

with wave number k and direction § € S. We assume that a set S of randomly
distributed inclusions of characteristic size € > 0 lies inside the medium D. ¢ is small
compared to the wavelength of the incoming field 27k ~1!.

The outer medium R?\ D, the background D\ S¢ and the scatterers S¢ are assumed
to be homogeneous with respective parameters (Id, ng), (anr,nar) and (ag,ng). The
medium parameters are then given by

a. ‘= Id]le\B + aM]lD\gs +aglg-,

(2)

Neg 1= no]le\ﬁ —+ nM]].D\STs —|— ’I’LS]].SE7

where a); and ag are positive definite matrices of My4(R) and ng, nas, ng are positive.
The total field . is then the unique solution a.s. in H}. (R9) of the following problem:

— V- (ae(2)Vue (x)) — k*n. (2)ue(z) = 0 for z € RY,
i azt a(uf — uinc) . inc _ (3)
‘mlllﬁoo || <a$|(x) — ik (ue —u )(m)) =0.

Remark 1. In the context of acoustics u. is the pressure. a. and n. relate to the
mass density and the bulk modulus of the inner and outer media [27, Chapter 3.3].
We choose identical parameters for all scatterers. The study can easily be extended
to independent and identically distributed parameters as long as the assumptions of



uniform ellipticity for a. and uniform boundness from below and above for n. are
satisfied.

We will derive an asymptotic expansion of u.(z) with respect to ¢ for € R\ D
using quantitative stochastic homogenization techniques. Before doing so, let us specify
in this section the different assumptions that we make on the random distribution of
scatterers.

2.1 Description of the distribution of scatterers

Let (x;)sen be the point process in R? corresponding to the centers of the scatterers.

A scatterer s;, i € N centered at z; consists in an open connected Lipschitz domain

O of radius r := ma)é|x — y|. We denote by S := AUNSi the set of scatterers of radius
kIS i€

r=1in R% Let (Q,F,P) be a probability space. We make the following assumptions
on (x;)ien:
- (%;)ien is stationary, i.e. its distribution law is invariant by translation and
ergodic;
- the scatterers lie at a distance at least 6 > 0 from one another, i.e. there exists
6 > 0 such that
Vi # j, dist(s;,s;) >3 as.
We introduce the parameters

a:= aM]le\g +aglg,

n = nM]le\§ +nglg.

For € > 0, we define

N :={ieN|ex; € D}.
N corresponds to the collection of scatterers of size & that lie in D. We subsequently
denote

S€:= U es;ND. (5)
1EN
Note that we have then
Vr €D, ac(z) = a(f) and n.(z) = n<§)

Figure 2b illustrate an example of a realization of a. in D.

2.2 Stochastic setting

As it is customary in stochastic homogenization, we define stationarity and ergodicity
through an action (7,),cgre of the group (R4, +) on (€, F).
We thus equip (2, F) with (7),ere that verifies:

RIxQ — Q
- the map 7: is measurable,
(r,w) — Tpw



d _
- Vo,y ERY 1y = T 0Ty,
- For all z € R%, 7, preserves P, i.e.

VA € F, P(r,A) = P(A).

Definition 1 (Stationarity). In the rest of the paper, a random process f : RZx ) — RP
is said to be stationary (with respect to 7) if

Ve,y e R aewe, flz+yw) = flz, Tyw). (6)

Moreover, we assume that the action (7,),cgra is ergodic.
Definition 2 (Ergodicity). Any 7-invariant event has probability 0 or 1, that is,

VAe F, (VzeRY, 771A=4) = (P(A) € {0,1}). (7)

We can now write in terms of 7 the stationary and ergodic assumption on {z%}
the centers of the scatterers for the realization w € Q.

i€N

Vw e Q, Yy e RY (2% +yhioy = {67}, en (8)

These two assumptions are the minimal and classical assumptions on the distribution
of scatterers (z;);cn that we require for qualitative stochastic homogenization. In the
rest of the paper the dependency on randomness w € {2 is not mentioned explicitly.
We also assume that the process (z;);cn or equivalently S verifies a quantitative
mixing condition. We choose to express this condition as a multiscale variance inequal-
ity as introduced in [28]. This assumption is verified by the most common hardcore
point processes such as Matérn point process [29, Section 6.5.2] as proved in [28,
Section 3.
Hypothesis 1 (Mixing hypothesis). There exists a non-increasing weight function
7 : Rt — RT with exponential decay such that S verifies for all ¢(S)- measurable
random variable F(.5),

+oo 2
Var [F(S)] < E [ / / 028, F( 5)) dat~n(0 — 1)de| (9)
]Rd

where By(x) is the ball with radius ¢ > 0 and center z € R? and the oscillation
955, () F'(S) of F(S) with respect to S on By(z) is defined by:

98B, () F'(S) := sup ess {F(S"1S'n N (RY\ By(z)) = SN (R By(z))}
— inf ess { F(S")|S" N (R?\ Be(z)) = SN (RY\ Be(x))} .

Proposition 1 (Matern process [28, Proposition 3.3]). The Matérn process verifies
(9) with the weight function m:

7(l) = Ce ! (10)
for some C > 0.



Remark 2. Note that the Hypothesis 1 implies that the covariance function of S :
Cs(z) := Cov(S(0), S(x)) satisfies [30, Proposition 1.3]

Vo € RY, |Cs(x)| < /Oo m(€)de. (11)

max (3 (|z|—2),0)

where the notation < stands for ”inferior up to a multiplicative constant dependent
only on the dimension and possibly other controlled quantities” and will be used
throughout the paper. For a Matern process this implies that C's has an exponential
decay.

3 Two-scale asymptotic expansion of the field

3.1 Homogenized problem

We restrict our domain of study to Bgr the ball of radius R > 0 centered at 0, via
the Dirichlet-to-Neumann operator A : H2 (9Br) — H~2(8Bg). This operator takes
a Dirichlet data g € H%(BR) and maps it to the Neumann trace of u on 0Bg i.e.
Ag =Vu-ve H 2(0Bg) where u is the outgoing the solution of

—Au — E*nou = 0 in R?\ By, satisfying u|op, = g.

A is continuous, self-adjoint and non-positive and its expansion in terms of Hankel
functions can be found for example in [31], [32, Section 2.6.3] and [33].
We thus consider u. the a.s. unique solution in H'(Bg) to

{ — V- (acVue) — E*nou. =0 in Bp, (12)

V(ue —u'™) - v = A(ue — u™) on OBg.

The well-posedness of (12) for non-smooth coefficients is a difficult problem in 3d. We
refer to [34] for the proof in the L>° case. However, the proof relies on Fredholm theory
and unique continuation principle and therefore does not yield a uniform explicit
control with respect to € and w. To obtain this type of uniform control that will be
necessary for the homogenization process, we have to add some additional assumptions
on the coefficients. For kR sufficiently small or %k > 0 the sesquilinear form associated
to (12) can be proved to be coercive and the uniform bound in € and w of u. can be
achieved [35]. We also point out that some other methods were developed in [35] and
[36] to obtain uniform control of the solution, but they do not apply to our specific
problem. Here, we assume that the sesquilinear form associated to (12) is coercive so
that Proposition 14 holds. The following homogenization theorem follows directly.

Proposition 2 (Qualitative homogenization theorem). A.s. the unique solution
ue € HY(BR) of (12) converges weakly in H*(Bgr) towards ug, the unique solution in



HY(BR) of the following problem

— Aug — k*ngug =0 in Br\ D,

-V (ahomVuo) — k*nhomuy =0 in D,

ug —ug =0 on 0D, (13)
Vug -v — ahomVuS' -v=>0 on 0D,

V(ug —u'™) - v = Aug — u'™) on 0Bg,

where the superscripts ~ and T denote the traces outside and inside D.
The homogenized coefficients a™™ € My(R) and n"™ € (0,4+00) are defined as
follows

nhom = Eln), (14)

and for i € [1,d] the corrector ¢; is defined as in the forthcoming Definition 3.
We define for any integrable function f and any domain B the notation fB f as

fu = m

Definition 3 (Corrector). Let (¢;)ieqi,q) be the unique vector field such that for all
i €[1,d]
(a) a.s. ¢; € HE (R?) is the solution in D'(RY) of

{a?gm =Ele; - ale; + Vi),

-V (a(V(bi + ei)) =0 inRY (15)

with the anchoring condition
¢i = Oa
Uo
where [J, denotes the unit square centered at x

1 1 d
O = 2+x,2+x]. (16)
(b) V¢ is stationary, has finite second moments and vanishing expectation.

Once the uniform bound on wu,. is established, the proof of Proposition 2 follows
from the classical steps of stochastic homogenization using Tartar’s method [37] of
oscillating test functions. For the sake of completeness, we detail it in Appendix B.
a"°™ is definite positive ensuring the well-posedness of the homogenized problem (13).

3.2 Two-scale expansion error and boundary layer

The qualitative homogenization theory implies that a.s. u. converges to ug strongly in
L?(Bgr) and weakly in H'(Bpg). In order to upgrade this result to strong convergence

10



in H'(Br) and get a quantitative rate of convergence, one needs to consider the
contribution of the first-order corrector uy . € H*(Bgr \ D) x HY(D).

Definition 4 (first-order corrector). Let u; . € H(Bg\ D) x H*(D) be the first-order
corrector defined by:

Ure(z) :=1p(z Zgbz( )8u0 z) for x € Bg. (17)

This definition of u; . corresponds to the usual definition inside D. Since there is
no micro-structure outside of D, we extend it to u; . = 0 in Bg \ D.
Since w'™ € C>®(R?) and 0D is C* wug, is in H?*(D) (see Appendix A,
Proposition 15). Therefore, Ule, is indeed in H'(D). Similarly, we introduce
we € HY(Bg \ D) x H*(D), the two-scale expansion defined as follows :
Definition 5 (Two-scale expansion).

we(x) = uo(x) + eur (z) for z € Bp. (18)

3.3 Two-scale error - boundary corrector

We want to quantify the error Z. := u. — w. between the solution of (12) and its two-
scale expansion (18) in H'(Bgr \ D) x HY(D).

In a bounded Lipschitz domain U, it has been shown [14, Chapter 6] in dimension 3
that for the Poisson equation, both with Dirichlet and Neumann boundary conditions,
the following holds

2 1
E[Vue = Vwel|p2n]? S e'/? [uollw2.0 vy -

The order 1/2 of the error is due to the fact that u; . and thus w. do not satisfy
the Dirichlet or Neumann boundary conditions on 0U. To obtain an error of order ¢,
one needs to take into account what happens at the boundary and add the correct
boundary corrector [14]. We establish a similar result for the Helmholtz transmission
problem. Let us define two extended correctors which appear naturally while deriving
the problem verified by Z..

Definition 6 (Extended corrector). Let 3 := (8;)ieq,q1 be the unique vector field and
let o := (0 jm)i,j,me[1,4) be the unique tensor field such that for all i, j,m € [1,d],
(a) As. B; € HE (RY) and 0, j,, € HE (R?) are the solutions in D'(R?) of:

loc

{ ~ABi(y) = 9;(n(y) — n™), (19)

_Ao'i,jm(y) = aj(h'm(y) - amqij(y)v

with
qi = ale; + V¢;) — a"e;

11



and are anchored with the condition:
][ Ui,jm = ﬁl =0. (20)
Oo Oo

Furthermore, o; is skew-symmetric and verifies a.s.

V- 0; = (q; (21)
where for 7,5 € [1,d],
(V-0:); E OmTijm (22)
m=1
and S verifies a.s.
VB =n-—n"m (23)
(b) VB; and Vo jm are stationary, have finite second moments and vanishing

expectation.
o is the classical extended corrector in stochastic homogenization of the operator
—V -aV and can be found for example in [26, Lemma 1]. The well-posedness of § is
proven in the exact same manner.

We can now write the problem verified by Z..
Lemma 3 (Two-scale error). Z. = u. — we is a.s. the unique solution in H'(Bg \
D) x HY(D) of:

~AZ. —k’nogZ. =0 in Br \ D,
-V -a.VZ. - k*n.Z. =V - F. + k*G, inD,
Z- - 75 =eu. ondD,
VZ7 -v— aEVZ:' -V (24)
d
=F.-v+ EZ (V- (050u0)") - v — k*e(B°uo) T - v ondD,
i=1
VZ. v=AZ,) ondBg,

where F. € HY (D), G. € HY(D) are defined as follows

d
Z a=¢¢ — %)V (Osuo) + ek?Buq, (25)
=1
d
Ge =) (ndf — B5)iuo. (26)

i=1

12



Here, ¢° denotes ¢°(-) := ¢(2). 7 and of are defined similarly from 3; and o; and
for the rest of the paper. Note that we have then

Ve () = 2(VO)(0).

Proof. Let us first derive the problem satisfied by Z. before proving well-posedness.
In Br\ D and on 0Bg, u. and w, verify the same equation and so does Z.. Using the
equation (12) for u. and equation (13) for ug, we have moreover

—V-(a.VZ.) - k*n.Z.

=-V. (ahomVuo) — kK*nphomyy + v - (ae(Vug +eVuie)) + E*ng(ug + eure) in D.
(27)

By the definition of the extended corrector of Definition 6,

—k2nlomayy + k*n.(uo + EULe)
d
= k*(n. — nhom)uo + ek’n, Z @7 0;ug
i=1

k2(V - 5)( Juo + ek n52¢ dyuo (28)
d

= k?eV - (Buo) +k® Y —B50iug + ne¢Sdiug

i=1

= k%G, + ek®V - (B%uo).

By the skew-symmetry of o;, i € [1,d], for all z € D,

d d
v. (Z(V~o’i)( YO (z ) 52 z))0;uo(x))

i=1 =1

e S (Onot ()

i,7,m=1

d
=& D 0m(0f jm(@)Dsuo(x)) = 05(05 jpu (%) (Bismuo ()

ijm*l

= —¢ Z 6 ,jm aszO(I)))

3,7,m=1

= —¢V. (Zo YV O;u( ))

(29)



Therefore, we obtain

7V( homvuO) +V- (aE(Vuo + €VU1,E))

v (e + 960 = e ) o) +25 - (0077 ()

M-

V- (V- 00(2)0m0) + eV - (a:07V (910)) (30)

1

.
Il

|
<I

d
&‘Z (acgp; — 05)VO; u0)>

i=1
P — Buo).

By combining (28) and (30), we obtain the error satisfied inside D.
Using the jump conditions of u. and ug across 9D, one gets:

Z- —ZF =eup., (31)

€

and the flux jump:

VZ7 -v—aNVZ v
d
((ac(e; + Vo5) — ahomei)aiu0)+ v+ e(ac iV (0ug)) T v

1

(3

a |l

(e(V - 05)0uo)™ - v + e(acdf Vdiug)*

(32)

<

1
d
€ ((QEQSZ: — CTZS)V(81UO))+ -V + V- (Ufain)+ -V

i=1

d
=F. v+ 62 V- (050iu0) T - v — K2e(Bug) T - v

=1

The well-posedness of (24) is a direct consequence of Proposition 14. Since a.s. for
i,5,k € [[1,d]], i, Bi, Oik € Hlloc(Rd) then ¢;, Bi, Oik € Hl(D) Moreover, ug €
H*(D) and uy,. € H'(D). Therefore, Iy, Ge € H'(D), u1,5p € Hz(dD) and F. v+
€ Z?Zl V- (050iu0)t-v—k2e(B7uo) T -v € H~2(dD), and we can apply Proposition 14.

O

As it is customary in homogenization in the presence of boundary since [23], we
introduce the boundary corrector v. also called boundary layer, that ensures that
Z. — v, verifies the transmission conditions on 0D.

14



Definition 7 (Boundary corrector). Let v. be the a.s. unique solution in H'(Bg\ D) x
HY(D) of

— Av. — K*nguv. =0 inBr \ D,
—V-a. Vv, — angvs =0 inD,
vo — vl =eup . ondD,

d
Voo v —aVolv= EZ (V- (050iu0)T) - v — k*e(B°uo) T - v ondD,
i=1

Ve - v = Av,) on OBg.
(33)
The well-posedness is once again a consequence of Proposition 14.
Remark 3. The definition of this corrector is very similar to the boundary layer
introduced in [38] which deals with the periodic case.
However, all the analysis done in [38] cannot be applied here as it uses the L>(R%)-
boundness of the corrector which does not hold here.

Proposition 4 (Two-scale error with the boundary layer). A.s. Z. — v, is the unique
solution in H'(BRr) of

—V-a.V(Z. —v.) — k*n.(Z. —v.) =V - F. + k*G. inBg, (34)
V(Z.—wve) v=ANZ. —ve) on0Bpg.
Moreover, Z. — v, verifies a.s.
1Ze = vell gy S 1Fellp2py + 1Gell L2y - (35)

Once again, we apply the Proposition 14 for the well-posedness of (34).
In order to quantify the convergence of u. towards ug +euy « +v., we are now left with
estimating the right hand side of (35). This is easily done with the a.s. corrector esti-
mates established in [39, Theorem 2] for coefficients verifying the mixing Hypothesis 1
as we show in the next section.

3.4 Convergence rate of the two-scale expansion

In this section we estimate the convergence of the two-scale expansion error with and
without the boundary layer v, both in H!'- and L?-norms.
As mentioned above, the proof relies on the corrector bounds established in [39,
Theorem 4] for correlated fields satisfying the Hypothesis 1. We recall these results
below.
Proposition 5 (Corrector bounds). Under the mizing Hypothesis 1,
(a) (P — a.s. corrector bound):

There exists an a.s. finite (non-stationary) random field x — C(x) such that for

15



all z € RY,

(F 1o+ 192) < comton (30

x

where for all y € RT,

VI ifd=1,
pa(y) = { [log(2+y)|7  ifd=2, (37)
1 ifd=3.

(b) (Corrector bound in average):
Furthermore, for all y € RY, C(y) satisfies the following stochastic integrability

Elexp(=C(y)7)] <2 (38)

for some constant C' > 0 depending on d, ng, nyr, ns, ay, as and erponent
~v > 0 depending on d and the exponential decay rate of .

(c) (Mean-value property):
There exists a stationary %-Lipschitz continuous random field r. > 1 (the so-
called minimal radius) satisfying (38) such that for all £ > 1

/ V6P S (0 + ra(2) (39)
By(x)

For any bounded domain B C R?, we consider the covering of B with squares of
size € and define P.(B) as the set of centers of those squares, i.e.

P.(B) :={x € 2% 0, N B # §}.

We prove the following estimate for the two-scale expansion error with the boundary
layer in H'(Bg).

Proposition 6 (H!- convergence of the two-scale expansion with the boundary cor-
rector). Let u. € HY(BR) be the a.s. solution of (12) and ug € H'(Bg) such that
ug|,, € W2°(D) be the solution of (13). Let uy . be the corrector defined by (17) and
ve be the boundary corrector solution of (33).

Then a.s.

1
e = w0 — £u1.c = vell sy S a2 oy ) (40)

where pg is defined in Proposition 5 and x. is the random variable defined as:

2

xei= [t Y e (41)

z€P. (D)
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with C also defined in Proposition 5. In particular, x. satisfies the stochastic
integrability (38) and it holds

N

B [llue o — cure = 0ol ] S a2 ol - (42)
Remark 4. This result is an equivalent of the result obtained in [14, Chapter 6], both
for Dirichlet and Neumann boundary conditions on dD. The proof of Proposition 6
follows similar steps as the proofs in [14], that dealt with the case ug|, € W2°(D).
In Appendix C, Proposition 19, we extend the result of the proposition to the case
where ug|,, € W't*?(D) for o € (0,1] and p € (2, 00]. It will be needed in the proof of
Proposition 8. However, for the sake of simplicity, we choose to display here the proof
in the more regular setting as it relies on the same ideas but requires less technicity.
Note that ug),, is indeed in W2°°(D). By Proposition 15, since D has a C*- boundary,
and u'™® € C*(BR), ug|,, is in H*(D). By [40, Corollary 9.15], one has the embedding
H*(D) = W*2(D) — C?(D).

Proof. By (35), one only needs to show that a.s.
1
el g2y + 1Gell L2 py © Wd(g)Xa l[uollyy2.(p -
The definition of F; by (25) and G¢ by (26) implies that a.s.

1Fell z2(py + 1Gellp2py S € (||¢EHL2(D) 0%l 2(py + ||6E||L2(D)) [[uollyy2.(py -
(43)

It then suffices to bound a.s. the norm of each corrector on the right hand side by
ta(%) (up to a constant) to obtain the desired estimate.

We prove the bound for [|¢|,2p). The two other estimates for |5 ;) and
[0°I| L2(p) are established in a similar manner.

We pave D with squares of size €, change of variable and use the a.s. corrector bounds

17



(36) to obtain

2 2
161720y S D 16°M172o0.)

z€P. (D)

= > [ eor

zEP-(D)

< Z ‘7‘[:’2 |o|? (44)

z€P.(D)

Sm? (e Y e

ZGPE(D)
< 1 2.2
S pa( )X
€
By [14, Lemma A4], x. satisfies (38) which concludes our proof. O

The boundary corrector ve, defined by (33) solves an a.s. comparable problem as
the one verified by u. in D, with an oscillatory boundary data on dD. The result-
ing complexity drives us to derive convergence rates of the two-scale expansion error
without v.. We start with the estimate in the H'-norm.

Proposition 7 (H!- convergence rate of the two-scale expansion). Let u. € H*(BR)
be the solution of (12), ug € H'(BR) such that ug|, € W>>(D) be the solution of
(13) and uy . be defined by (17).

Then, it holds a.s.

PR B P
e — UOHHl(BR\B) + flue —uo — Eul,sHHl(D) S 52#(1(2)2)(5 ||UOHW2,<><>(D) , (45)

where X. is a random variable that satisfies the stochastic integrability (38). In
particular

< 2 ua(0)? ol )
(46)
In the rest of the article Y. denotes a random variable satisfying the stochastic
integrability (38). Its expression in the specific estimate (45) is made explicit in the
proof.

1 1
2 2 2 2
E It = wll3nzap)| +E [lue = uo = curelin p)

[©)

Proof. Thanks to Proposition 6, we only need to estimate the norm of v. in
HY(Br \ D) x HYD), and the conclusion follows by the triangle inequality.

We lift the trace jump of v, across 9D by considering v, := v. — en.u; . where 7, is a
smooth cutoff satisfying for all x € Bpr

0< 775($> <1, 7e=0in D2gﬂd(%)7 ne = lin BR\ epa(L) |V775(33)| S

epa(t)’

18



where D, = {z € Bg|dist(x,0D) > r} for r > 0.
By Proposition 14, since n.u; . € H(D), 9. is a.s. the unique solution in H'(Bg) to

— A, — k*ngd. =0 inBr \ D,
—V-a.Vo, — k*n.t. =€V - a:V(neu1 ) + eanE(naul,g) inD,
Viz v —aVol v=a.-V(nuie) v
d (47)
+ EZ (V- (050m0)t) v — Ee(Bfug)t - v ondD,
i=1
Ve - v = A(0,) ondBg.

On the boundary it holds that

d d
> V(05 0iu0)T) v =k e(Buo) T v =D V(05 0iuone) ) v — ke (Buone) T v. (48)

i=1 i=1
Furthermore, for all i € [1,d],

d
V- (V:(070;uone)) = Z Ojm (07 jmivone:)) = 0.

jm=1

Thus, . verifies for all w € H'(Bg)

S e 12 -
/BRaEVv5 Vw — k*n.0.w (A(vg),w)H,%(aBR)’H%(aBR)

d
= / —2a.V(neuy c) - VW + ek*ne (neuy )0 — € Z V - (050;uone) - Vw (49)
D

i=1
— k?eV - (B%uon.)w + k*euon. - V1w,

where w denotes the conjugate of w and (-, -) denotes the duality

H™2(8BR),H? (9Br)
product H’%((?BR),H%(@BR). By the coercivity of the sesquilinear form, we then
obtain

d

>V (ofduon.)

i=1

10l g By S € 1Mevaellgapy +€

L2(D)
+ eIV - (B%uone)ll 2 py + € [1B8%uonell 2 p) -
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Let S, := supp(n.) denote the support of 7.. By definition of ¥, it holds

lvell g1 B3y + 10l 71 ()
d
ZV ) (Ufaiuone)

=1

Se ||77£u17€||H1(D) te

L2(D)
£ £ 1 £
< (19 a5, + WMo,y + 5 s,

+ellVoillpas, ) Hello®llas

ne)

€

+—rr llo°l
||,z
pa(L) L2(Sne)

1
+e ||VBEHL2(5,,,E) +e ||B€HL2(S%) + m ”ﬂEHL?(S%)) HUOHW?&O(D) :
g

(51)

We prove the bounds on the corrector ¢, the two other estimates are established in a
similar manner. Let x! and x2 be the random variables defined by

2

. d
L= Y e,

1
Eﬂd(g) ZEPE(SHE)

Nl=

d

Co= | Y ()™

1
eha(2) 2€P.(S,.)

These two random variables satisfy the stochastic integrability (38) since the prefactor

cd N 1 . . . .
(D)~ TS is the appropriate renormalization.
By following the proof of Proposition 6, it holds a.s.

sz 1 s~
5||¢6||L2(S%) szﬂd(g)z){é- (53)
It remains to estimate ¢ ||V ¢° ||L2($n )- Using the mean value property of Proposition 5,
we get a.s.

1 1.1
elIVellas,,) S €2 ma(2)? X2 (54)
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By combining (53) and (54), we obtain

1

elVellpes, ) +ellollags, ) + —a5 19712, )
€ c pa(z) :
1 11~ 3 s~ 1 11~ (55)
Serua(2)2xE +etpa(2)?xe +e2na(2)2xe
1 —
S et pa(2)x,
€
where we define XN§ as
—~ —~ 1 —~
X2 = X2+ (epa(D) + X2 (56)

As g and ;c\g satisfy the stochastic integrability (38) , E also satisfies (38).
This gives us the following estimate for v. in H*(Bg \ D) x H*(D),

—_

1 1~
”vE”Hl(BR\B) + HUEHHl(D) S 52Nd(g)2xg HUOHWzoo(D) : (57)

Therefore, we conclude by the triangle inequality

llue — uO”Hl(BR\E) + Jlue —uo — Eul,sHHI(D)

S llue —uo —eug e — USHHI(BR) + ||U5||H1(D) + ”UEHHl(BR\B)

1 1.1/ 1 1
Serpal2) (62ud(

e
Dixe 2 ) ol o)

SR R
S EQNd(g)QXE ”uO”W?vOO(D) )

(58)

where the random variable ¥, defined as
T = e pa(2) e + 2 + (emal2) + DXL, (59)
satisfies the stochastic integrability (38). O

We expect the homogenization error u. — ug to be of order O(g) in L?(Bg) as
ug verifies the proper transmission conditions on dD. This is the subject of the next
proposition.

Proposition 8 (L2 rate of convergence of the homogenization error). Let
u. € H'(BR) be the a.s. solution of (12) and uy € H'(Bg) such that ug|, € W2>(D)
be the solution of (13).

Then, it holds a.s.

1.~
lue = woll L2y S epa(2)Xe luollwzo= oy » (60)
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where Xz is a random variable satisfying the stochastic integrability (38). In particular

-

3 1

2 2

E [[lus = wollzain] S ca2) ol <o - (61)
Remark 5. A similar result has been shown in the periodic case in [38]. Though, we
cannot adapt the proof, since it uses the L>°-bound of the corrector, that does not
hold in the stochastic setting. In [14, Theorem 6.14], the result is shown for Poisson

equation in the Dirichlet case. Our proof is an adaptation of the latter result.

Proof. To prove (60), we use Proposition 6 and the bounds on the correctors, which
imply that a.s.

llue — u0||L2(BR) S llue —uo —eur e — UEHLz(BR) tellue |L2(D) + ||v€||L2(BR)

1
S ea(2)Xe [ollz. oy + €16 L2 (p) w0 llwe.oe () + 10l 2 (5

1
S €Md(g)xe ||u0||W2=°°(D) + ||UE||L2(BR) :
(62)

It remains to estimate the L?-norm of the boundary corrector, which we do by using

a duality argument as in [38].
Let h € L?(Bg). We wish to estimate

/ ot
Br

To do so, we introduce the auxiliary function W, € H*(Bg) solution of

(63)
VW, -v=AW,) ondBg.

{ —V-a*VW. — k*n.W. =h in Bg,
Here a? denote the transpose of a.. o
We write the variational formulation verified by W, in H!(Bg) and choose ©. as a
test function. Recall that ¥, := v, — en.uy ¢ is the unique solution in H'(Bg) to (47).
We obtain

~ 7 * . ~ 1.2 ~ ~
/BRth_/BR aiVWe - Vi, — k*n.W.o, <A(”E>7W6>H—%(aBR>,H%(aBR)' (64)
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We choose in the variational formulation of @ (49), W as a test function and subtract
the two expressions to obtain

d
/ D.h = / —ea:V(neure) - VWe + 6k2n5(n5u175)W5 —€ <Z V- (Uf@iuon5)> - VW,
Br D

=1
— K%V - (Bugne )We + E*eugn. - VW..
(65)

We use the estimate (55) and get

/ Ueﬁ / neul,sﬁ
Br D

1~ 1 1~
g)%l; 12l g2y + Ezud(g)QXE’ Well grrs.y lluollyy2.00 ) -

1

1 15
+e20a(2)? X Well g s,y lwollwz.o )

Se E

(66)

S e?pa(

It remains to show that

—_

1 1
IWellins,.) < €2 a3 1Al s,

™

for a random variable E satisfying the correct stochastic integrability. Following [3§],
we apply homogenization results to W to obtain the desired estimate.
We thus introduce Wy € H%(Bg \ D) x H?(D) solution of

— AWy — E*ngWy = h inBr\ D,

— V- d""VWy — kW =h inD, ©7)
VW, v —a"™" VW v =0 ondD,

VWy v =AW,) ondBg.

The regularity of Wy comes from Proposition 15. Moreover the following estimate
holds

HWOHHZ(D) S ||hHL2(BR)' (68)
However, we have no guarantee that Wy, is in W°°(D), since h is only in L?(Bg).
Therefore we cannot apply the result of Proposition 7. Note that even if we could, this
would yield a control with the W?%°°(D) norm of Wy, that we cannot directly link to
2l 12y Instead, Proposition 18 gives a W 2:2+5(D)-control, for s > 0, of the two-
scale expansion error.
By the fractional Sobolev embedding (cf. [41, Theorem 7.58]), there exists an exponent
s(d) > 0 such that we have the embedding:

W22(D) < W225(D).
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In particular, this yields
Wolly, 3205 ) S IWollrz(py S 17l L2 - (69)
For a = 1, p =2+ s> 2, Proposition 18 implies then

HWsHHl(snE) S We = Wo - EWLEHHI(S%) + [[Wo + EWLEHHI(S%)

1 101
S 52Ud(g)2X6,p ”WOHW%J’(D) +[[Wo + 5W1,6||H1(5"6) )

where
d

Wie =Y ¢{0,;Wo *&,
=1

and Y, verifies (38). The mollifier & is defined by (C17) and W is the Sobolev
extension in H'(RY) of Wo,, (cf Lemma 17).

Using Lemma 22, with f = VW, 7 = spta(L), p=2+s,a = 1, =2, =1 = L, we
obtain .
1 1
IV Wollags,) S e2ma(2)F Wolly 5., ()
It also holds by the combination of (C39) and (C43) that
el
€ ||VW1,E||L2(3,]E) ~ Ezﬂd(g)ZXE,p ”WO”W%”’(D) ‘ (72)

with

5 11 1y 1

e = X2p+ €% P Ha(2)" 7 Xp
and )g;, )ngp are defined in (C40) and satisfy (38). With the same arguments, similar
estimates can be derived for [Woll>(s, ) and € [[Wicll (s, - This yields that

[t

1 L
Wl s,y S a2 M) (73)
where )?‘;*Tp =14+ Xcp+ )a; satisfies (38).
We combine (66) and (73) to obtain
< ena(3) (e (D3NT 4 w3t
02l 2y  2pa(D) (bmal) I+, ) Tollwaepy - (74)
Therefore, by (62) we get
1.
[[ue — u0||L2(BR) S Eud(g)Xe ||u0||W2=°°(D) ) (75)
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where Y, defined by

_ 1 11~ —~

Xe = Xe +e21a(2) X+ XEX 245
satisfies the desired stochastic integrability thanks to the following version of Holder’s
inequality [16].

Lemma 9 (Holder’s inequality). For all random variables Y1,Ya, given k1, ke > 0,

if Elexp(Y{™)] < 2 and Elexp(Y5™2)] < 2,

. 1 152 (76)
then there exists C > 0, such that E|exp 6(Y1Y2) mitr2 | | < o0.
O

4 Asymptotic expansion of the scattered field
4.1 Main result

The convergence estimates that we established in the previous section provide an
asymptotic expansion of the field at order €. Outside D, u. is approximated at first-
order by ug according to Proposition 7. Physically, ug corresponds to the wave that
interacts with the effective medium of parameters a°™ and n"°™. It depends on the
distribution of the scatterers as a"®™ does but it is deterministic and thus is not
characteristic of one realization in a given medium. In the context of ultrasounds the
measurements are usually done using the same sensor array that transmits the plane
wave excitation (ultrasonic transducers can be used as transmitters and as receivers).
So ug contains only the contribution from the boundary 0D while we would like to
characterize the speckle field generated by the small heterogeneities. We are then
interested in this section in obtaining the next order term in the expansion of the field
outside of D.

We introduce Gy the Green function associated to the homogenized problem (13) i.e.
Gy verifies in D'(Bg) for all y € Bg,

— AGo(y) — k*noGo(-,y) = 8(- — y) inBr\ D,

— V- (a""VGo(,y)) — k*n""Go(,y) =6(- —y) inD,

Go(y)” = Go(-,y)™ ondD, (77)
VGo(y)™ v —a""VGo(,y)t - v=0 ondD,

VG - v =A(Gy) on 0Bg.
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For all a > 0, we define D® := {z € Bg|dist(z,D) < a}. For z € Bg \ D%, u, verifies
the following Lippman-Schwinger equation

ue(2) = ug(z) + /D(ahom —as(2))Vue(x) - VGo(z, z)dz
(78)
— k2/ (nhe™ —n_(x))ue (2)Go(z, 2)dx.
D

We make use of the asymptotic expansion of u. in H'(D) and obtain for all
z € By \ D«

d
ue(2) = ug(z am™ — a (x)(e; S (z) ) Ojup(z) - x, z)dx
() = o >+/DZ( (@) + £V65(2) ) Ortal) - VGl ) »

— k2 /D(nhom —ne(x))ug(x)Go(z, 2)dx + R°(2),

d
R (2) := /D(ahom —ae(x) (Vus(x) - Z(ei + 5V¢f(m))8iuo(x)> -VGo(z, z)dz

i=1

—k? /D(nh"m —ne(x))(ue(z) — up(z))Go(x, z)dx.
(80)

Using the strong convergence estimates established in Proposition 7 and Proposition 8

leads to 1
1 1
B[R () L2sppm)] S €ma(2)*,
which is not sufficient since u. — ug is of order ¢ in L?(Bgr \ D). We thus need

to estimate more sharply the weak convergence of the two quantities (a°™ —
ac(x)) (Vug - Z?Zl(ei + Equf)aiuo) and (n"°™ — n.)(ue — up).
In [17] and [16], the authors study the fluctuations of Vu, in the context of the Poisson

equation in R?. They prove that the fluctuations of Vu. and a.Vu,. can be recovered

from the fluctuations of the commutator = € L? (R%)? defined by:

Vi € [1,d], Zi == (a — a"™)(e; + V). (81)
This leads to estimate

d
REi=c% /Rd (ae — "™ Vu. - g - ZEi(g)ain g (82)
i=1
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for all g € C°(R%)?. They show that, for all g € C2°(R%)?

VarlReE S epua(2). (53)
We extend this result to our situation where the Poisson equation is replaced by the
Helmholtz equation leading to a second term in R°® and where we have to take into
account the boundary of D as the support of Gy is not compactly supported in D.
We deal with this last point in a similar manner as in Section 3 by introducing the
appropriate boundary layer. However the rate of convergence is now 1/2 order smaller.
Our main result is stated in the following theorem.
Theorem 10 (Pointwise convergence of R¥). Let u. € H'(Bg) be the a.s. solution
of (12), ug € H'(Bg) such that ug),, € W*(D) be the solution of (13) and fory €
Br\ D2, let Go(+,y) € HY(Br \ {y}) such that Go(-,y),, € W2>°(D) be the solution
of (77). Define Uy € H'(Br \ {y}) as:

d
Uy = Elue — uo] + Z/ ("™ = ac(x))(ei + £V E (2))Diuo(w) - VGo(, )dz
i=1"P (84)

—k? /D(nh"m — ne(x))ug(x)Go(z, -)de.

Then

N

E [Ju-(v) — uoly) ~ U (»)] (85)

—_

dt1 1
Se 7 pa(2)? ||u0||W2=°C(D) HGU('yy)HWMO(D)a

()

and if we further assume that x — G(x,y) is in W>°(D) for y € Bg \ D®, then

N

E [|Vu8(y) — Vuo(y) — Vi (y)IQ] (86)

—_

dt1 1
Se 7 pa(o)? ||u0||W2»°O(D) HGO('ay)HW&w(D)'

m

Remark 6. Note that for y € Br \ D*, Go(-,y), belongs to W2>(D) in view of
Proposition 15. The regularity Go(-,y);, € W*>(D) can be obtained by assuming
that the boundary of D is C® by the Sobolev embeddings [40, Corollary 9.15].
Corollary 11 (L2- and H'convergence of R¥). For all y € B\ D?,

2 3
E | [lue —uo — ul”L?(BR\ﬁ)}

S

d+1
2

QI

1
Sa€ 2 pa( )ZHUOHW?&O(D) (/B \D|G0(-,y)lliv2,oo(D)dy> )
r\D&

(87)
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and if we further assume that Go(-,y)|,, is in W3°(D) fory € Br\ D%, then

1
2 2
E [Hue — Uo — 2/llHHl(BR\W)

1
2
d+1 1

1
Sa€ 7 pa(=)? Hu0||W2v°°(D) (/B \D7||GO('ay)||%/V3v°°(D) dy)
R\Da
(88)

™

Moreover we denote by a* the transpose of a and ¢*, o* the adjoint correctors that
solves respectively (15) and (19) with a* instead of a. Finally, we write ¢=* := ¢*(2)
and 0" := 0*(2).

Note that, from (79), for all y € B \ D2,
ue(y) = uoly) — t(y) =

d
[ (@~ ac(@) (Vli) = 3 (es + Vo5 @)1 (0)) - Voo, p)da

—ﬁ/mmmwmmwmwwwmaumw—m%—m
D

= R(y) — E[R*(y)]. )
89

We follow the strategy of [16], to show that

1
V| Re(0)| £ £ 2) Tl e Gl 1) e (90

which will yield the desired result by integrating over y.
In [16], three main tools are used to show (83):
® the multiscale functional inequality Hypothesis 1 that also holds here.
¢ the bounds on the corrector (Proposition 5) and the convergence of the two-scale
expansion (without the boundary corrector) that we showed in Proposition 7
e the large-scale (weighted) Calderén-Zygmund estimates stated in [26].
In our configuration, we can use the two first tools. However the large-scale Calderén-
Zygmund estimates were developed for the Poisson equation, not for the Helmholtz
equation. Instead of deriving similar estimates for Helmholtz equation, we take
advantage of the boundness of the our domain D to establish the following Lemma 12.
Lemma 12. (a) There exists a constant C depending only on d such that, for any
UeLY(D) and t >0,

/Rd (/Bmm |U|> o= Ctd/D U1 (91)
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(b) For T >0, let pr(z) be the radial weight:
x
pr(z) = T + 1.

Then, for U € LY(D) and o > 0,

2 e} 2
/ pr(z)® / U] dxﬁCsup(tHJJrl) # (/ |U) . (92)
R Bi(z)ND yep\ T D

The proof can be found in Appendix D.

The first step of the proof of Theorem 10 consists in applying the mixing condition
Hypothesis 1 to R°(z) for z € Br \ D®. To simplify notations, we introduce

PS) = [ @~ 0. (vw) et m(fj))aiuo(m)) Vg(x)da -

e /D (1™ — (1)) (ue() — up())g()de

where a. := ay; + (as — apr)lse, ne :=ny + (ng —nar)lse and g € W3°(D).
By definition, we have then P(S) = R°(z) if g(-) = Go(-,2), and P(S) = 0;R°(z) if
9(:) = 0;Go(-, 2), if 3;Go(, 2)|,, € W*>(D) where the derivative applies to the second
variable.
We introduce some additional notations before considering 9°°¢P(S). Let £ > 1 and
x € R Let S be a given realization of the scatterer process. We consider another
distribution of scatterers S’ satisfying the assumptions of Section 2.1 and such that
SN (RN Be(x)) = 8" N (RY\ By(x)). We name Ay(x) := {5 |S N (R?\ By(z)) =
S'N(R?\ Be(z))}-
For any S-dependent measurable random variable F', we denote by F’ and §F the
random variables:
F=F(5),
SF :=F(S")— F(S):=F —F.

By definition,

085, P < _sup |97 (94)

5eA(x)

Here, the notation ¢’ stands for ¢'(2).
The proof is split into two. We start by deriving a representation formula for 6P. We
then bound each term of the representation formula to get our estimate.
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4.2 Representation formula for 6P
Lemma 13 (Representation formula for §P). For g € W3*(D),
d

d
0P = — Z/ @g(quﬁj’* +e;) - da.(Vu. — Z(ei + €V¢f’/)8iuo)
=170

i=1

d
+ Z/ —(e¢3"V0;g + Vry) - 6a-Vul + k*6n.ul(r; + €957 0;9)
j=1"P

d
+ Z /Rd (€¢§7*V8jgaz‘U0]].D —eV- (nad)j’*ajgaiUQ)]lD + VR”) . (SaE(EV(Z)?/ + ei)

4,5=1

+ / k*6n.(u. — ug)g — ek*B°0u. - Vg
D

where for j € [1,d], r; == —&ﬁjggb?*]lp + 7; and T; is the a.s. unique solution in
Hl(BR) Of.‘
— AFj — k*ngrj =0 inBr\ D,
— V- (aiVF#;) — k*neij = —eV - ((az¢;™ — 07" )V;g)
+ek?V - (8%9) inD,
Viy v — a:Vf;f v =—eal¢; " Vig-v+e(V-0;7)dig" v ondD,
V7 v = A7) onOBg,

and fori,j € [1,d], Rij is the a.s. unique solution in H(RY) := {v € HL (RY) | Vo €

L2(RD)}/R of
-V a(é)*VRij =0 inR%\ D,
-V CLZVRZ']' =—eV- (anﬁj’* — U;’*)V(ajgaﬂm)
+ V- aZV(1:¢579;90iu0) inD,
alVR; v~ a:VR;"j v =—¢e(algy” — 07" )V(9590iu0) - v
+¢eV - (0570;90iu0) - v

+ealV (95 9590iu0) -v  ondD.

Remark 7. Note that by the divergence theorem [42, theorem 3.24], since V-(V-0,) =0

for all j € [1,d], we have that the normal trace (V - o;) - v € H/2(9D).
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Proof of the Lemma. By direct computation,
d
P = —/ da, (Vu’g - Z(ei + 5V¢f”)8,-uo> -Vg
D

i=1

d
+/ (ahom - ae)(S (vus - Z(ei + 5V¢§)8iu0> Vg
D

i=1

+ / E2on.(ul — ug) — E*(n"°™ — n.)dueg
D
First notice that for j € [1,d], (a"°™ — a.)e; can be rewritten as:
("™ —ac)'ej = ea VT —eV 05
Moreover d¢; verifies in R?
—V -aVép; =V -5a(V, + e;)

and du,. is a.s. the unique solution in H'(Bg) of:

— Abu, — k*ngdu. =0 in R4 \ D,
— V- (a:Vou.) — k*n.du. = V - (6a.Vul) + k*dn.ul.  inD,
Véu_ -v—a.Voul v = (?czEVu'E+ v ondD,
Véue - v = A(du,) on dBg.

We thus get for i,5 € [1,d]

V¢;’* cae(Voue — Vigs)
=V (677 a:(Vou:. — Vig;)) — 677V - (a=(Viu. — Vig5))
=V- (qﬁ;’*aE(V(SuE —Végs))
+ 67" (V- (dacVuy) + k*6noul + k*n.du.)
—¢7"V - (8a- (Vo +ei))
=V (¢ a-(Vou. — Vi¢5))
+ V- (957 0a-Vuy) = Vé™ - da-Vu, + k25n5u’€¢§’* + kgngéugqﬁ;’*
=V (67700 (Vo; + i) + Vo™ - 0a- (Ve + ei).

By skew-symmetry, it also holds for i,j € [1,d]

(V- 057") - V(bue — V¢3) = =V - (057 (Voue — V5g5)) .
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Similarly n*™ —n, = —eV - §¢ and thus,
(nhom —ng)ou, = —eV - (8%0u:) +e8° - Viu,.

Therefore we obtain

d d
0P = Z —/ (6V¢§’* +e;)0j9 - da.(Vu. — Z(quf" + €;)05up)
=1 ’P

=1

- 5/ ¢5"Vjg - da-Vu, + 5/ ¢57 959 - 6aVu, - v
D oD
+€/ k25n5u;¢§’*8jg+k2/ 5n5(ué_—uo)g
D D
d
£ [ 657V Oh00) G0V + )
i=1 /D
- ?’*8' 67, 1) & \Y ?’I i)
5/8[)(25] i 90iupdas (Vo;" +e;) - v (101)
+ 62/ V(9;90;u0) - (qﬁj’*as + J?’*)V(gqbf
D
- 62/ 9;90iuo(¢; " az + 05" )VI¢S - v
oD
_5/ Vo,g - (agq,)?* +U§,*)V§u5+5/ 8jg(a€¢?* +0’§7*)V6U6-V
D oD
+5/ k2ns5us¢>§’*8jg—s/ k2B - Véu.g
D D

— E/ k*B6u. - Vg + 5/ k%gB%0u, - v.
D aD

We simplify the terms depending on du. by introducing the adjoint problem (96). By
Proposition 14, since ¢7", 05, B° € H} _(R?) and g € H?(D), there exists a unique
solution 7; to (96).

For h € H'(BR), 7; verifies:

N.. 7_ 2 N-i_ . 1 1 * N.. 7_ 2 ~.7
/BR\DWJ Vh — k*nofjh <A(r]),h>H,§(BBR)’H§(aBR)+/Da€vr] Vh — k*n.ijh
- / (a2¢5" — 05")Vdsg - VI — k59 - Vh
D

+ 5/ U?’*angE v+ k2B%g - vh.
oD
(102)
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Note that we used the skew-symmetry of o; to get the integration by parts

(057", V(9;9h))

’ =—((V-07)-v,0,9h)

[N

1
2

=

1
PR

Moreover du. verifies for h € H'(Bg)

Véu. - Vh — k*>ngduh — (A(Suz), h) 1 1
/BR\D 0 (A(due) >H 2 (0BRr),HZ (9BR)
+ / a:Vou. - Vh — k*n.du.h = / —6a:-Vu. - Vh + k*Sn.ulh,
D D
and
—/ aSV(SuE-V(qu’*ajg)—&-/ k2n56u5¢§’*8jg
D D
= —/ az¢5"0;gVou. - v —|—/ da-VuL - V(65" 059)
oD D
—/ k*n.ulg5 0,9 —/ dacVug - ve;"0;g.
D oD

Therefore du. satisfies

L2 _ I
/BR\DVME Vg~ Koo <A(5u5)’TJ>H*%(aBR),H%(aBR)
+/ a:Véue - Vrj — k*n.ducr; = / —da:Vul - Vrj + k*Sn.ulr;
D D
- / a-$5"0;gVoue - v — da-Vug - ve; " d;g.
oD

oD

We combine (102) for h = du. and (106) to get
—/ SacVul - Vr; + k*oneulr; = 5/ ¢57 99" daVuL - v
D oD
_ g/D Vg - (aqus?* + gj,*)véug + s/aD 8j9(aeV¢§’* + gj,,*)vus ‘v

+e/ k“‘augqu’*ajg—e/ kQﬂf-v5u€g+e/ k%gpB%6u, - v.
D D oD
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We deal now with the terms depending on d¢;. R;; satisfies for all h € H(Rd),

/ a(=)*VRy; - Vh
Rd 13

= 5/ (az¢7" — 05" )V(95905u0) - Vh — (V - (n-0570;90iu0)) - Vh
D

- E/ arV(n-¢5"9;99u0) - Vh
D
(108)
where we used that V - (V - (1.05"9;99;ug)) = 0 by the skew-symmetry of o;. Sub-
sequently the sesquilinear and linear form associated to (97) are respectively coercive

and continuous in H(R?) equipped with the semi-norm [z may = IVl L2 (gay (cf [32,
Chapter 2.5] for more details). Moreover,

—/ ¢§’*8jg8iu06as(v¢f" + ei) SV — / ajgaiuo¢j’*a5V6qbf -V
oD oD

= - / 6 (Vo5 + €5) - V(005 0;90:u0) — V665 - a2V (1:50;90;u0)
D
(109)

and by the skew-symmetry of o},

/ (V- (1:0570;90;u0)) - Vog; = / (V- (0570;905u0)) - vOg;

D oD

(110)

= —/ 8jg8iuoa§’*V5¢f -V
oD

We combine (108) for h = e¢$ (which is a suitable test function), (109) and (110) to
get the desired result.

O
4.3 Proof of Theorem 10
Proof of Theorem 10. Let
d d 2
[bl ;:/ =% sup Z/ 0;9(eV 5 +e;)-0a-(Vul—Y (ei+eVe;")duo)| da.
Ri  S'eAc(n)| =] /DNB(a) Pt
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By Cauchy-Schwarz inequality we obtain

ines [ e (}j[%B wﬂer*+q>)
sup </ IV, fi(eﬁsw( ))8iu0|2)dx

e = (111)
/ <Z/ 10;9( 5V¢E7 +€5)| )
DQBE[(JC)
4 2
sup ( uL —up — qubf’/aiuo )dx.
S'eAy(z) P (D)

Using Proposition 7, we have moreover

d 2

/ e,/
U, — U — E Ed)i 81',’&0

=1

1 2
Sena(=) sup (x0)? uolliyz.e p) -
€ S'eA(x)

sup
S'eAg(x)

H(D)

As mentioned in [16, Remark 2.1], by following the proof of [39, Theorem 4], one has
that

C'(2) SC(2). (112)
where C is defined in Proposition 5. It particular, this implies that supg e, () (xL)?
can be bounded by 2, which is a random variable independent of S’ that satisfies
the integrability (38). Combining this with Lemma 12 applied to [9;9(eV¢5) + e;]?
with ¢ = e/ and the bounds on the gradient of the corrector yields

nmswe%ZL%e@ww+w)@Gwym%mm@)

1
< (Z J, 055 ) (10 i)

1.—~2

9 2
< e aOxE () ol (o 191y -

(113)
with X4 defined as:

= el 3 (1)

zEP- (D)

~2
In view of Lemma 9, x* (x.)? satisfies the expected stochastic integrability.
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Let
2

d
/D —(e¢5"V0;g + Vry) - 6a:-Vul + k*6n.ul(r; + 957 0;9)| da.

2 _
= [ o0 sw |3
R4 S’eAy(x) j=1

Similarly to the analysis done with v, in the proof of Proposition 7, one has that r;
satisfies a similar decay rate:

1 1.1~
il oy < 2l ERE Nl oy (114)

)

for some random variable ;é satisfying (38).
To get rid of the dependency with respect to S’, note that du. also satisfies

— Adu. — kE?6u. =0 in B \ D,
~ V- (alVéu.) — k*6u. = =V - (0a.Vu.) — k*6n.u.  in D, (115)
Véu. -v—a.Voul -v=—d6a.Vul v ondD,
Véu. - v = A(du,) on 0Bg.
In particular, by Proposition 14
H5u5||H1(D) S ||u€||H1(BEz(w)ﬂD)' (116)
This gives
/
sup ||u N < sup ||du + ||u -
STeAs(2) | EHHl(BsZ( )ND) S7e Ay (x) I E”Hl(D) I EHHl(Baz( )nD) (117)

S ”uEHHl(Bd(x)mD) :

We can finally compute ||IT H? using the Lemma 12 on u. and the bounds on the
correctors which yields

d
M < (Z [ 1951+ 220657V oig + I+ 52|¢;7*ajg|2)
j=1"P

- 2 118
></ t d( sup ||u/s|H1(Bsg(z)ﬂD)>dx (118)
R S'€Ay()

1,~2 2 2
< g (O ol ey 191 )
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for a random variable ;{é satisfying the desired integrability.
Let

= [ e sup
Rd S'eAy(x)

d 2
> / (2657 V;90iug — £V - (¢S 9;90iuo) + VRij) - 6ac(eVe;' + €;)| da.
D

,j=1

(119)

To estimate HIH||§, we follow the steps of the proof of [16, Proposition 2.6]. By a
change of variable y — ¥ in the integral in D and by [16, Lemma 2.9], we obtain

d
\11T|)? < 2 / f
¢ R4 Z B

i,j=1" Bro( (@

e [W?*Vajgaiuo]lDIQ@)
)

+ 2V - (105" ;900 Lp 2(e) + [V Ry ()] oS /B o, [Vé+eifide.
(T 20474 (2) (T

(120)

Moreover from [26, Proof of Theorem 4], we obtain for 7 € [1,d],

sup/ V@, + ei]?dx < / Vi + ei]® < 2% 4 r.(2))%da.
s’ BQ@+T* (x) (:E) BZZ+7'* (x) (:E)

Thus, since for all z € RY, (£ + r.(x))? < 04, (z)4, we have

d
IIT|)? < 2dypd / .
[TT| S 4ty T (z)x

4,j=1

(]é ( )52|¢§’*V8j951U01D|2(5') +e?V- (We¢§’*8jgaiU0]1D|2(€') + |VRij|2(5')> dz.
e () (@

(121)

We recall the following estimate [16, (3.8)] in the form: If v is the solution in H(R?)
of =V -aVv =V - h, with h € L?(D), then for all « such that d < o < 3d and for all
) (122)

T>1
L@ (f e
Rd BT*(I)(I)
3 2\ 2
sar*w)%‘(/ ride“) (/ pT(/ hF)) ,
R4 R4 B(z)
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with pr defined in Lemma 12. Note that R;; verifies:
—V - (aVR;j(e-)
= —eV- ((( e j’*)V(GJg&uo)

— (V- (neaj’*ajgﬁiuo)) — a:V(neqﬁj’*&jg@iuo)) ]lD> (s))
= —V(-Hijlp(e)).

(123)

Thus we can apply (122) to R;; which yields for any o such that d < o < 3d and T' > 1

S [ f R
R B, (2) ()

i,j=1
d % 9 %
S ([ ) ([ [ imsre) )
=1 R4 R4 B(x)
(124)
By denoting:
[(Fij1p)(e)? := %|¢5" VD900l p|* (e) + 2|V - (165 0;90:u01p|*(e-),
we also have
3 [r@f  IR1oPe)
i,j=1 R4 By, (2)(2)
2 = 2d 2 2 %\
S @t ([ ) ([on([1mstore) )
Py Rd R4 B(z)
(125)
Similarly to the analysis done in the proof of Proposition 7, one has that
11~ 2 2
||FinL2(D) + ||HinL2(D) S 52Nd(g)2Xa lwollyy2.00 (py 191wz () (126)

for a random variable ;Z satisfying the desired integrability.
After changing variables to x +— ez in the inner and outer integral and applying (92)
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from Lemma 12 (with U := F;; + H;;) we obtain

d 1

2
11l 5o =t 0)F 30 ([ o)
R

ij—1
2\ 4
(/ P%(/ |Fij]1D|2+|Hij]1D2>>

R4 B (ex)

1
2
<a d/2€d . (0 S / 2d —a
So et 0% 30 ([ 2o
N? (127)
(/ P?&(/ |Fz'j11D|2+|Hij]1D2>>
R4 B.(z)
1 a
a _ 2 5+y 2
St 32 ([ ) s (0 41)

(/ |Fi;1p|? + |H¢j]lD|2)
D

1 [eq
1. ~2 a —a)? ety 2
<a 5d+1ud(g)xz 0%, (0)2 </d rpn > sup < + 1) )
R

yeD ET

Choosing T' = % yields the desired result. Indeed, the random variables at stake r,
and x7 verify the desired stochastic integrability.
Let

2

2 _
IV, :==¢ d/ sup
R4 S’€ A, (x)

/ k2on.(ul — ug)g — ek*B6u. - Vg
D

Proposition 8 combined with the estimate (112) yields

1.
sup luz — “0||L2(D) S epa(=)Xe HUOHW?@O(D) :
S'eA,(z) €

Therefore, using (116) and Lemma 12 we get

2 — 2
1V, < ¢ d/ sup luz — uol|72(py (/ Igz)
R4 S’€ Ay (x) DNB(x))

2£—d/ / 2 2 e 2
te wt \J DB, (e)) uel® + [Vu|" ) |18 vgHLQ(D) (128)

1.5/ 2 2 2 2 2
S e 20a(2)? (% o lfye.m ) N9 320y + XE N9l ) el i)

d+2

A

1952 2 2
€ Nd(g)QXg Hu0||W2v°°(D) ||g||W2=°C(D) )
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L2 2
with x? =X~ + x2. O
5 Numerical illustrations

In this section, we illustrate numerically the different asymptotic expansion of u,, i.e.
the results of Proposition 8 and Corollary 11. Especially, we recover the predicted
convergence rates.

5.1 Geometry and choice of parameters

We choose D as the two-dimensional square (—Lp /2, Lp/2)?, with Lp = 5. All the
inclusions are disks of equal radius. The centers of the inclusions of size 1 are sampled
according to a Matérn point process [29, Section 6.5.2] in a domain Qp, := (—%, %)d
with L > 1. To compute the correctors and the associated homogenized coefficients,
we will use periodization [43] and thus the Mateérn process is periodized in Qy,. The

different parameters chosen for the simulation are summarized in Table 1. Note in

Parameter Value
Angle of the incident wave u*™¢ | 0 (From left to right)

h 0.07
k 5

(aM,aS) (20,35)

(nm,ns) (1.5,0.5)
€ Between 0.18 and 0.09

Volumic fraction of inclusions ~ 22.6%

Table 1: Parameters of the simulation

particular that Lp is of the order of a few wavelengths.

The solutions are computed with X LiF'E + + [44], an open source FEM, BEM, and
FEM-BEM solver. In order to avoid significant discretization errors and distinguish
them from the homogenization error, the mesh step h is taken sufficiently small, i.e.
much smaller than €. We choose a P1 mesh. All the equations defined in Bgr are
implemented with a classical FEM-BEM coupling to avoid numerically computing
the corresponding Dirichlet-to-Neumann operators on 0Bgr. We choose P2 elements
both for the FEM and the BEM unknown. For a single realization, with the set of
parameters of Table 1, the problems u., ug and U could be simulated in a few minutes
on a personal laptop. All the following simulations were obtained using a server with
bi-processors, AMD EPYC Processor 7452 2.35 GHz with 128 threads, 2 chips, 32
cores/chip, 2 threads/core with RAM of 256 Go.

5.2 Computation of the reference solution

We describe here the procedure to simulate u.. The computation of ug and U; will be

done similarly. We solve simultaneously uX € H'(D), the solution of the equation for
1

ue inside D and the flux p> € H=2 (D),

p = a.Vul v
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Since the outside domain is homogeneous, by knowing only vt and pT, we can compute
u:(y) for y € Br \ D using the Green function G of the free space:

7

4

exp(ik|z — y|)
|z — y|

Y (Kl —y)) if d=2,
G(z,y) = (129)

if d=3,
where Hél) is the first Hankel function of the first kind [45]. u. satisfies for y € Bg\ D

us(y) = u""(y) + - VG(y) - vus — Vug -vG(-y),
i.e.

us(y) =u"(y) + | VG(.y) vul —pfG(.y). (130)
oD

Then u] is the solution in H*(D) of:

-V (a:Vul) - kE*n.uf =0 inD,
(131)

a:Vul v =pt ondD.

The equation for the flux pI on 9D is obtained by taking the normal trace of (130).
Using the classical jump formula for the single layer potential [45, (2.64)], we have

5o =u W)+ [ VG(y) vul —pIG(ny). (132)
oD

By coupling (131) and (132), this yields the following variational formulation:
find (uf,pt) € HY(D) x H~2(D) such that for all (v,q) € H*(D) x H2 (D),

2, h u (y)
/ a:Vul - Vo — k*n""utv — / piv+ —-"¢
D oD 2

- (—u:<x>vg<x,y>~u(m)q(y)+p:<x>g<x,y>q<y>)do<x>da<y> (133)

_ / uincq.
oD

The simulation of ug is done similarly by replacing the coefficient fields a. and n.
with a"™ and nhom.

5.3 Computation of the correctors and effective parameters

As it is customary in stochastic homogenization, we choose to compute ¢ with periodic
boundary condition and a regularization term. We compute the periodized correctors
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quT’L solutions in
H,.,(Qr) = {¢ € Hj,.(R?) | ¢ Qr-periodic}

of
1
701" =V a(Ve] " +e) = 0.

T,L
'“ = 0. If one computes a"°™ as

%

The massive term ensures |, o 10}

—_—

[a’“’m]i}j =E

APPSR CICRCE CCT

—

then one has that limg 7o [ahom]

= [ahom}w-

4,J
Furthermore, from [46, Proposition 2], we know that the corrector ¢? posed in the
entire space R? without periodic condition satisfies for T'>> 1,

Bver —vor <dL , 14T (134)
T ~N7% ifd =3,

Therefore, for T and L sufficiently large, ¢iT’L is a good approximation of ¢; [47].
To compute the numerical approximations of a"*™ and n"*™ that we call a?%™ and
nlom - we use a Monte-Carlo algorithm. For a fixed number N of distinct periodic

realizations we compute

N
1 T.L T.L
ey i= oy X [ et Vol (e + Vo),
m=1"7(=%,3)*
and
1
hom m
Npum NZ/,ALdn7
m=1 (=%,%)
where a*, n* and qSlT’L’k are respectively the coefficients for the k-th realization and

the solution of the periodized corrector equation for the k-th realization.

We choose T = 107, L = 50 and N = 20. For the set of parameters described in
Table 1, we find the following homogenized coeflicients:

Jrom . [ 2:27054991565  0.000164757342405

rum 0.000164757342405  2.27054991565

and
nhom .— 1 .9735108046.

num
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To simulate U, we remark that U is the solution in H'(Bg) of

— AUy — KU, =0 inBp\ D,

-V (a’wmvul) — kE2ntemyy = -V - H, — kQ(nhom —n:)ug inD,

Uy Ut =0 ondD, (135)
VU v —ad"mvUu v = —H. v ondD,

VU, -v=AU) on 0Bg,

with H. defined as
H, = (ahom —ac)(e; + Vi) 0iuo,

so that U; can be simulated just as ug with the correct source term.

5.4 Numerical results

We show here the results of the computations of uc, ug and U; on Figure 2 and Figure 3.
We plot the mesh and the solutions associated with one realization. We also plot and
compare the error terms and the correction U to illustrate both Proposition 7 and
Theorem 10.

The Monte-Carlo process to compute the average error is done with 30 realizations
on Figure 4.
One can see on Figure 4, that the expected error decay of order e ,ud(é)% =
£3|log(¢)|2 in Theorem 10 is obtained. For values of & of order 0.1, the asymptotic
expansion ug + elf; is already a very good approximation of the field wu..
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Appendix A Well-posedness of the scattering
problem and H°*-regularity

We show in this appendix that the scattering problems are well-posed in H!(Bg\ D) x
H'(D) with a control of u. that is independent on & and the randomness. To do so, we
suppose that the bilinear form associated to (12) is coercive. Finally, we prove that wug
can be more regular than H' under regularity assumptions on the boundary of D and
the source terms. The coercivity of the bilinear form is not a restrictive hypothesis. It
can be shown for example under either one of the following sufficient conditions [19]
1. Sk>0
2. kR is small enough (low frequency).
Proposition 14 (Uniform stability under coercivity assumption). Let D C R? be
a non-empty, open, and bounded set having C?- boundary OD such that the exterior
domain R\ D is connected. Let A : D s C¥*4 andn : D — C. We suppose that A(z),
x € D, is a definite positive matriz that satisfies, € - A& > A;|€]? and |AE] < A€
for all ¢ € C* and x € D, and that A}t > n > A, > 0 where AT, A, A, Ay, are
positive constants.
Let f € L2(D), g € H2(8D) and h € H™2(dD). Then, there exists a unique u €
HY(Bgr\ D) x H'(D) solution of the transmission problem

—Au” —E*ngu” =0 inBr \ D,

-V. (AVu+) —k*nut =f inD,

u—ut =g ondD, (A1)
Vu~ -v—AVut -v=nh ondD,

Vu-v=A(u) onOBRg,

which satisfies the uniform control:
1l (r\5) + 1l oy S W2y + 19l 3 oy T 10N -3 o) - (A2)

We also need a regularity result on the homogenized solution ug that we recall here.
Proposition 15 (H*- regularity for the transmission problem). Let s > 2. Let D be
a bounded domain of class C*. If A,n € C*~2(D), f € H*"%(D) g € H*"2(dD) and
h € H=3(8D), then the unique solution w € H' (D) x HY(Bg \ D) of (A1) belongs
to H*(D) x H*(Bgr \ D). Moreover the following estimate holds:

||UHHs(BR\E) + ||UHHs(D) S ||f||HS*2(D) + ||9||H57%(8D) + Hh”H‘S’%(BD)' (A3)
Proof. We rely on elliptic regularity results proved in [48] to establish our result. We

first prove that u belongs to H?(D). Since u € H'(D), its trace on dD belongs to
Hz(dD). Let & € H'(D) be the unique solution of

— V- (AVT) — k*ni =0 inD,
(A4)

uU=u ondD.
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Then u satisfies the hypotheses of [48, Theorem 3.4.1] and therefore @ is in H?(D).
By uniqueness of the solution of (A4), we also have:

u=u inD.

Therefore v € H?(D). Using the same reasoning in Bgr \ D with a Dirichlet-to-
Neumann operator on the boundary of Bg, one concludes that u € H?(Bg \ D).

Similarly we can now apply [48, Theorem 2.3.2 (ii)] to show that u belongs in fact to
H*(D) x H*(Bgr \ D) and get the estimate. O

Appendix B Qualitative homogenization

We detail here the proof of the convergence of u. towards ug strongly in L?(Bg) and
weakly in H'(Bg) by the method of oscillating test functions.
Proposition 16 (Homogenization of the scattering problem in H!(Bg)). Let u. be
the a.s. unique solution in H(Bg) of (12) and ug € H*(BRr) be the solution of (13).
Then we have the following convergence results as € goes to 0

L*(BRr)
U — Uup,

2
V. L7 (Br), Vg, (B5)

L?(Br)
ae Vi, ——2 ghomszy,.

Here, we extend a"*™ by I in Bp \ D.

Proof. Since a.s. u. is uniformly bounded in H'(Bg) independently of €, by Rellich-
Kondrachov theorem, we can extract a subsequence, still denoted wu. such that

1
e BB, (B6)

2
for a certain u € H*(Bg). By Rellich’s theorem we have then u. M w. Similarly

thanks to the uniform ellipticity of a, we have:

||asvu€||L2(BR) <Aq HVUEHH(BR) S HUMCHH1(BR) :

Therefore we can also extract a subsequence of a.Vu. such that

4.V, 287 pr
for some F* € L?(Bg).

We show that v = ug and F* = a"*" V.

By Birkhoff’s ergodic theorem and the strong convergence of u. to u in L?(D), we
have that

2
L*(Br) E[n] hom

Nele u=n""u.

20



Furthermore, the DtN operator is continuous from H?z(8Bg) to H~ 2 (8Bg) and the
trace operator is continuous from H'(Bg) to H2(dBpg). Thus

H™%(8Br)
—_— N

Alue) A(u).

By passing to the limit inside the variational formulation of (12) for u., one finds that,
for all v € H'(Bg),

/ F* - Vo—k2n"mus + / F* . V7 — kK*nouv
D Bgr\D

- <A(u),v>H*%(aBR),H%(aBR) - <A(umc)’U>H’%(83R)7H%(33R) '
(B7)

For i € [1,d], let ¥; € HL _(RY) be the adjoint corrector satisfying
—V-a* (Vi +¢;) =0 in D'(R?), (BS)

with the anchoring condition ﬁ fDo P; = 0.
Moreover, V; is stationary, verifies E[V;] = 0 and admits finite second order
moment. Now for all z € R?, let

a;i(z) := x; + (),

and " "
o (x) := 5041-(5) =x; + Ewi(g).
2
Thanks to the sublinearity of ;, of L—(Bi)% x;. Moreover by Birkhoff’s theorem
2
Va§ L (Br) e;. Thus

1
of H"(Br)

i ) i
Similarly by Birkhoff’s theorem, a*Vas 2"\ E[a*Va,] = E[a*(e; + Vi )].
Moreover, since E[V¢; - a*(e; + Vi;)] = E[VY; - a(e; + V)] = 0 for 4, j € [1,d],

Ele; - a*Va;] = E[(ej + V¢;) - a*(e; + Vi)
= E[a(ej + V(bj) € (B9)

hom hom

:aﬂ =¢€;-a €;j.

For ¢ € C2°(Bpg) consider the variational formulation of the problem solved by u.
with the test function (asf,

0= / a:-Vu. - V(Ca5) — k*n.u.Cas
Br

(B10)
= / a:Vue - (V{)as — (VQ)ue - a*Vas — anEUEZaf.
Br
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Then, by passing to the limit

/ F*- (VQzi—(VQu - (ah"m)*ei — E2nlomyca;
D

+/ P (VQ)w — a"™(V)u - e — k*ngula; = 0.
Bgr\D

Moreover by (B7)

Br Br
:/ k*noulx; +/ E*nomula; — F* . Ce,.
BR\B

D Br

Since (u € H}(Bg), an integration by parts yields
/ a™™(V)u - e; = / —a""Vu - Ce;
Br Br
which yields that for any ¢ € C°(Bg) and for any i € [1,d],
/ Ce;i - (a"°™Vu — F*) = 0.
Br

This implies that a.s. F'* = a"*™Vu in D'(Bg), thus in L?(Bg).
Finally, (B7) can then be rewritten as

H™2(9Bg),H? (9Br)

(A(u'™),v)

/ a"mVu, - VT — E2n oM un — (A(u), v)
Br

(B11)

(B12)

(B13)

(B14)

H™%(0Bgr),H? (9Br) "

(B15)

We get u = ug. Moreover by uniqueness of the limit, we proved convergence of u. and

ae Vu. and not just of a subsequence.

O

Appendix C Homogenization with a less regular

solution

In Section 3 Proposition 7, we proved an error estimate for the two-scale expansion
when ug|, € W?2°°(D). This result still holds for less regular ug as stated in Proposi-

tion 18.

As done in [14], we consider an extension of ug|, that we denote g € W+*P(R?).

g is defined through the Sobolev extension theorem stated below.
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Lemma 17 (Sobolev extension theorem [14, Proposition B.14]). Let D be a
bounded Lipschitz domain, o € (0,00) and p € (1,00). The restriction operator
WP (RY) — WP (D) has a bounded linear right inverse. That is, there exists a linear
operator

Ext: WP(D) — W*P(RY),
such that, for every u € W*P (D),

Ezt(u) =u a.e. in D,

and
HExt(u)HW%P(Rd) S ”uHWaaP(D)'
We derive a convergence rate of u. towards the two-scale expansion when
uo|p S W1+a’p(D).
Proposition 18 (H'- convergence of the two-scale expansion for ug|,, € W'T*?(D)).
For p € (2,00], a € (+,1], suppose that ug € H'(Bg) such that ug|, € W'T*P(D)
then

1
];7

—_

_ 1 1
l[ue= woll g1\ 1y + e — w0 — U1,5||H1(D) S EZNd(g)2Xs,p luollyrvar(py (C16)

where Uy - is defined by

d
~ X —
Ure(z) = 1p(x) Z o ()@uo x&.(x) for x € Bp,
i=1 €
with the standard mollifier £&. defined by

1
CdeXP(—m) for|2] <1,
E(z) =4 € (C17)

0 for |£]>1,

and cq 1s such that

./]Rd ée(z)dz = 1.

Here X, denotes a random variable satisfying the stochastic integrability (38).

In order to prove the previous theorem, we introduce the boundary corrector and
start by proving the result with the boundary corrector.
Proposition 19 (H!- convergence of the two-scale expansion with the boundary cor-
rector for ug, € Witer(D)). Forp € (2,00, a € (0,1], suppose that ug € H*(BR)
such that ug|,, € W'*T*P(D) then

~ . o 1
lue = uo = e = Oell g gy S € Ha(2)Xep [ollwivan(p) (C18)
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where the boundary corrector 0. € H'(Br \ D) x H*(D) is the solution of

— AU, —K*0. =0 in Br \ D,
—V-a.Vi, — k*n.0. =0 inD,
O -0 =€l B ondD, (C19)
Vi, v—a Vot v=¢(V (050 &)T) v
— k%e(Bug x &)T v ondD,
Ve v = A(0;) on0BR.
Xe,p @5 a random variable defined as
p—2
2p
2p
o D DO I (C20)

zEP-(D)

with C denoting the constant in Proposition 5. Moreover x. , satisfies the stochastic
integrability (38).

Both results of Proposition 18 and Proposition 19 were established for the Poisson
equation in a bounded domain with Dirichlet or Neumann condition in [14, Chapter 6].
The proofs below use similar arguments as the ones developed in [14].

Proof of Proposition 19. We denote Z = U — U — EU .-
As in Proposition 6, the boundary layer v solution of (C19) is constructed such that
Z. — ¥, is the unique solution in H'(Bg) of

- - (C21)

V- a.V(Z. —0) — k*n.(Z. —0.) =V - F. + K*G. inBg,
V(Z. -3 v=AZ. -5 ondBp,

where E and (/?\E are defined by

—

F. :=¢e(ac0; — 05)V(95ug * &) + (ae — ahom)V(ﬂa x & —ug) + ek Bug + &, (C22)

and
G. = e ((n¢5 — B5)0sug * £2) + (ne — ™) (ug — g * &.). (C23)
Moreover, Z — v, verifies a.s.

7. - @ + @ (C24)

F.

HY(Bg) "~ ‘ L2(D) L2(D)

To prove (C16), we hence need to prove that

a 1
FE L2(D) ’S’ Ea'ud(g)xgﬁp ||u0||W1+a,p(D) .

=2

+|
L?(D)

o4



By the triangle inequality, we immediately get

[ (e
L2(D) L2(D)
Sellle = oflIVVug * &lll 12 py + € lI1B%[[uo * &elll 12y

+elllo® — B Vug * &l p2(py + V(o * & — o)l p2(py + [0 * & — woll 12 (py -
(C25)

It remains to estimate these five terms.
We recall a useful Lemma, proved in [14], which allows us to estimate the three first
terms of (C25).

Lemma 20 ([14, Lemma 6.8]). Fiz o € (0,1] and p € (2,00). Let f € L*(D + 2ey),
g € LP(D + 2¢00y) and its Sobolev extension g € LP(RY). Then

p=2
2p
.19 * §a|||L2(D) S e Z ||fHL2(Z+25DO) ‘|9HLP(D+25D0) ) (C26)
z€P. (D)
3
where |fllzsaetn) = 12 raetn) = (Fivae, 1112)
Moreover, if g € W*P(D + 2e0y), then
P—2
2p
£V (g * fe)‘HLQ(D) Set e? Z ||fHL2(Z+25DO) ‘|g‘|wa,p(D+ngO) - (C27)

zE€P-(D)

Now, using (C27), with f = ¢° and ¢ = Vug and the corrector estimate of
Proposition 5, we obtain

1e°| 1V(Vuo * &)l 2 py

o
STl D S P S B I
z€P. (D)
p—2
e & (C28)
SevT | e Z H(bHL? (200) ||Vu0||wa,p(p)
z€P. (D)
p—2
2p
o 1 2p
el [0 Y @ | I Vunlesio) -
z€P-(D)
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Similarly, with f = ¢¢ — 3¢ and g = g,

p—2
2p
. o 1 2p
o= = BI[Vug * &l p2py S € 1,Ud(g) et Y C(x)ie l[uollyye.r(p) -
z€P-(D)
(C29)
Now, using (C26) with f = ¢ and g = ug, we get
p—2
1 v
2p_
1157 [wo * &l 2 (py S Hal2) et Y Cla)re luollLe(py - (C30)

z€P. (D)

To estimate the last two terms of (C25), we recall another useful lemma.

Lemma 21 ([14, Lemma 6.7]). Fiz 1 < ¢ < p < o0 and 0 < o < 1. Let
g € WeP(D + 2e0)y) and its Sobolev extension g € WP (R?). Then

~ 1_1
lg — (g * fe)”Lq(D) SIDli"ve ||g||WavP(D+25D0) : (C31)

Using this Lemma, with ¢ = Vug, ¢ = 2, and p > 2, we have
Vo — (Vug) = §s||L2(D) S e” HV%HWam(DmsDU) Se® ||U0||W1+a~p(D) (C32)

and with g = uy we obtain similarly
o — g * £s||L2(D) S e” HZLBHWa,p(D+25|jo) Se” ||U0HWa,p(D) . (C33)

Inserting (C28), (C29), (C30), (C32), (C33) into (C25) gives us (C16), concluding the
proof of Proposition 6.
O

By estimating the H'-norm of the boundary corrector 7, we can now prove
Proposition 18.

Proof of Proposition 18. We consider f/; := Uz — en:u1 . the a.s. unique solution in
Hl(BR) of
—AV.—KV. =0 in B \ D,
— V- a.VV. — k*n.V. = -V - a:V(neiin 2 ) + ek®non.y - inD,
VI//;_ v — aEVf/:r v=ca.V(nu1.) - v+e (V (0 0;ug * §€)+) ‘v
— K2 e(Bfug x &) v ondD,
VI//; V= A(X//;) on 0Bpg.
(C34)
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‘//; by writing the variational

As in the proof of Proposition 7, we estimate ‘
H'(Br)

formulation. For w € H'(Bg),

/ aEV\//Z~Vw—k2n51//;E—<AU//Z),w> . A
Br H™2(8BRr),H2 (8BR)

_ _ . . _ (C35
= / —ea:V (0.1 ) - VO + ek®n (.t 2) — eV - (05105t * &) - VI (C35)
D
— k*eV - (56% * 55775)@ + k2566% *Ecne - V.
In particular, by the coercivity of the sesquilinear form, we get
d
||75\6HH1(D) + ||”ASHH1(BR\5) Se ||77€u/1;||H1(D) te Zv - (05 05ug * Ecne) +
i=1 L2(D)
eIV - (87 * €ne)l oy + € 1870 % Ecnell o
(C36)
Let us now estimate ||7]5171;||H1(D) = ||n-¢5 ;g * &l r1(py- The three other terms can
then be estimated using similar arguments. First
IV (065055 + €| 2y S I1(V0) 650405 * €& + 0V (650575 + ) | )
< (i ivm -l + v ) ]+ 19009
L2(Sn,)
(C37)

Eq (C26) combined with the bounds on the corrector implies

1 o~ . b2 w2 —
Hud(l)wuo * &9 Se Nd(g) » 1X§,p ”vuOHLP(SnE-I—?eDD) (C38)
€ L2(Sy.)
and
— p=2 1 p—2— -
HVUO *€5||V¢5| 2 ) § £ 2p Md(g) 2p X%p Hvu0||Lp(5ns+2€DO) (039)
L2(S,,
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where the random variables x{ , and x? , are defined as

p—2

“2p

d

o=l X @)
: ena(z) . fs, ) o)
© 40

2;2
Ed d-2p_
X2p = B Z (1+7a(2))"P
EHd € ZEPE(S"IE)

We use the following Lemma to estimate ||V175HLP<S” +2¢000)-

Lemma 22 ([14, Lemma 6.12]). Fiz p € (1,00), a > %, q € [1,p] and B € <O, é}

For every f € W*P(R?) and r € (0,1],

Hf”Lq(BD-i-BT) Srf ||f||wa,p(Rd) . (C41)
Applying (C41) with f = Vg, r = 4epa(L), ¢ =p, a > %, 8= % = % yields
. 1 1.1
IVl (s, 12e00) S Epﬂd(g)’” IVuollye.n(p - (C42)

Furthermore, using (C27), we get

o~ o 1. p—2 1, p-2—
e|V(Viug * & )¢ S e®pa(2)e = pa(=) = xip [Vuollwean(s,, 12:0,)
L?(Sy) < <
N R R
552ud(g)25 P,ud(g) PXep ||vu0||W0,p(D)-

(C43)

Combining the last estimates (C38), (C39), (C42) and (C43), and the fact that a > %,
one has that

1 1
2 i )2X§,p ||U0||W1+a,p(p) )

A
™

1
e
1
e
(C44)

where the random variable {g:, is defined as

: 1. . —  — _1 1,1
X = Ha(2) 7 IXLy 02, e na(0) TP

o8



and satisfies the stochastic integrability (38).
We finally proved that

- - ER NN
HUIHHl(D) + ||U1||H1(BR\5) S Ezﬂd(g)ng’,p ||U0||W1+a,p(p) ‘ (C45)

Appendix D Proof of Lemma 12

Proof of Lemma 12. (a) First note that for y € R9,

/ L, (x)(y)dz :/ Lp, () (@)dz = Ct?,
Rd Rd

where C' depends only on d.
We have also for y, z € RY,

/ 1g,(2)(¥) 1B, (x) (2 )dx</ 1,2 (y)dz = Ct%.
R4 R

Let U € L*(D) and t > 0. By Fubini’s theorem,

/Rd </B,,(;c)mD U|> dz = /Rd /D U1, (2 (y)dydx
:/ U(y)| (/Rd 1B, (z) (y)dx) dy D16)

< c / U()ldy

gCtd< Ul

(b) Similarly,

/Rd pr(z)® (/BMOD |U|>2dx
:/]R pr(z (/ |U(y)|1p,)(y) dy) (/ U (2)|1 5, () (2 )dz)dx
= [ 101 [ W ([ ore) U@ s, a0) v

(D47)
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Since 1, (2)(¥)1B,(2)(2) = 0if [z —y| >t or [z — 2| > t, one can bound pr(x)* in
the third integral by sup,cp (“}y + 1) yielding the result.
O
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