Uniform Poincaré inequalities for the Discrete de Rham complex on general domains - Archive ouverte HAL
Article Dans Une Revue Mathematical Models and Methods in Applied Sciences Année : 2024

Uniform Poincaré inequalities for the Discrete de Rham complex on general domains

Daniele Di Pietro

Résumé

In this paper we prove Poincaré inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain $\Omega$ of $\mathbb{R}^3$. We unify the ideas behind the inequalities for all three operators in the sequence, deriving new proofs for the Poincaré inequalities for the gradient and the divergence, and extending the available Poincaré inequality for the curl to domains with arbitrary second Betti numbers. A key preliminary step consists in deriving "mimetic" Poincaré inequalities giving the existence and stability of the solutions to topological balance problems useful in general discrete geometric settings. As an example of application, we study the stability of a novel DDR scheme for the magnetostatics problem on domains with general topology.
Fichier principal
Vignette du fichier
ddr-poincare.pdf (362.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04220112 , version 1 (27-09-2023)

Licence

Identifiants

Citer

Daniele Di Pietro, Marien-Lorenzo Hanot. Uniform Poincaré inequalities for the Discrete de Rham complex on general domains. Mathematical Models and Methods in Applied Sciences, 2024, 34 (09), pp.1597-1648. ⟨10.1142/S0218202524500313⟩. ⟨hal-04220112⟩
46 Consultations
52 Téléchargements

Altmetric

Partager

More