Explicit Riemann-Roch spaces in the Hilbert class field
Résumé
Let $\mathbf K$ be a finite field, $X$ and $Y$ two curves over $\mathbf K$, and $Y\rightarrow X$ an unramified abelian cover with Galois group $G$. Let $D$ be a divisor on $X$ and $E$ its pullback on $Y$. Under mild conditions the linear space associated with $E$ is a free ${\mathbf K}[G]$-module. We study the algorithmic aspects and applications of these modules.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|