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EXPLICIT RIEMANN-ROCH SPACES IN THE HILBERT CLASS FIELD

JEAN-MARC COUVEIGNES AND JEAN GASNIER

ABSTRACT. Let K be a finite field, X and Y two curves over K, and Y → X an unramified
abelian cover with Galois group G. Let D be a divisor on X and E its pullback on Y . Under mild
conditions the linear space associated with E is a free K[G]-module. We study the algorithmic
aspects and applications of these modules.

1. INTRODUCTION

Given a curve Y over a field K, and two divisors E and Q on Y , with Q effective and disjoint
from E, the evaluation map e ∶ H0(Y,OY (E)) → H0(Q,OQ) is a natural K-linear datum of
some importance for various algorithmic problems such as efficient computing in the Picard
group of Y (see [27, 28]), constructing good error correcting codes [15, 17, 47], or bounding the
bilinear complexity of multiplication in finite fields [45, 44, 3, 4, 9, 37]. Assume G is a finite
group of automorphisms of Y /K, and the divisors E and Q are G-equivariant (they are equal to
their pullback by any element of G). The evaluation map e is then a K[G]-linear map between
two K[G]-modules. In some cases these modules can be shown to be both free, and their rank as
K[G]-modules is then smaller than their dimension as K-vector spaces, by a factor o, the order
of G. This is of quite some help when G is abelian, because multiplication in K[G] is achieved
in quasi-linear time using discrete Fourier transform, and the advantage of lowering dimension
is much stronger than the disadvantage of dealing with a larger ring of scalars.

In this work we review basic algebraic and algorithmic properties of K[G]-modules when G
is a finite group. We then focus on free K[G]-modules arising from abelian groups acting freely
on a curve. We will see that this special case has a rich mathematical background and produces
interesting constructions.

In Section 2 we review elementary properties of K[G]-modules when K is a commutative
field and G a finite group. We recall in Section 3 how unramified fibers of Galois covers of
curves produce free K[G]-modules and we introduce natural bases for these modules and their
duals. We study the abelian unramified case in Section 4 and see that Riemann-Roch spaces
associated to G-equivariant divisors tend to be free K[G]-modules then. Evaluating at another
G-equivariant divisor then produces a K[G]-linear map between two free K[G]-modules. This
makes it possible to treat evaluation and interpolation as K[G]-linear problems. We introduce
the matrices associated to these problems. Section 5 is devoted to the definition and computa-
tion of Padé approximants in this context. The complexity of arithmetic operations in K[G] is
bounded in Section 6 using various classical discrete Fourier transforms. In Section 7 we use
effective class field theory and the algorithmics of curves and jacobian varieties to compute the
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2 JEAN-MARC COUVEIGNES AND JEAN GASNIER

evaluation and interpolation matrices introduced in Section 4. Section 8 provides two applica-
tions of interpolation with K[G]-modules: multiplication in finite fields and geometric codes.
The asymptotic properties of the codes constructed this way are studied in Section 9.
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2. DUALITY FOR K[G]-MODULES

In this section K is a commutative field and G is a finite group. We state elementary prop-
erties of K[G]-modules and their duals. In Section 2.1 we describe the natural correspondence
between G-invariant K-bilinear forms and K[G]-bilinear forms. We see in Section 2.2 that the
orthogonal of a K[G]-submodule for either form is the same. Sections 2.3 concerns the canoni-
cal bilinear form relating a K[G]-module and its dual The ring K[G] has the Frobenius property
[12, Chapter IX]. We recall in Section 2.4 a convenient consequence of it.

2.1. Invariant bilinear forms. Let M be a right K[G]-module. Let N be a left K[G]-module.
Let

< ., . > ∶M ×N →K
be a K-bilinear form. We assume that this form is invariant by the action of G in the sense that

<m.σ,n >=<m,σ.n >
for every m in M , n in N , and σ in G. We define a map

(1) (., .) ∶ N ×M // K[G]
n,m � // (n,m) = ∑σ∈G <m.σ−1, n > σ

Proposition 1. The map (., .) in Equation (1) is K[G]-bilinear.

Proof Indeed for any τ in G, m in M , and n in N

(τ.n,m) = ∑
σ∈G

<m.σ−1, τ.n > σ

= ∑
σ∈G

<m.σ−1τ−1, τ.n > τσ

= ∑
σ∈G

<m.σ−1, n > τσ

= τ ∑
σ∈G

<m.σ−1, n > σ

= τ(n,m).
And

(n,m.τ) = ∑
σ∈G

<m.τσ−1, n > σ

= ∑
σ∈G

<m.ττ−1σ−1, n > στ

= ∑
σ∈G

<m.σ−1, n > στ

= (n,m)τ.
◻
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2.2. Orthogonality. In the situation of Section 2.1 we consider a right K[G]-submodule U of
M . Call

U⊥ = {n ∈ N ∣ < U,n >= 0}
the orthogonal to U in N for the < ., . > form. This is a K-vector space. Since U is stable by
the action of G, its orthogonal U⊥ is a left K[G]-module. And U⊥ is the orthogonal to U for the
(., .) form :

U⊥ = {n ∈ N ∣ (n,U) = 0}.
We consider similarly a left K[G]-submodule V of N and call

V ○ = {m ∈M ∣ <m,V >= 0}
the orthogonal to V in M for the < ., . > form. This is a right K[G] module. And V ○ is the
orthogonal to V for the (., .) form :

V ○ = {m ∈M ∣ (V,m) = 0}.
We have U ⊂ (U⊥)○ and V ⊂ (V ○)⊥. These inclusions are equalities when M and N are finite
dimensional and < ., . > is perfect.

2.3. The dual of a K[G]-module. Let N be a left K[G]-module. We can see N as a K-vector
space and call N̂ its dual. This is naturally a right K[G]-module. For every ϕ in N̂ and σ in G
we set ϕ.σ = ϕ ○ σ. We consider the canonical K-bilinear form defined by

< ϕ,n >= ϕ(n)

for every n in N and ϕ in N̂ . For every σ in G we have

< ϕ.σ,n >= ϕ(σ.n) =< ϕ,σ.n >
so < ., . > is invariant by G. Following Section 2.1 we define a K[G]-bilinear form

(., .) ∶ N × N̂ →K[G]
by

(2) (n,ϕ) = ∑
σ∈G

ϕ(σ−1.n)σ.

We define a map from N̂ to the dual Ň of N as a K[G]-module, by sending ϕ to the map

(3) ϕG ∶ n↦ (n,ϕ).
We prove that this map is a bijection. First ϕ ↦ ϕG is trivially seen to be an injection. As for
surjectivity we let ψ ∶ N →K[G] be a K[G]-linear map. Writing

ψ(n) = ∑
σ∈G

ψσ(n)σ

we define a K-linear coordinate form ψσ on N for every σ in G. From the K[G]-linearity of ψ
we deduce that ψσ(n) = ψ1(σ−1.n) where 1 is the identity element in G. So ψ(n) = (n,ψ1) for
every n in N . So ψ = (ψ1)G.
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2.4. Free submodules of a K[G]-module. The ring K[G] may not be semisimple. Still free
K[G]-submodules of finite rank have a supplementary module.

Proposition 2. Let G be finite group, K a commutative field, N a left K[G]-module, V a sub-
module of N . If V is free of finite rank then it is a direct summand.

Proof Let r be the rank of V . Let v1, v2, . . . , vr be a basis of V . Let ϕ1, ϕ2, . . . , ϕr be the
dual basis. For every i such that 1 ⩽ i ⩽ n, the coordinate form ϕi,e associated to the identity
element in G belongs to V̂ . Let ψi be a K-linear form on N whose restriction to V is ϕi,e. Let
ψGi ∈ Ň be the associated K[G]-linear form according to Equations (3) and (2). The restriction
of ψGi to V is ϕi. The map

ψ ∶ N // V

n � // ∑1⩽i⩽r ψ
G
i (n).vi

is a K[G]-linear projection onto V . Its kernel is a supplementary K[G]-submodule to V . ◻
Proposition 2 is a consequence of the Frobenius property which is known [12, Chapter IX]

to be satisfied by K[G]. The proof above provides an algorithm to compute the supplementary
module.

3. CURVES WITH A GROUP ACTION

Let K be a commutative field. Let p be the characteristic of K. Let X and Y be two smooth,
projective, absolutely integral curves over K. Let gX be the genus of X . And similarly gY . Let
τ ∶ Y → X be a Galois cover with Galois group G. Let o be the order of G. There is a natural
left action of G on K(Y ) defined by

σ.f = f ○ σ−1 for f ∈ K(Y ) and σ ∈ G.

There is a natural right action of G on meromorphic differentials defined by

ω.σ = σ⋆ω for ω ∈ Ω1
K(Y )/K and σ ∈ G.

These are K(X)-linear actions. And the two actions are compatible in the sense that

(4) (ω.σ)(σ−1.f) = (ωf).σ

We study some free K[G]-modules that arise naturally in this context.

3.1. The residue ring of a non-ramified fiber. Let P be a prime divisor (a place) on X . Let tP
be a uniformizing parameter at P . Let

a = deg(P ).

This is the degree over K of the residue field

KP =H0(P,OP ) =H0(X,OX/OX(−P )).
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We assume that τ is not ramified above P and let Q1 be a place above P . We call G1 the
decomposition group of Q1. This is the stabilizer of Q1 in G. Places above P are parameterized
by left cosets in G/G1. We write the fiber above P

Q = ∑
σ∈G/G1

Qσ with Qσ = σ(Q1).

We call
b = [G ∶ G1]

the number of places above P and let

c = o/b = ∣G1∣
be the residual degree, that is the degree of

Kσ =H0(Qσ,OQσ)
over KP for all σ ∈ G/G1. We call

RQ =H0(Q,OQ) =H0(Y,OY /OY (−Q))
the residue ring at Q. The action of G on RQ makes it a free left K[G]-module of rank a. Indeed
it is a free KP [G]-module of rank 1. A basis for it consists of any normal element θ in K1/KP .

If m is a positive integer, Taylor expansion provides an isomorphism of KP [G]-modules

H0(Y,OY /OY (−mQ)) ≃ RQ[tP ]/tmP
between the residue ring at mQ and the ring of truncated series in tP . So the former is a free left
KP [G]-module of rank m. A basis for it is made of the θtkP for 0 ⩽ k <m.

3.2. The residue ring of a non-ramifiedG-equivariant divisor. We take P an effective divisor
on X . We assume that τ does not ramify above P and call Q the pullback of P by τ . We write

P = ∑
1⩽i⩽I

miPi.

We let ti be a uniformizing parameter at Pi. We call ai the degree of the place Pi. We call bi the
number of places of Y above Pi. We let ci = o/bi. For every 1 ⩽ i ⩽ I we choose a place Qi,1
above Pi and call Gi,1 the decomposition group at Qi,1. We call Qi the pullback of Pi by τ and
write

Qi = ∑
σ∈G/Gi,1

Qi,σ with Qi,σ = σ(Qi,1).

its decomposition as a sum of bi places. We call Ki,σ the residue field at Qi,σ. We denote by A
the residue algebra H0(Q,OQ). Taylor expansion induces an isomorphism of K-algebras

A =H0(Q,OQ) =H0(Y,OY /OY (−Q)) ≃
I

⊕
i=1

⊕
σ∈G/Gi,1

Ki,σ[ti]/tmii

which is compatible with the action of G. In the special case when all the places Pi have degree
one, a basis for the K[G]-module H0(Q,OQ) is made of the θitkii for 1 ⩽ i ⩽ I and 0 ⩽ ki < mi

where θi is a normal element in the extension Ki,1/K. The proposition below follows from the
discussion in this section and the previous one.
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Proposition 3. Assume the hypotheses at the beginning of Section 3. Let P be an effective divisor
on X . Assume that τ is not ramified above P and let Q be the pullbak of P by τ . The residue
ring H0(Q,OQ) is a free K[G]-module of rank the degree of P .

3.3. Duality. We need a dual of A as a K-vector space. We set

Â =H0(Y,Ω1
Y /K(−Q)/Ω1

Y /K) ≃
I

⊕
i=1

⊕
σ∈G/Gi,1

(Ki,σ[ti]/tmii ) dti
tmii

.

For f ∈ A and ω ∈ Â we write < ω, f > for the sum of the residues of ωf at all the geometric
points of Q. This is a K-bilinear form. We deduce from Equation (4) that this form is invariant
by the action of G

< ω.σ, f >=< ω,σ.f >
We define a K[G]-bilinear form using the construction in Section 2.1

(5) (f,ω) = ∑
σ∈G

< ω.σ−1, f > σ ∈ K[G].

These two bilinear forms turn Â into the dual of A as a K-vector space (resp. as a K[G]-
module). In the special case when all the places Pi have degree one, the dual basis to the basis
introduced before Proposition 3 is made of the µitmi−kii dti/ti for 1 ⩽ i ⩽ I and 0 ⩽ ki <mi where
µi is the dual to the normal element θi in the extension Ki,1/K.

4. FREE COMMUTATIVE ACTIONS

We study the situation at the beginning of Section 3 in the special case when the Galois cover
τ ∶ Y → X is abelian and unramified. We prove that large enough equivariant Riemann-Roch
spaces are free K[G]-modules. To this end we prove in Section 4.2 that evaluation at some
fibers induces an isomorphism with one of the K[G]-modules studied in Section 3.2. We need a
criterion for an equivariant divisors on Y to be non-special. We recall such a criterion in Section
4.1. We introduce in Section 4.3 the evaluation, interpolation and checking matrices whose
existence follows from the freeness of the considered modules.

4.1. Special invariant divisors. The pullback by τ of a degree gX − 1 divisor on X is a degree
gY − 1 divisor on Y . We need a criterion for the latter divisor to be special.

Proposition 4. Assume the hypotheses at the beginning of Section 3 with τ abelian and unram-
ified and K algebraically closed. Write o = op × op′ where op is the largest power of p dividing
o. Let c be a divisor class of degree gX − 1 on X and let τ⋆(c) be its pullback on Y . If the class
τ⋆(c) is effective then c is the sum of an effective class of degree gX − 1 and a class of degree 0
annihilated by τ⋆ and by op′ .

Proof From [11, §14]. Let D be a divisor in c and let E be the pullback of D by τ . We
assume that τ⋆(c) is effective. The space H0(Y,OY (E)) is non-zero and is acted on by G. Let f
be an eigenvector for this action. The divisor of f is J −E where J is effective and stable under
the action of G. So there exists an effective divisor I on X such that J is the pullback of I by τ .
And the class of I −D is annihilated by τ⋆. It is also annihilated by op′ because f op′ is invariant
by G. ◻
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4.2. Riemann-Roch spaces. Let E be a divisor on Y defined over K and invariant by G. The
Riemann-Roch space H0(Y,OY (E)) is a K[G]-module. This module is free provided the de-
gree of E is large enough.

Proposition 5. Assume the hypotheses at the beginning of Section 3 with τ abelian and unram-
ified. Let D be a divisor on X with degree ⩾ 2gX − 1. Let E be the pullback of D by τ . The
K-vector space H0(Y,OY (E)) is a free K[G]-module of rank deg(D) − gX + 1.

Proof We may assume that K is algebraically closed because of the Noether-Deuring the-
orem [8, §2, Section 5]. Let k = deg(D) − gX + 1. We note that k ⩾ gX . So there exist k
points

P1, P2, . . . , Pk on X

such that the class of D − P1 − P2 − ⋅ ⋅ ⋅ − Pk is not the sum of an effective class of degree gX − 1
and a class annihilated by

τ⋆ ∶ Pic(X) → Pic(Y ).
Let P be the divisor sum of all Pi and let Q be its pullback by τ . According to Proposition 4 the
class of E −Q is ineffective. Thus the evaluation map

H0(Y,OY (E)) →H0(Q,OQ)
is an isomorphism of K[G]-modules. Proposition 3 then implies thatH0(Q,OQ) is a free K[G]-
module of rank k. ◻

When the degree of D is smaller than 2gX − 1 it is not granted that H0(Y,OY (E)) is free. We
mention two useful partial results.

Proposition 6. Assume the hypotheses at the beginning of Section 3 with τ abelian and unram-
ified. Assume p does not divide o. Let D be a divisor on X with degree ⩾ gX . Let E be the
pullback of D by τ . Then H0(Y,OY (E)) contains a free K[G]-module of rank deg(D)−gX +1.

Proof The ring K[G] is semi-simple. Let L(E) = H0(Y,OY (E)). Let m be the smallest
among the multiplicities in L(E) of irreducible representations of G. This is the smallest among
the multiplicities of multiplicative characters ofG inL(E)⊗K̄ where K̄ is an algebraic closure of
K. It is clear that L(E) contains m copies of the regular representation of G. On the other hand
let χ ∶ G→ K̄ be a multiplicative character. Let r be an eigenfunction in K̄(Y ) associated with χ.
The divisor of r is the pullback by τ of a divisor R on X . Let L(E)χ be the eigenspace in L(E)
associated with χ. The map f ↦ f/r is a bijection between L(E)χ and H0(X,OX(D + R)).
The dimension of the latter is at least deg(D) − gX + 1. ◻

Whe can say something also when G is a p-group and K a finite field.

Proposition 7. Assume the hypotheses at the beginning of Section 3 with τ abelian and unrami-
fied. Assume K is a finite field with at least 4 elements. Assume o is a power of p. Assume gX ⩾ 2.
Let d ⩾ gX be an integer. Let r = d − gX + 1. Assume there exists an effective divisor on X with
degree r and defined over K. Then there exists a divisor D on X such that D is defined over K,
D has degree d, and H0(Y,OY (E)) is a free K[G]-module of rank r = d − gX + 1 where E is
the pullback of D by τ .
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Proof Set r = d − gX + 1. Let P be an effective divisor on X with degree r and defined over
K. According to a theorem of Ballet and Le Brigand [2, Theorem 11] there exists a degree gX −1
non-special divisor I defined over K. Set D = I + P . Let E, J , and Q be the pullbacks of D,
I , and P by τ . The divisor J is ineffective according to Proposition 4. So the evaluation map
H0(Y,OY (E)) → H0(Q,OQ) is a bijection. And the latter is a free K[G]-module according to
Proposition 3. ◻

4.3. The orthogonal submodule. In the situation of the beginning of Section 3 and assuming
that τ is abelian and unramified we let D and P be divisors on X with P effective. We assume
that D and P are disjoint. We assume that

(6) 2gX − 1 ⩽ deg(D) ⩽ deg(P ) − 1.

We call E the pullback of D by τ and Q the pullback of P . We write

L(E) =H0(Y,OY (E)) and Ω(−Q +E) =H0(Y,ΩY /K(−Q +E)).

Proposition 5 and Equation (6) imply that these two K[G]-modules are free. And the evaluation
maps

L(E) Ð→A and Ω(−Q +E) Ð→ Â are injective.

So L(E) can be seen as a free submodule of A and Ω(−Q + E) as a free submodule of Â.
These two K[G]-modules are orthogonal to each other for the form introduced in Equation (5).
Proposition 2 implies that L(E) has a supplementary submodule in A that is isomorphic to the
dual of Ω(−Q+E) and is thus a free submodule. Similarly Ω(−Q+E) has a free supplementary
submodule in Â that is isomorphic to the dual of L(E).

In the special case when all the places Pi have degree one, we have introduced a natural basis
for A before Proposition 3 and its dual basis Â in Section 3.3, using Taylor expansions at the
places above the Pi. We choose K[G]-bases for L(E) and Ω(−Q +E).

We denote EE the deg(P )×(deg(D)−gX +1) matrix with coefficients in K[G] of the evalua-
tion map L(E) →A in the chosen bases. We denote CE the deg(P )×(deg(P )−deg(D)+gX−1)
matrix of the map Ω(−Q +E) → Â in the chosen bases. The matrix CE checks that a vector in
A belongs to L(E). Its left kernel is the image of EE . So

CtE × EE = 0

the zero (deg(P ) − deg(D) + gX − 1) × (deg(D) − gX + 1) matrix with coefficients in K[G].
We choose a K[G]-linear projection A→ L(E) and denote IE the (deg(D)−gX+1)×deg(P )

matrix of this projection. This is an interpolation matrix since it recovers a function in L(E) from
its evaluation at Q. Equivalently

IE × EE = 1
the (deg(D)−gX+1)×(deg(D)−gX+1) identity matrix with coefficients in K[G]. We note that
applying either of the matrices EE , CE , IE requires at most a constant times deg(P )2 operations
in K[G].
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5. PADÉ APPROXIMANTS

In the situation of the beginning of Section 3 and assuming that τ is abelian and unramified
we let D0, D1 and P be divisors on X with P effective. We assume that D0 and D1 are disjoint
from P . We call E0, E1, and Q the pullbacks of D0, D1, and P by τ . We assume

(7) 2gX − 1 ⩽ deg(D1) ⩽ deg(P ) − 1,

(8) gX ⩽ deg(D0) ⩽ deg(P ) − 1.
Equation (7) implies that the K[G]-modules L(E1) and Ω(−Q+E1) are free and the evaluation
maps into A and Â are injective. We assume that L(E0) contains a free K[G]-module of rank
deg(D0) − gX + 1 and denote L(E0)fr such a submodule.

Given r in A, a0 /= 0 in L(E0) and a1 in L(E1) such that

a0r − a1 = 0 ∈ A,
we say that (a0, a1) is a Padé approximant of r and call a0 a denominator for r. Denominators
for r are non-zero a0 in L(E0) ⊂ A such that

a0r ∈ L(E1).
Equivalently

(9) (a0r, ω) = 0 for every ω ∈ Ω(−Q +E1).
Denominators are thus non-zero solutions of a K-linear system of equations. We note that this is
not a K[G]-linear system in general. In Section 5.1 we show that one can be a bit more explicit
in some cases. We consider the problem of computing Padé approximants in Section 5.2.

5.1. The split case. Assume that P = P1 + ⋅ ⋅ ⋅ +Pn is a sum of n pairwise distinct rational points
over K. Assume that the fiber of τ above each Pi decomposes as a sum of o rational points over
K. We choose a point Qi,1 above each Pi and set

Qi,σ = σ(Qi,1) for every σ ∈ G.
For every 1 ⩽ i ⩽ n we call αi the function in A that takes value 1 at Qi,1 and zero everywhere
else. We thus form a basis

AG = (αi)1⩽i⩽n

of A over K[G]. We note ÂG its dual basis. For every 1 ⩽ i ⩽ n and σ ∈ G we call

αi,σ = σ.αi = αi ○ σ−1

the function in A that takes value 1 at Qi,σ and zero everywhere else. We thus form a basis

AK = (αi,σ)1⩽i⩽n,σ∈G

of A over K. The coordinates of r in the K[G]-basis AG are

rG = (∑
σ∈G

r(Qi,σ)σ)1⩽i⩽n

and the coordinates of r ∈ A in the K-basis AK are

rK = (r(Qi,σ))1⩽i⩽n,σ∈G.
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Multiplication by r is a K-linear map from A to A. We call

RK ∈ Mo.n,o.n(K)
the o.n × o.n diagonal matrix of this map in the basis AK.

We choose a K[G]-basis ZG for L(E0)fr and denote E0
G the deg(P ) × (deg(D0) − gX + 1)

matrix of the K[G]-linear map

(10) L(E0)fr →A
in the bases ZG and AG. We denote ZK the K-basis of L(E0)fr obtained by letting G act on ZG.
Call E0

K the matrix of the map (10) in the bases ZK and AK. The matrix E0
K is obtained from E0

G

by replacing each K[G] entry by the corresponding o×o circulant-like matrix with entries in K.
We choose a K[G]-basis UG for Ω(−Q +E1) and denote C1

G the matrix of the injective map

(11) Ω(−Q +E1) → Â

in the bases UG and ÂG. This is a deg(P ) × (deg(P ) − deg(D1) + gX − 1) matrix with entries in
K[G]. We denote UK the K-basis of Ω(−Q +E1) obtained by letting G act on UG. The matrix
of the map (11) in the bases UK and ÂK is called C1

K.
Let a0 in L(E0)fr and let xG be the coordinates of a0 in the K[G]-basis ZG. This is a column

of height deg(D0)−gX+1. We call xK the coordinates of a0 in the K-basis ZK. This is a column
of height o.(deg(D0) − gX + 1) obtained from xG by replacing each entry by its o coefficients in
the canonical basis of K[G]. We deduce from Equation (9) that a0 is a denominator for r if and
only if xK is in the kernel of the matrix

Dr = (C1
K)t ×RK × E0

K ∈ Mo.(degP−degD1+gX−1)×o.(degD0−gX+1)(K).
Proposition 8. Assume we are in the context of the beginning of Section 5. In particular assume
Equations (7) and (8), assume that P is a sum of n pairwise distinct K-rational points, and that
the n corresponding fibers of τ split over K. Assume we are given the matrices E0

K and C1
K. On

input an r = (r(Qi,σ))1⩽i⩽n,σ∈G in A and some a0 in L(E0)fr, given by its coordinates xK in the
basis ZK, one can check if a0r ∈ L(E1) at the expense of Q.n2 operations in K[G] (addition,
multiplication) and Q.o.n operations in K (addition, multiplication) where Q is some absolute
constant.

Proof We first multiply xK by E0
K. This requires less than 2 deg(P ) × (deg(D0) − gX + 1)

operations in K[G]. We then multiply the result by RK. This requires less than o.deg(P )
operations in K. We finally multiply the result by (C1

K)t. This requires less than 2 deg(P ) ×
(deg(P ) − deg(D1) + gX − 1) operations in K[G]. ◻
5.2. Computing Padé approximants. Beeing able to check a denominator we can find a ran-
dom one, if there is some in L(E0)fr, using an iterative method as in [51, 24]. Recall that an
` × n black box matrix A with coefficients in a field K is an oracle that on input an n × 1 vector
x returns Ax.

Proposition 9 (Wiedemann, Kaltofen, Saunders). There exists a probabilistic (Las Vegas) al-
gorithm that takes as input an ` × n black box matrix A and an ` × 1 vector b with entries in
a finite field K and returns a uniformly distributed random solution x to the system Ax = b
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with probability of success ⩾ 1/2 at the expense of Q.m. logm calls to the black box for A and
Q.m2.(log(m))2 operations in K (addition, multiplication, inversion, picking a random element)
where m = max(`, n) and Q is some absolute constant.

From Propositions 8 and 9 we deduce

Proposition 10. Under the hypotheses of Proposition 8 and on input a vector r = (r(Qi,j)i,j) in
A one can find a uniformly distributed random denominator, if there is some in L(E0)fr, for r
with probability of success ⩾ 1/2 at the expense of Q.o.n3. log(o.n) operations in K[G] (addi-
tion, multiplication) andQ.(o.n. log(o.n))2 operations in K (addition, multiplication, inversion,
picking a random element) where Q is some absolute constant.

Once we have found a denominator a0 for r we set a1 = ra0 and recover the coordinates of a1
applying the interpolation matrix associated to E1.

6. COMPUTING IN THE GROUP ALGEBRA

Given a finite commutative group G and a finite field K we will need efficient algorithms
to multiply in K[G]. This is classically achieved using discrete Fourier transform when G is
cyclic and K contains enough roots of unity. The complexity analysis requires some care in
general. This is the purpose of this section. We recall in Section 6.1 the definition of Fourier
transform in the setting of commutative finite groups. The most classical case of cyclic groups is
studied in Section 6.2 from an algorithmic point of view. The general case follows by induction
as explained in Section 6.3. The complexity of the resulting multiplication algorithm in K[G] is
bounded in Section 6.4.

6.1. Fourier transform. Let G be a finite commutative group. Let o be the order of G. Let e be
its exponent. Let K be a commutative field containing a primitive e-th root of unity. In particular
e and o are non-zero in K. Let Ĝ be the dual of G defined as the group of characters χ ∶ G→K∗.
We define a map from the group algebra of G to the algebra of functions on G

⊺ ∶ K[G] // Hom(G,K)
∑σ∈G aσσ � // σ ↦ aσ

This is an isomorphism of K-vector space. We call � ∶ Hom(G,K) →K[G] the reciprocal map.
We dualy define

⊺̂ ∶ K[Ĝ] // Hom(Ĝ,K)
∑χ∈Ĝ aχχ

� // χ↦ aχ

and its reciprocal map �̂. We call
ιG ∶ K[G] →K[G]

the K-linear involution that maps σ onto σ−1. We define the Fourier transform

FTG ∶ K[G] // Hom(Ĝ,K)
∑σ∈G aσσ � // χ↦ ∑σ aσχ(σ)
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The Fourier transform evaluates an element in the group algebra at every character. The Fourier
transform of the dual group

FTĜ ∶ K[Ĝ] // Hom(G,K)

∑χ∈Ĝ aχχ
� // σ ↦ ∑χ aχχ(σ)

provides an inverse for FTG in the sense that

� ○ FTĜ ○�̂ ○ FTG = o.ι

is the K-linear invertible map that sends σ to o.σ−1.
Let M be a finite dimensional K-vector space. We set

M[G] =M ⊗K K[G]
and note that

Hom(Ĝ,M) =M ⊗K Hom(Ĝ,K).
We define a Fourier transform on M

FTM ∶ M[G] // Hom(Ĝ,M)
∑σ∈Gmσ ⊗ σ � // χ↦ ∑σ χ(σ)mσ

It turns a free K[G]-module into a free Hom(Ĝ,K)-module.

6.2. Univariate Fourier transform. We assume in this section that the group G is cyclic of
order o. We choose a primitive o-th root of unity ω in K. We choose a generator in Ĝ and deduce
the following identifications

Hom(Ĝ,K) = Ko and K[G] = K[x]/(xo − 1).
Let M be a finite dimensional K-vector space. Setting

M[x] =M ⊗K K[x] and M[G] =M ⊗K K[x]/(xo − 1).
the Fourier transform is

FTM ∶ M[G] // M o

m � // (m(1),m(ω),m(ω2), . . . ,m(ωo−1))
Given m in M[G] = M ⊗K K[x]/(xo − 1) the computation of FTM(m) reduces to the multi-
plication of a polynomial of degree 2o − 2 in K[x] and a vector of degree o − 1 in M[x] using
formulae by Rabiner, Schafer, Rader, and Bluestein [36, 6].

Proposition 11. Let K be a commutative field. Let M be a finite dimensional K-vector space.
Let o ⩾ 2 be an integer. Assume that K contains a primitive o-th root of unity ω and a primitive
root of unity of order a power of two that is bigger than 3o − 3. Let

m =m0 ⊗ 1 +m1 ⊗ x + ⋅ ⋅ ⋅ +mo−1 ⊗ xo−1 mod xo − 1 ∈M ⊗K K[x]/(xo − 1).
One can compute FTM(m) at the expense ofQ.o. log o additions, multiplications and inversions
in K, additions and scalar multiplications in M , where Q is an absolute constant.
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Proof We adapt the notation from [7, I.5.4, Proposition 5.10]. For every 0 ⩽ i ⩽ 2o − 2 let

ti = i(i − 1)/2 and βi = ωti .
We note that

ti+1 = ti + i and βi+1 = βiωi.
So one can compute the βi for 0 ⩽ i ⩽ 2o − 2 at the expense of 4o operations in K. We then
compute the inverse of every βi. For every 0 ⩽ i ⩽ o − 1 let

ni = β−1
i mi.

These can be computed at the expense of o scalar multiplications in M . Let

n(x) = no−1 + no−2 ⊗ x + ⋅ ⋅ ⋅ + n0 ⊗ xo−1 ∈M[x]
and let

b(x) = β0 + β1x + ⋅ ⋅ ⋅ + β2o−2x
2o−2 ∈ K[x].

Let
r(x) = b(x).n(x) = ∑

0⩽i⩽3o−3
ri ⊗ xi ∈M[x].

From the identity
ti+j = ti + tj + ij

we deduce
ωijβiβj = βi+j for 0 ⩽ i, j ⩽ o − 1

and
o−1
∑
j=0
ωijmj = β−1

i

o−1
∑
j=0
βi+jnj.

We deduce that FTM(m) = (β−1
0 ro−1, β−1

1 ro, β−1
2 ro+1, . . . , β−1

o−1r2o−2). Since K contains a primi-
tive root of unity of order a power of two that is bigger than 3o−3, the coefficients in the product
r(x) = b(x).n(x) can be computed at the expense of Q.o. log o operations in K, additions in M
and products of a vector in M by a scalar in K. See [7, I.2.4, Algorithme 2.3]. ◻
6.3. Multivariate Fourier transform. Let (oi)1⩽i⩽I be integers such that 2 ⩽ o1∣o2∣ . . . ∣oI . Let
Ci = Z/oiZ and G = Π1⩽i⩽ICi. For 1 ⩽ i ⩽ I set

Ai = K[Ci] and Bi = Hom(Ci,K).
For 0 ⩽ i ⩽ I set

Mi =⊗
j⩽i
Bj ⊗⊗

j>i
Aj.

So M0 = K[G] and MI = Hom(G,K). For 1 ⩽ i ⩽ I write

Mi =⊗
j<i
Bj ⊗K[Ci] ⊗⊗

j>i
Aj

as a K[Ci]-module and call
Fi ∶Mi →Mi+1

the corresponding Fourier transform as defined in Section 6.2. We check that

FTG = FI ○ FI−1 ○ ⋅ ⋅ ⋅ ○ F1.



EXPLICIT RIEMANN-ROCH SPACES IN THE HILBERT CLASS FIELD 15

Using Proposition 11 we deduce

Proposition 12. Let (oi)1⩽i⩽I be integers such that 2 ⩽ o1∣o2∣ . . . ∣oI . Let G = ∏1⩽i⩽I(Z/oiZ). Let
o be the order of G. Let e = oI be the exponent of G. Let K be a commutative field containing
a primitive root of unity of order e and a primitive root of unity of order a power of two that
is bigger than 3e − 3. Given an element a = ∑σ∈G aσσ in K[G] one can compute FTG(a) in
Hom(Ĝ,K) at the expense of Q.o. log o additions, multiplications and inversions in K. Here Q
is some absolute constant.

6.4. Fast multiplication in K[G]. Let G, o, e be as in Section 6.3. Let K be a commutative
field. In this section we study the algorithmic complexity of computing the product of two given
elements

(12) a = ∑
σ∈G

aσσ and b = ∑
σ∈G

bσσ in K[G].

It will depend on the field K. We first treat the case when K has enough roots of unity.

Proposition 13. In the context of the beginning of Section 6.4 assume that K contains a primitive
root of unity of order e and a primitive root of unity of order a power of two that is bigger than
3e − 3. One can compute the product ab ∈ K[G] at the expense of Q.o. log o operations in K
where Q is some absolute constant.

Proof We compute A = FTG(a) and B = FTG(b) as in Section 6.3. We then compute
C = AB in Hom(Ĝ,K∗) at the expense of o multiplications in K. We then deduce c = ab
applying FT−1

G to C. The cost of this computation is bounded using Proposition 12. ◻
We now consider the case when K is Z/pZ where p is a prime integer. We miss roots of unity

in K in general. So we transport the problem into another ring using non-algebraic maps. We
let t be the smallest power of 2 that is bigger than 3e − 3. Let p′ be the smallest prime integer
congruent to 1 modulo o.(p−1)2.t. We set K′ = Z/p′Z and note that K′ contains a primitive root
of unity of order e and a primitive root of order a power of two bigger than 3e − 3. Also

p′ > o.(p − 1)2.

By a result of Heath-Brown, the exponent in Linnik’s theorem for primes in arithmetic progres-
sions can be taken to be 11/2. See [19] and the recent improvement [52]. We deduce that there
exists an absolute constant Q such that

p′ ⩽ Q(o.p)11.

For c a congruence class in K = Z/pZ we denote `(c) the lift of c, that is the unique integer in
the intersection of c with the interval [0, p[. We write

(13) ↑(c) = `(c) mod p′.

We thus define maps ` ∶ K → Z and ↑ ∶ K →K′. We similarly define the lifting map `′ ∶ K′ → Z
and ↓ ∶ K′ →K by

(14) ↓(c) = `′(c) mod p for c ∈ K′.
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These four maps can be extended to the corresponding group algebras by coefficientwise appli-
cation. Given a and b as in Equation (12) we define

A = `(a) = ∑
σ∈G

`(aσ)σ and B = `(b) = ∑
σ∈G

`(bσ)σ in Z[G] and C = AB.

The coefficients in C belong to the interval [0,o.(p − 1)2[. So

C = `′((A mod p′) × (B mod p′)) and ab = ↓(↑(a) ↑(b)).

Using Proposition 13 we deduce

Proposition 14. There exists an absolute constant Q such that the following is true. Let G, o, e
be as in Section 6.3. Let K = Z/pZ. There exists a prime integer p′ ⩽ Q(o.p)11 and a straight-
line program of length smaller than Q.o. log o that computes the product c = ∑g cg[g] of two
elements a = ∑g ag[g] and b = ∑g bg[g] in K[G] given by their coefficients (ag)g and (bg)g.
The operations in this straigth line program are additions and multiplications in (Z/p′Z) and
evaluations of the maps ↑ and ↓ defined in Equations (13) and (14).

Now let L be a field extension of degree d of K = Z/pZ. We assume that elements in L
are represented by their coordinates in some K-basis of L. Work by Shparlinsky, Tsfasmann,
Vladut [45], Shokrollahi [44], Ballet and Rolland [3, 4], Chaumine [9], Randriambololona [37]
and others imply that the K-bilinear complexity of L is bounded by an absolute constant times
d. We deduce the following proposition.

Proposition 15. There exists an absolute constant Q such that the following is true. Let G, o,
e be as in Section 6.3. Let K = Z/pZ and L a field extension of degree d of K. There exists
a prime integer p′ ⩽ Q(o.p)11 and a straight-line program of length ⩽ Q(d.o. log o + d2.o) that
computes the product c = ∑g cg[g] of two elements a = ∑g ag[g] and b = ∑g bg[g] in L[G] given
by their coefficients (ag)g and (bg)g. The operations in this straigth line program are additions
and multiplications in (Z/pZ) and in (Z/p′Z) and evaluations of the maps ↑ and ↓ defined in
Equations (13) and (14).

7. CONSTRUCTING FUNCTIONS IN THE HILBERT CLASS FIELD

We have defined in Section 4 matrices E , C and I for the evaluation and interpolation of global
sections of a G-equivariant invertible sheaf on a curve Y . We have seen in Sections 4, 5, and
6 how to efficiently compute with these matrices. In this section we address the problem of
computing these matrices.

We recall in Section 7.1 the necessary background from class field theory of function fields
over a finite field. We illustrate the constructive aspects of class fields on a small example in
section 7.2. An important feature of this method is that we only work with divisors and functions
on X . This is of some importance since in the applications presented in Sections 8 and 9 the
genus of Y is much larger (e.g. exponentially) than the genus of X .
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7.1. Class field theory and the jacobian variety. We start from a projective curve X over a
finite field K of characteristic p. We assume that X is smooth and absolutely integral. We let K̄
be an algebraic closure of K. We need an abelian cover τ ∶ Y → X over K, with Y absolutely
integral. We will require that Y have a K-rational point Q1. This implies that τ is completely
split above P1 = τ(Q1).

According to class field theory [42, 38] there is a maximal abelian unramified cover of X
over K that splits totally above P1. We briefly recall its geometric construction. Let JX be the
jacobian variety of X and let

jX ∶X → JX

be the Jacobi map with origin P1. Let

FK ∶ JX → JX

be the Frobenius endomorphism of degree ∣K∣, the cardinality of K. The endomorphism

℘ = FK − 1 ∶ JX → JX

is an unramified Galois cover between K-varieties with Galois group JX(K). We denote

τmax ∶ Ymax →X

the pullback of ℘ along jX . This is the maximal abelian unramified cover of X that splits totally
above P1. Any such cover τ ∶ Y → X is thus a quotient of τmax by some subgroup H of JX(K).
We set G = JX(K)/H and notice that G is at the same time the fiber of τ above P1 and its Galois
group, acting by translations in JX/H .

JX(K) Ymax JX

G = JX(K)/H Y JX/H

0 = P1 X JX

H

℘

τ G

Let P be a K-rational point on X and let Qmax be any point on Ymax(K̄) such that

τmax(Qmax) = ℘(Qmax) = P.
We have FK(Qmax) = Qmax + P . So the Artin map and the Jacobi map coincide, and the de-
composition group of any place on Y above P is the subgroup in G/H generated by P itself. In
particular the fiber of τ above P splits over K if and only if P is sent into H by the Jacobi map.
Equivalently the class of P − P1 belongs to H .

7.2. An example. In this section K is the field with three elements andX is the plane projective
curve with homogeneous equation

Y 2Z3 =X(X −Z)(X3 +X2Z + 2Z3).
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This is a smooth absolutely integral curve of genus 2. The characteristic polynomial of the
Frobenius of X/K is

(15) χK(t) = t4 + t3 + 2t2 + 3t + 9.

The characteristic polynomial of the Frobenius of a curve over a finite field (given by a reasonable
model) can be computed in time polynomial in p.g.n where p is the characteristic of the field, n
its degree over the prime field, and g the genus of the curve, using the so called p-adic methods
introduced by Kato-Lubkin [25], Satoh [39], Mestre [31], Kedlaya [26], Lauder and Wan [29]
and widely extended since then.

When the genus of the curve is fixed, the characteristic polynomial of the Frobenius can be
computed in time polynomial in the logarithm of the cardinality of K, using the `-adic method
introduced by Schoof [41] and generalized by Pila [33].

We deduce from Equation (15) that the jacobian variety JX of X has

χK(1) = 16

rational points. There are 5 places of degree 1 on X . We call P1 the unique place at (0,1,0) and
let

P2 = (0,0,1), P3 = (1,0,1), P4 = (2,2,1), P5 = (2,1,1).
The Picard group JX(K) is the direct sum of a subgroup of order 8 generated by the class of

P4 − P1 and a subgroup of order 2 generated by P2 − P1. The class of 4(P4 − P1) is the class of
P3 − P1. The classes of P2 − P1 and P3 − P1 generate a subgroup H of Pic0(X) isomorphic to
(Z/2Z)2. The quotient group

G = JX(K)/H = Pic0(X)/H
is cyclic of order 4 generated by P4 − P1. So the subcover τ ∶ Y → X of Ymax associated with H
is cyclic of order 4. And the fibers above P1, P2, and P3 in this cover all split over K. We will
work with this cover.

According to Kummer theory, there is a duality (as group schemes) between the prime to p part
of Pic0(X) and the étale part of the kernel of FK−p. Associated to the quotient G = Pic0(X)/H
there must be a subgroup scheme isomorphic to lµ.. 4 inside the latter kernel.

We let ζ be a primitive fourth root of unity in K̄ and denote L the degree two extension of
K generated by ζ . In order to find the group of order 4 we are interested in, we use algorithms
to compute the kernels of FK − 1 and FK − p described in [13, Chapter 13]. The idea is to pick
random elements in JX(L) and project them onto the relevant characteristic subspaces for the
action of FK, using our knowledge of the characteristic polynomial χK. We set

P6 = (2ζ,2) and Γ = 2(P6 − P4)
and find that the class γ of Γ is of order 4 and satisfies

FK(γ) = 3γ.

Thus γ generates the group we were looking for. There is a unique function R in L(X) with
divisor 4Γ and taking value 1 at P1. The cover τ ∶ Y → X we are interested in is obtained by
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adding a 4-th root r ofR to L(X). To be quite precise this construction produces the base change
to L of the cover we are interested in. This will be fine for our purpose. So we let

r = R1/4

be the 4-th root of R taking value 1 at Q1. Equivalently we define Q1 to be the point over P1
where r takes the value 1. With the notation of Section 4.3 we take

D = 2P5 and P = P1 + P2 + P3.

We call E the pullback of D by τ and Q the pullback of P . We expect

L(E) =H0(Y,OY (E))
to be a free K[G]-module of rank

deg(D) − gX + 1 = 1.
This will be confirmed by our computations. Because the fibers above P1, P2 and P3 all split
over K, the evaluation map L(E) →A is described by a 3 × 1 matrix with coefficients in K[G].

For every 2 ⩽ i ⩽ 3 we choose a 4-th root of R(Pi) in L. This amounts to choosing a point
Qi,1 in the fiber of τ above Pi. We call σ the unique element in G that sends r to ζ.r so

G ∋ σ ∶ r ↦ ζ.r.

The K-vector space L(E) decomposes over L as a sum of four eigenspaces associated to the
four eigenvalues 1, ζ , ζ2 = −1, ζ3 = −ζ of σ. Let 0 ⩽ j ⩽ 3 and let f be an eigenfunction in
L(E) associated with the eigenvalue ζj . Then the quotient f/rj is invariant by G and its divisor
satisfies

(f/rj) ⩾ −E − j.(r) = −E − j.τ∗(Γ).
So f/rj can be seen as a function on X with divisor bigger than or equal to −D − jΓ. The
eigenspace L(E)j associated to ζj is thus obtained as the image of the map

H0(X,OX(D + jΓ)) // L(E)j
F � // f = Frj

Evaluating f at Qi,1 for 1 ⩽ i ⩽ 3 then reduces to evaluating F = f/rj at Pi and multiplying
the result by the chosen 4-th root of R(Pi), raised to the power j.

This remark enables us to compute a K-basis of L(E) consisting of eigenfunctions of σ and
to evaluate the functions in this basis at the (Qi,1)1⩽i⩽3 without ever writing equations for Y .
We only need to compute the Riemann-Roch spaces associated to the divisors D + jΓ on X for
0 ⩽ j ⩽ 3. The Riemann-Roch space of a divisor D = D+ −D− on a curve X is computed in
time polynomial in the genus of X and the degrees of the positive and negative parts D+ and
D− of D, using Brill-Noether algorithm and its many variants. See [21, 50, 20] and the most
efficient general algorithm due to Makdisi [27, 28]. In case the exponent of G is large, we may
have to compute linear spaces like H0(X,OX(D + jΓ)) for large j. In that case, one should
use the method introduced by Menezes, Okamoto, and Vanstone [30] in the context of pairing
computation, in order to replace j by its logarithm in the complexity.
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Passing from the values of the eigenfunctions to the evaluation matrix E reduces to applying
an inverse Fourier transform. We find

E =
⎛
⎜
⎝

1
e1,2
e1,3

⎞
⎟
⎠

with e1,1 = 1, e1,2 = 1 + 2σ + 2σ2 + 2σ3, e1,3 = 2 + 2σ + 2σ2 + σ3.

Having a unit for e1,1 is quite convenient. In general one says that E is systematic when the top
square submatrix is the identity. This is possible when the first points Qi,1 form a basis for the
dual of L(E). This situation is generic in some sense but not granted. From a systematic matrix
E it is trivial to deduce the associated checking and interpolation matrices

C =
⎛
⎜
⎝

e1,2 e1,3
−1 0
0 −1

⎞
⎟
⎠

and I = (1 0 0) .

8. INTERPOLATION ON ALGEBRAIC CURVES

In this section we recall two classical applications of interpolation on algebraic curves over
finite fields and illustrate the benefit of K[G]-module structures in this context. Section 8.1 is
concerned with the multiplication tensor in finite fields. In Sections 8.2 and 8.3 we see that
geometric codes associated to G-equivariant divisors can be encoded in quasi-linear time and
decoded in quasi-quadratic time if G is abelian, acts freely, and is big enough.

8.1. The complexity of multiplication in finite fields. The idea of using Lagrange interpolation
over an algebraic curve to multiply two elements in a finite field is due to Chudnovsky [10]
and has been developped by Shparlinski, Tsfasmann and Vladut [45], Ballet and Rolland [3],
Chaumine [9], Randriambololona [37] and others.

Let K be a finite field and let o ⩾ 2 be an integer. Let Y be a smooth, projective, absolutely
integral curve over K andB an irreducible divisor of degree o on Y . We call L =H0(B,OB) the
residue field at B. We choose a divisor E disjoint from B and assume that the evaluation map

eB ∶H0(Y,OY (E)) → L

is surjective so that elements in L can be represented by functions in H0(Y,OY (E)). The latter
functions will be characterized by their values at a collection (Qi)1⩽i⩽N of K-rational points on
Y . We denote

eQ ∶H0(Y,OY (2E)) →KN

the evaluation map at these points which we assume to be injective. The multiplication of two ele-
ments eB(f1) and eB(f2) in K can be achieved by evaluating f1 and f2 at theQi, then multiplying
each f1(Qi) by the corresponding f2(Qi), then finding the unique function f3 inH0(Y,OY (2E))
taking value f1(Qi)f2(Qi) atQi, then computing eB(f3). The number of bilinear multiplications
in K in the whole process is equal to N .

This method uses curves over K with arbitrarily large genus having a number of K-points
bigger than some positive constant times their genus. It bounds the K-bilinear complexity of
multiplication in L by an absolute constant times the degree o of L over K, but it says little
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abound the linear part of the algorithm : evaluation of the maps eB and eQ and their right (resp.
left) inverses.

Now assume that the group of K-automorphisms of Y contains a cyclic subgroup G of order
o acting freely on Y . We call τ ∶ Y → X the quotient by G map. Assume that B is the fiber of τ
above some rational point a on X . Assume that E (resp. Q) is the pullback by τ of a divisor D
(resp. P ) on X . Under mild conditions, all the linear spaces above become free K[G]-modules
and the evaluation maps are G-equivariant. A computational consequence is that the linear part
in the Chudnovsky algorithm becomes quasi-linear in the degree o of the extension L/K. This
remark has been exploited in [11] to bound the complexity of multiplication of two elements in a
finite field given by their coordinates in a normal basis. The decompositions of the multiplication
tensor that are proven to exist in [11] can be actually computed using the techniques presented
in Section 7.

8.2. Geometric codes. The construction of error correcting codes by evaluating functions on
algebraic curves of higher genus is due to Goppa [15, 16]. Let Y be a smooth, projective,
absolutely integral curve over a finite field K of characteristic p. Let d be the degree of K over
the prime field Z/pZ. Let gY be the genus of Y . Let Q1, . . . , QN be pairwise distinct K-rational
points on Y . Let ti be a uniformizing parameter at Qi. Let E be a divisor that is disjoint from
Q = Q1 + ⋅ ⋅ ⋅ +QN . Assume that

(16) 2gY − 1 ⩽ deg(E) ⩽ deg(Q) − 1.
Let

A =H0(Q,OQ) =H0(Y,OY /OY (−Q)) ≃ KN

be the residue algebra at Q. Let

Â =H0(Y,Ω1
Y /K(−Q)/Ω1

Y /K) ≃
N

⊕
i=1

Kdti
ti

≃ KN

be the dual of A. Evaluation at the Qi defines an injective linear map

L(E) =H0(Y,OY (E)) →A.
We similarly define an injective linear map

Ω(−Q +E) =H0(Y,ΩY /K(−Q +E)) → Â.
The two vector subspaces L(E) and Ω(−Q + E) are orthogonal to each other. They can be
considered as linear codes over K and denoted CL and CΩ respectively. The code CL has length
N , dimension

K = deg(E) − gY + 1
and minimum distance greater than or equal to N − deg(E). Given a basis of L(E) one defines
the generating matrix EE of the codeCL to be theN×K-matrix of the injectionL(E) →A = KN .
One similarly defines the parity-check matrix CE to be the N ×(N −K)-matrix of Ω(−Q+E) →
Â. We finally call IE the K ×N -matrix of some projection of A onto CL. A message of length
K is encoded by multiplying the corresponding column on the left by EE . The received word is
checked by multiplying it on the left by the transpose of CE . And the initial message is recovered
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from a correct codeword applying the interpolation matrix IE . In full generality, coding, testing
and interpolating respectively require 2NK, 2N(N −K) and 2KN operations in K.

Assume now that the group of K-automorphisms of Y contains a finite commutative subgroup
G of order o acting freely on Y . Let τ ∶ Y →X be the quotient by G map. Assume that o divides
N and let

n = N/o.
Assume that Q is the pullback by τ of a divisor

P = P1 + ⋅ ⋅ ⋅ + Pn
on X . Assume that E is the pullback of some divisor D on X . We are thus in the situation of
Section 4. The code CL is a free K[G]-submodule of A of rank

k =K/o
and CΩ is its orthogonal module for the K[G]-bilinear form defined in Section 3.3.

The matrices EE , CE , and IE can be seen as matrices with coefficients in K[G] of respective
sizes n × k, n × (n − k), and k × n. Coding now requires 2nk operations in K[G] rather than
2NK operations in K. According to Proposition 15, each such operation requires less than
Q.d2.o. log o operations in Z/pZ and Z/p′Z where p′ ⩽ Q.(o.p)11 for some absolute constant Q.
The total cost of coding is thus bounded by a constant times

NK

o2 .d2.o. log o(log p + log o)

elementary operations. Assuming that

(17) log o is bigger than a positive constant times k log p
we bound the encoding complexity by a constant times

N(logN)3d2

elementary operations, where d is the degree of K over the prime field Z/pZ and N is the length
of the code. We obtain the same complexity estimate for parity-checking and interpolating.

8.3. Basic decoding. In the situation of the beginning of Section 8.2 we assume that we have
received a message r in A = KN . Let c be the closest codeword to r in CL for the Hamming
distance in KN . Write

r = c + ε
and call ε the error vector. Let f be the unique function in L(E) such that f = c mod Q. The
support of the error vector ε is the effective divisor Supp(ε) consisting of all points Qi where ε
is not-zero. The degree of Supp(ε) is the number of errors in r.

The principle of the basic decoding algorithm [23, 46] is : if a0 is a small degree function
vanishing at every point in the support Supp(ε) then a0r = a0c mod Q is the residue modulo
Q of an algebraic function a0f of not too large degree. This function can be recovered from its
values at Q if N is large enough. More concretely we let E0 be some auxiliary divisor on Y with
degree at least gY and set

E1 = E +E0.
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We call P the subspace of L(E0) consisting of all a0 such that there exists a1 in L(E1) with
a0r = a1 mod Q. Non-zero elements in P are denominators for r in the sense of Section 5. We
just saw that every function in L(E0) vanishing at every point in the support of ε belongs to P .

Conversely if a0 is in P then a0r belongs to L(E1) modulo Q. But a0c belongs to L(E1)
modulo Q also because a0 is in L(E0) modulo Q and c is in L(E) modulo Q. So a0(r− c) = a0ε
belongs to L(E1) modulo Q. There is a function in L(E1) that is a0ε modulo Q. This function
has N − deg(Supp(ε)) zeros and degree ⩽ deg(E1) = deg(E) + deg(E0). If we assume that

(18) deg(Supp(ε)) ⩽ N − 1 − deg(E) − deg(E0)
then the latter function must be zero. So a0 vanishes at Supp(ε). Assuming Equation (18) we
thus have P = L(E0 − Supp(ε)). Assuming further that

(19) deg(Supp(ε)) ⩽ deg(E0) − g
this space is non-zero. Computing it is a matter of linear algebra and requires a constant times
N3 operations in K. Given any non-zero element a0 in P we denote A0 the divisor consisting of
all Qi where a0 vanishes. The degree of A0 is bounded by degE0. The error ε is an element in
A with support contained in A0 and such that r − ε belongs to CL. Finding ε is a linear problem
in ⩽ degE0 unknows and N − deg(E) + gY − 1 equations. The solution is unique because the
difference of two solutions is inCL and has at leastN−deg(E0) zeros. And this is strictly greater
than deg(E) by Equation (18).

Combining Equations (18) and (19) we see that the basic decoding algorithm corrects up to
dbasic errors where

(20) dbasic =
N − deg(E) − 1 − gY

2 .

Assume now that the group of K-automorphisms of Y contains a finite commutative subgroup
G of order o acting freely on Y . Let τ ∶ Y →X be the quotient by G map. Assume that o divides
N and let n = N/o. Assume that Q is the pullback by τ of a divisor

P = P1 + ⋅ ⋅ ⋅ + Pn
on X . Assume that E is the pullback of some divisor D on X . Assume that E0 is the pullback
of some divisor D0 on X . Assume that L(E0) contains a free K[G]-module of rank deg(D0) −
gX +1. According to Proposition 6, such an E0 exists if the order o of G is prime to p. According
to Proposition 7, such anE0 exists if the order o ofG is a power of p, and the cardinality q of K is
at least 4, and the genus ofX is at least 2. Another sufficient condition if that deg(D0) ⩾ 2gX −1.
According to Proposition 10 we can find a denominator a0 at the expense of Q.(o.n. log(o.n))2

operations in K and Q.o.n3 log(o.n) operations in K[G]. According to Proposition 15, each
operation in K[G] requires less than

Q.d2.o. log o(log p + log o)
elementary operations. The total cost of finding a denominator is thus bounded by a constant
times

N2.n.d2. log3(o.n.p)
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elementary operation. Assuming Condition (17) and

log o is bigger than a positive constant times n − logn

we obtain a complexity of a constant times

N2(logN)4d2

elementary operations where d is the degree of K over the prime field Z/pZ and N is the length
of the code. Once obtained a denominator, the error can be found at the same cost.

9. GOOD GEOMETRIC CODES WITH QUASI-LINEAR ENCODING

In this section we specialize the constructions presented in Sections 8.2 and 8.3 using curves
with many points and their Hilbert class fields. We quickly review in Section 9.1 some standard
useful results and observations which we apply in Section 9.2 to the construction of families of
good geometric codes having quasi-linear encoding and a quasi-quadratic decoder. Recall that a
family of codes over a fixed alphabet is said to be good when the length tends to infinity while
both the rate and the minimum distance have a strictly positive liminf.

9.1. Controling the class group and the Artin map. We keep the notation in Section 7.1. In
particular P1 is a K-rational point on X and

jX ∶X → JX

is the Jacobi map with origin P1. For the applications we have in mind we need some control on
the K-rational points on X , on the group Pic0(X) and most importantly on the image of X(K)
in Pic0(X) by the Jacobi map. A typical advantageous situation would be :

(1) X has enough K-rational points, that is a fixed positive constant times its genus gX ,
(2) a fixed positive proportion of these points are mapped by jX into a subgroup H ,
(3) H is not too large i.e. the quotient log ∣H ∣/ log ∣Pic0(X)∣ is smaller than a fixed constant

smaller than 1.
A range of geometric techniques relevant to that problem is presented in Serre’s course [43]

with the related motivation of constructing curves with many points. One says that (a family of)
curves over a fixed finite field of cardinality q have many points when the ratio of the number of
rational points by the genus tends to

√
q−1. Modular curvesX0(N) have many points over finite

fields with p2 elements, corresponding to supersingular moduli, as was noticed by Ihara [22] and
by Tzfasman, Vladut, and Zink [48]. These authors also find families of Shimura curves having
many points over fields with cardinality a square. Garcia and Stichtenoth [14] construct for every
square q an infinite tower of algebraic curves over Fq such that the quotient of the number of Fq-
points by the genus converges to

√
q−1, and the quotient of the genera of two consecutive curves

converges to q.
As for conditions (2) and (3) above, it is noted in [43, 5.12.4] that the images by jX of P2, . . . ,

Pn generate a subgroup H with at most n − 1 invariant factors. If the class group JX(K) has
I ⩾ n− 1 invariant factors then the size of the quotient G is bigger than or equal to the product of
the I − (n − 1) smallest invariant factors of JX(K).



EXPLICIT RIEMANN-ROCH SPACES IN THE HILBERT CLASS FIELD 25

Another favourable situation exploited in [35, 32, 49, 18] is when K has a strict subfield k and
X is defined over k and P1 is k-rational. Then the Jacobi map sends the points in X(k) into the
subgroup JX(k) of JX(K). We will use this remark in the next section.

9.2. A construction. Let k be a finite field with characteristic p. Let q be the cardinality of k.
We assume that q is a square. We consider a family of curves (Xk)k⩾1 over k having many points
over k. For example we may take Xk to be k-th curve in the Garcia-Stichtenoth tower associated
with q. We denote gX the genus of Xk. We omit the index k in the sequel because there is no
risk of confusion. We denote n the number of k-rational points on X . We denote these points
P1, . . . , Pn and let P be the effective divisor sum of all these points. We let K be a non-trivial
extension of k. We will assume that the degree of K over k is 2 because higher values seem to
bring nothing but disadvantages. We denote T the quotient

T = JX(K)/JX(k).
We denote Tp the p-Sylow subgroup of T . We denote Tp′ the complementary subgroup to Tp in
T . We call G the bigger among Tp and Tp′ . This is a quotient of T . We call H the kernel of the
composite map JX(K) → T = JX(K)/JX(k) → G. We let o be the order of G. We note that

#JX(K)/JX(k) ⩾ (√q − 1)2gX so o ⩾
√
♯T ⩾ (√q − 1)gX .

grows exponentially in gX provided q ⩾ 9. And G is either a p-group or a p′-group. We find
ourselves in the situation of Section 7.1. We call Ymax the maximal unramified cover of X over
K which is totally decomposed over K above P1. We call Y the quotient of Ymax by H . The
fibers of

τ ∶ Y →X

above the points P1, . . . , Pn all split over K. We call Q the pullback of P by τ . This is a divisor
on Y of degree

N = o.n.

We choose a real number % such that

(21) 0 < % <
√
q

2 − 2.

Our goal is to correct up to %.o.gX errors. Let D be a divisor on X that is disjoint from P and
such that

deg(D) = ⌈(√q − 2 − 2%)gX⌋
the closest integer to (√q−2−2%)gX . LetE be the pullback ofD by τ . We deduce from Equation
(21) that condition (16) is met at least asymptotically. From X , Y , E, and Q the construction in
Section 8.2 produces a code CL over the field K with q2 elements, having length

N = o.n ≃ (√q − 1).o.gX
and dimension

K = o.(deg(D) − gX + 1) ≃ (√q − 3 − 2%).o.gX .
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The code CL can be encoded and parity-checked in quasi-linear deterministic time in its length
N . One can decode with the same complexity when there are no errors. Using the basic de-
coding algorithm as in Section 8.3 one can decode in the presence of errors in quasi-quadratic
probabilistic (Las Vegas) time up to the distance

dbasic =
N − deg(E) − 1 − gY

2 ≃ %.o.gX
defined by Equation (20). We denote δbasic the relative distance dbasic/N . The existence of a
divisor D0 with all the properties required in Section 8.3 is granted because G is either a p-group
or a p′-group. So we can apply Proposition 6 or Proposition 7 depending on the case.

Proposition 16. Let p be a prime integer and let q be a power of p. Assume that q is a square
and

(22) q ⩾ 25.
Let % be a real such that

(23) 0 < % <
√
q

2 − 2.

The construction above produces a family of error correcting codes over the field with q2 ele-
ments having length N tending to infinity and such that

(1) the codes can be encoded in quasi-linear time in their length,
(2) the rate R satisfies

limR =
√
q − 3 − 2%
√
q − 1

(3) the codes can be decoded in quasi-quadratic probabilistic (Las Vegas) time in N up to
the relative distance δbasic and

lim δbasic =
%

√
q − 1 .

We may want to use the general purpose algorithm of Beelen, Rosenkilde, Solomatov [5] to
decode up to half the Goppa designed minimum distance. Inequalities (22) and (23) are then
replaced by

q ⩾ 16 and 0 < % <
√
q − 3
2 ,

and the limit of the rate is now

limR =
√
q − 2 − 2%
√
q − 1 .

However the complexity of decoding is then of order µω−1(N + gY ) where N is the length of the
code, µ is the gonality of Y , and ω is the exponent in the complexity of matrix multiplication.
Curves with many points have large gonality. In particular µ ⩾ N/(q2 + 1) in our situation, so
that for fixed q, the complexity of this decoder is of order greater than Nω. It is known [1] that
2 ⩽ ω < 2.37286 but it is not granted that ω = 2.

Power decoding [40] seems attractive in the context of K[G]-modules because of its purely
linear nature. However the rigorous analysis of its performances is delicate in general [34] and
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particularly here because we fix the base field, let the genus tend to infinity and use a rather rigid
construction.

REFERENCES

[1] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 522–539. SIAM, 2021.

[2] S. Ballet and D. Le Brigand. On the existence of non-special divisors of degree g and g−1 in algebraic function
fields over Fq . J. Number Theory, 116(2):293–310, 2006.

[3] S. Ballet and R. Rolland. Multiplication algorithm in a finite field and tensor rank of the multiplication. J.
Algebra, 272(1):173–185, 2004.

[4] Stéphane Ballet. Curves with many points and multiplication complexity in any extension of Fq . Finite Fields
Appl., 5(4):364–377, 1999.

[5] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast decoding of ag codes, 2022.
[6] Leo I. Bluestein. A linear filtering approach to the computation of discrete Fourier transform. IEEE Transac-

tions on Audio and Electroacoustics, 18:451–455, 1970.
[7] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf, Bruno Salvy, and Éric Schost.

Algorithmes efficaces en calcul formel, August 2017. 686 pages. Édition 1.0.
[8] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples. Springer,

Berlin, 2012. Second revised edition of the 1958 edition.
[9] Jean Chaumine. Multiplication in small finite fields using elliptic curves. In Algebraic geometry and its appli-

cations, volume 5 of Ser. Number Theory Appl., pages 343–350. World Sci. Publ., Hackensack, NJ, 2008.
[10] D. V. Chudnovsky and G. V. Chudnovsky. Algebraic complexities and algebraic curves over finite fields. J.

Complexity, 4(4):285–316, 1988.
[11] Jean-Marc Couveignes and Tony Ezome. The equivariant complexity of multiplication in finite field extensions.

J. Algebra, 622:694–720, 2023.
[12] Charles W. Curtis and Irving Reiner. Representation theory of finite groups and associative algebras, volume

Vol. XI of Pure and Applied Mathematics. Interscience Publishers, New York-London, 1962.
[13] Bas Edixhoven and Jean-Marc Couveignes, editors. Computational aspects of modular forms and Galois rep-

resentations, volume 176 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2011.
[14] Arnaldo García and Henning Stichtenoth. A tower of Artin-Schreier extensions of function fields attaining the

Drinfeld-Vladut bound. Invent. Math., 121(1):211–222, 1995.
[15] V. D. Goppa. Codes on algebraic curves. Dokl. Akad. Nauk SSSR, 259(6):1289–1290, 1981.
[16] V. D. Goppa. Algebraic-geometric codes. Izv. Akad. Nauk SSSR Ser. Mat., 46(4):762–781, 896, 1982.
[17] V. D. Goppa. Geometry and codes, volume 24 of Mathematics and its Applications (Soviet Series). Kluwer

Academic Publishers Group, Dordrecht, 1988.
[18] Venkatesan Guruswami and Chaoping Xing. Optimal rate list decoding over bounded alphabets using

algebraic-geometric codes. J. ACM, 69(2):Art. 10, 48, 2022.
[19] D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progres-

sion. Proc. London Math. Soc. (3), 64(2):265–338, 1992.
[20] F. Hess. Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symbolic Comput.,

33(4):425–445, 2002.
[21] Ming-Deh Huang and Doug Ierardi. Efficient algorithms for the Riemann-Roch problem and for addition in

the Jacobian of a curve. J. Symbolic Comput., 18(6):519–539, 1994.
[22] Yasutaka Ihara. Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac.

Sci. Univ. Tokyo Sect. IA Math., 28(3):721–724 (1982), 1981.
[23] Jørn Justesen, Knud J. Larsen, H. Elbrønd Jensen, Allan Havemose, and Tom Høholdt. Construction and

decoding of a class of algebraic geometry codes. IEEE Trans. Inform. Theory, 35(4):811–821, 1989.



28 JEAN-MARC COUVEIGNES AND JEAN GASNIER

[24] Erich L. Kaltofen and B. David Saunders. On Wiedemann’s method of solving sparse linear systems. In
Harold F. Mattson, Teo Mora, and T. R. N. Rao, editors, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, 9th International Symposium, AAECC-9, New Orleans, LA, USA, October 7-11, 1991,
Proceedings, volume 539 of Lecture Notes in Computer Science, pages 29–38. Springer, 1991.

[25] Goro C. Kato and Saul Lubkin. Zeta matrices of elliptic curves. J. Number Theory, 15(3):318–330, 1982.
[26] Kiran S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanu-

jan Math. Soc., 16(4):323–338, 2001.
[27] Kamal Khuri-Makdisi. Linear algebra algorithms for divisors on an algebraic curve. Math. Comp.,

73(245):333–357, 2004.
[28] Kamal Khuri-Makdisi. Asymptotically fast group operations on Jacobians of general curves. Math. Comp.,

76(260):2213–2239, 2007.
[29] Alan G. B. Lauder and Daqing Wan. Counting points on varieties over finite fields of small characteristic. In

Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res.
Inst. Publ., pages 579–612. Cambridge Univ. Press, Cambridge, 2008.

[30] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms to logarithms
in a finite field. IEEE Trans. Inform. Theory, 39(5):1639–1646, 1993.

[31] J.-F. Mestre. Lettre adressée à Gaudry et Harley. https://webusers.imj-prg.fr/
~jean-francois.mestre/, december 2010.

[32] Harald Niederreiter and Chaoping Xing. A general method of constructing global function fields with many
rational places. In Algorithmic number theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput.
Sci., pages 555–566. Springer, Berlin, 1998.

[33] Jonathan S. Pila. Frobenius maps of Abelian varieties and finding roots of unity in finite fields. ProQuest LLC,
Ann Arbor, MI, 1988. Thesis (Ph.D.)–Stanford University.

[34] Sven Puchinger, Johan Rosenkilde, and Irene Bouw. Improved power decoding of interleaved one-point Her-
mitian codes. Des. Codes Cryptogr., 87(2-3):589–607, 2019.

[35] Heinz-Georg Quebbemann. Cyclotomic Goppa codes. IEEE Trans. Inform. Theory, 34(5):1317–1320, 1988.
Coding techniques and coding theory.

[36] Lawrence R. Rabiner, Ronald W. Schafer, and Charles M. Rader. The chirp z-transform algorithm and its
application. Bell System Tech. J., 48:1249–1292, 1969.

[37] Hugues Randriambololona. Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation
method. J. Complexity, 28(4):489–517, 2012.

[38] Michael Rosen. The Hilbert class field in function fields. Exposition. Math., 5(4):365–378, 1987.
[39] Takakazu Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J.

Ramanujan Math. Soc., 15(4):247–270, 2000.
[40] Georg Schmidt, Vladimir R. Sidorenko, and Martin Bossert. Syndrome decoding of Reed-Solomon codes

beyond half the minimum distance based on shift-register synthesis. IEEE Trans. Inform. Theory, 56(10):5245–
5252, 2010.

[41] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp.,
44(170):483–494, 1985.

[42] Jean-Pierre Serre. Algebraic groups and class fields, volume 117 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1988.

[43] Jean-Pierre Serre. Rational points on curves over finite fields, volume 18 of Documents Mathématiques (Paris).
Société Mathématique de France, Paris, 2020. With contributions by Everett Howe, Joseph Oesterlé and
Christophe Ritzenthaler.

[44] Mohammad Amin Shokrollahi. Optimal algorithms for multiplication in certain finite fields using elliptic
curves. SIAM J. Comput., 21(6):1193–1198, 1992.

[45] Igor E. Shparlinski, Michael A. Tsfasman, and Serge G. Vladut. Curves with many points and multiplication
in finite fields. In Coding theory and algebraic geometry (Luminy, 1991), volume 1518 of Lecture Notes in
Math., pages 145–169. Springer, Berlin, 1992.

https://webusers.imj-prg.fr/~jean-francois.mestre/
https://webusers.imj-prg.fr/~jean-francois.mestre/


EXPLICIT RIEMANN-ROCH SPACES IN THE HILBERT CLASS FIELD 29
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