Gelfand Type Elliptic Boundary Problems: a Synoptic Novel Codification of Solutions & Non-Solutions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Gelfand Type Elliptic Boundary Problems: a Synoptic Novel Codification of Solutions & Non-Solutions

Edoardo Niccolai
  • Fonction : Auteur
  • PersonId : 1185944

Résumé

The Gelfand problem has its charm in its openness to multiple solutions and non-solutions. We focus our efforts on: 1-, 2-, 3- or higher-space dimensions; videlicet: $\mathrm{D} = 1 \leqslant n \leqslant 9$, $\mathrm{D} = 3 \leqslant n \leqslant 9$, $\mathrm{D} = n \geqslant 10$, $\mathrm{D} = n \geqslant 11$. Accounts are also given when the problem is dealing with a geodesic ball (spherical cap), and with no deformation of the $\mathbb{R}$-metric and no decrement of the Ricci scalar. Sifting through even just a part of the pertaining bibliography, curiosities, inaccuracies, and inedited observations emerge. For those in need of completeness there is an appendix on Lebesgue's and Picard–Lindelöf's theorems. This article presents five proofs together with a proof sketch and a hint of proof (because they are already present elsewhere). Not only. There is, for minds suited to a broad vision, a critical annotation (in cauda venenum).
Fichier principal
Vignette du fichier
gp.pdf (894.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04219781 , version 1 (11-03-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04219781 , version 1

Citer

Edoardo Niccolai. Gelfand Type Elliptic Boundary Problems: a Synoptic Novel Codification of Solutions & Non-Solutions. 2024. ⟨hal-04219781⟩

Collections

TDS-MACS
131 Consultations
124 Téléchargements

Partager

More