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GELFAND TYPE ELLIPTIC BOUNDARY PROBLEMS:
A SYNOPTIC NOVEL CODIFICATION
OF SOLUTIONS & NON-SOLUTIONS

EDOARDO NICCOLAI

Abstract. The Gelfand problem has its charm in its openness to multiple solutions and non-
solutions. We focus our efforts on: 1-, 2-, 3- or higher-space dimensions; videlicet: D = 1 ⩽ n ⩽ 9,
D = 3 ⩽ n ⩽ 9, D = n ⩾ 10, D = n ⩾ 11. Accounts are also given when the problem is dealing
with a geodesic ball (spherical cap), and with no deformation of the R-metric and no decrement
of the Ricci scalar. Sifting through even just a part of the pertaining bibliography, curiosities,
inaccuracies, and inedited observations emerge. For those in need of completeness there is an
appendix on Lebesgue’s and Picard–Lindelöf’s theorems. This article presents five proofs together
with a proof sketch and a hint of proof (because they are already present elsewhere). Not only.
There is, for minds suited to a broad vision, a critical annotation (in cauda venenum).

Keywords: Gelfand problem, elliptic boundary problems, classification of solutions and non-
solutions from 1- to 3- or higher-space dimensions, Emden–Fowler equation and transformation,
infinity Laplacian (△∞), (hemi)spherical spaces, Dirichlet boundary, perturbations, Hardy’s
inequality (or Hardy–Littlewood–Pólya inequality), Picard–Lindelöf theorem, mini-version of
Lebesgue’s dominated convergence theorem.
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1. Intro: Euler–Lagrange Versatile Ancestry

An ancestor of the Gelfand problem (gp) can be reconstructed directly from the Euler–Lagrange
formulæ, as a semi-linear partial differential equations,{

−△lb υ = φ(υ) in Ω ∈ Rn,
υ = 0 on ∂Ω,

(1a)
(1b)

where
△lb

eqv
== △ is the Laplace–Beltrami operator, which we can be identify with a diffusion operator,

υ ∈ SΩ
eqv
== C2

0S(
“Ω), assuming SΩ is a function (sub)space,

Ω ∈ Rn is a bounded region of the Euclidean n-space, and
∂Ω is a smooth boundary.
Eq. (1a) has a weak yet stable solution, whilst Eq. (1), in its very doubleness, is in use for the

energy functional
E[Ω](υ) : SΩ → Rn,

E[Ω](υ) =

(
1

2

ˆ
Ω∈Rn

∣∣∇2υ
∣∣ dx)−

(ˆ
Ω∈Rn

ϖ

[C2](υ)dx

)
, ζλk(t) ∈ SΩ\{0}, (2)

where

ϖ: Rn → Rn is a C2-function.

We recall that certain variations of E-energy, according to the flow of time t ∈ Rn, have the advantage
of determining when a stable critical point of E[Ω] is zero, for a given function ζ : Rn → Rn, viz.

ζ(t) = E[Ω]

(
υ + ζλk(t)

)
, (3)

with the intervention of the k-th eigenvalue ζλk of the Dirichlet Laplacian in Ω. In fact, it is enough
to fix

ζλk(t)

t
− ζλk(0)

t
=

ˆ
Ω∈Rn

∇υ∇ζλkdx+

(´
Ω∈Rn |∇ζλk |

2
dx
)
t

2
−
ˆ
Ω∈Rn

−

ϖ(υ)− ϖ

(
tζλk + υ

)
t

dx.

(4)
NB. E[Ω] is a functional whose derivative occurs at each point in its domain, that is, its

differentiability is related to υ ∈ SΩ , while its derivative is DE[Ω](υ) = 0, and the differentiation is
a Fréchet-like process [35] on a normed spaces.

For the Lagrange theorem, one gets∣∣∣∣− ϖ(υ)− ϖ(tζλk + υ)

t

∣∣∣∣ ⩽ ∥φ∥L∞[−α,α], φ = ˙ ϖ, (5)

putting
α = ∥υ∥L∞(Ω) + ∥ζλk∥L∞(Ω),a and
|t| ⩽ 1.
By Lebesgue’s dominated convergence theorem [52] (see Appendix, Theorem 6.2), one has

ˆ
Ω∈Rn

∇υ∇ζλkdx =

ˆ
Ω∈Rn

φ(υ)ζλkdx (6)

by establishing t→ 0, and ζ̇λk(0) = 0. From which
ˆ
Ω∈Rn

−ζλk
(
φ(υ) +△ υ

)
dx = 0. (7)

a L∞ is a generalization of the vector Lp space, whose norm is ensured by the essential supremum: |φL|∞ = ess sup |φL|.
To be precise, L∞ is a Banach space of bounded sequence.
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2. Gelfand Problem from Semi-linear Elliptic Formulæ

From the previous section we can move to define the constitutive Gelfand problem of stable
solutions of semi-linear elliptic equations:{

−△Bn υ = λeυ in Bnρ=1,

υ = 0 on ∂Bnρ=1,

(8a)
(8b)

where
△Bn is, again, the differential operator but in the ball model, and it is in the guise of diffusion

operator,
λ > 0 is a (positive) parameter,
Bnρ=1 ⊂ Rn+1, n ⩾ 1, is the unit ball of Rn⩾1.
The propagation is regulated by the diffusion of temperature, i.e. of heat conduction, from

hot areas towards the cold boundary, according to the non-linearity of a law established by S.
Arrhenius [4], under a chemical reaction with

φε(υ) = e

в

, в=
υ

1 + ευ
, (9)

being ε > 0 a value sufficiently small. In logarithmic appearance, Eq. (9) takes the form

logφε(υ) =
υ log e

1 + ευ
. (10)

Two perspectives open up.
(1) The first is a no steady-state, in which the pair of Eqq. (8) is not valid, because there is no

stability (it may happen that the fuel undergoes a rarefaction, due to the small quantity, and the
reaction is extinguished, or there may be too much fuel, which leads to a thermal explosion).

(2) The second one is a steady combustion process, as there is a stability, thanks to a very fast
balance between the produced and the diffused heat, whose quantification is provided by λ > 0
(which can be considered, historically, as the Frank-Kamenetskii constant), and the pair of Eqq.
(8) works.

In summary, if the value of λ is large, the pair (8) ceases to be valid; if the value of λ is small,
the pair (8) is valid.

As it is well known, for n = 1, 2, 3, the Gelfand problem is applied to self-heating and self-ignition
studies, e.g. when it is dealing with a container with a cylindrical shape, which is in a steady-state
regime, viz. in an intermediate asymptotic range, see e.g. I.M. Gelfand [36], A. Farina [29].

The above can be summarized as follows.

Starting Theorem 2.1. We say that λ̆ denotes the maximal value, or the extremal (parameter),
of λ. Letting λ̆ = λ̆(n) > 0, n ⩾ 1,

(1) if λ > λ̆, there is no solution of (8),
(2) if 0 < λ < λ̆, there is a minimal solution

υmin
λ ∈ C2

(
B̄
)

of (8), which is a stable.
Let us go into details, by placing before the positive cases (those with solutions).

2.1. Gelfand Problem for Various Dimensions

2.1.1. Gelfand Problem in 111-Space Dimension

Theorem 2.1 (The n = 1 case). When n = 1, the pair (8) takes this form

n = 1

{
− ϋ = λeυ,

υ(−1) = υ(+1) = 0.

(11a)
(11b)

Let λ̆ > 0.
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(1) If 0 < λ < λ̆, one has two positive solutions, which are strictly decreasing in the interval
(0, 1], whose determination is precisely in x = 0,

(i) the so-called minimal solution,

υmin
λ ∈ C2[−1,+1], (12)

which provides stability to Gelfand equation(s) in the form (11), and
(ii) a solution with Morse index [62] [2] im = 1, which can be written as

υλ(im).

The curved line (
0, λ̆
)
−→ C2[−1,+1]× C2[−1,+1], λ 7→

(
υλ, υλ(im)

)
,

turns out to be smooth, for any x ∈ (−1,+1), so that
lim
λ→0+

{
υλ(x), υλ(im)(x)

}
= (0,+∞),

lim
λ→λ̆

{
υλ(x), υλ(im)(x)

}
=
(
ῠ(x), ῠ(x)

)
,

(13a)

(13b)

once it is specified that
ῠ(x) ∈ C2[−1,+1]

is the unique solution to the pair of Eqq. (11).
(2) If λ > λ̆, there is no solution of the type (12).

Proof. For simplicity, the demonstration can be divided into four parts.
(α) We just said that υ is the solution to (11), in two versions: υλ and υλ(im). But

υ > 0 and − ϋ > 0 have no point of minimum in (−1,+1).

To circumvent this issue, write{
− 1

2 υ̇
2 = λ

(
eυ − eυ(0)

)} eqv
==

 −υ̇
√
2
√
λ
(
−eυ + eυ(0)

) = 1

 , (14)

so as to reach a partial solution to the pair of Eqq. (11), which is
ˆ υ(0)

0

dt

[:
√√

2λ
(
−et + eυ(0)

)
:]

= 1. (15)

Let us integrate between 0 and ϱ ∈ (0, 1). Knowing that we are dealing with υ as a even function,
and that υ̇[ϱ ∈ (0, 1)] < 0, the solution to the pair of Eqq. (11) will be

ˆ υ(0)

υ(ϱ)

dt

[: · · · :]
= ϱ ∈ (0, 1), (16)

where the symbols [: · · · :] signify that the expression within them shall be repeated (compare with
the beginning and ending repeat signs in music notation).

(β) Let us keep within the value λ̆ > 0. One has three results:
(i) a first solution for λ = λ̆,
(ii) two solutions for λ ∈ (0, λ̆),
(iii) no solution for λ > λ̆.

Let

R∗ = {0} ∪ R+

н
(
υ(0)
)

−−−−−→ R, υ(0) > 0

be a function in the interval (0,max], where

н
(
υ(0)

)
=

ˆ υ(0)

0

(
1√

eυ(0) − et

)
dt. (17)
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The maximum (max) lies in ῠ(0), going to meet

lim
υ(0)→0+

н
(
υ(0)

)
= lim
υ(0)→+∞

н
(
υ(0)

)
= 0. (18)

And with that we have proved the three points above requested.
(γ) Let ζλ ∈ C1

c (Ω).a We specify Qf (υ) to be the quadratic form (map):

Qf (υ)[ζλ] =

ˆ
Ω

|∇ζλ|2 dx−
ˆ
Ω

φ̇(υ)ζ2λdx ⩾ 0. (19)

If “E ⋐ “Ω
eqv
== E ⋐ Ω designates a compact subset of Ω, then all solutions υ are unstable inside

E = {0} and stable outside of it. And this is because Qf (υ)[ζλ] ⩾ 0, ∀ζλ ∈ C1
c (0, 1). The

differentiation of the pair (11) is so equatable:

−...υ = λeυλυ̇, (20)

from which
´ 1

0
ϋ (υ̇ϖ) 2Ddϱ = λ

´ 1

0
eυ (υ̇ϖ)

2
dϱ, where ϖ ∈ C1

c (0, 1). Actually

Qf (υ)[ζλ] =

ˆ 1

0

{(
d (υ̇ϖ)

/
dϱ
)2

− λeυ (υ̇ϖ)
2
}
dϱ =

ˆ 1

0

(
υ̇
(
υ̇ϖ2

)
D
+ (υ̇ϖ̇)

2 − λeu (υ̇ϖ)
2
)
dϱ,

(21)
so we infer

Qf (υ)[ζλ] =

ˆ 1

0

(υ̇ϖ̇)
2
dϱ ⩾ 0, ζλ = υ̇ϖ. (22)

(δ) Let us look at the solution with Morse index im = 1, i.e. υλ(im) is equal to 1 or not greater
than 1. Let ϖ assume the concept of direction, and surmise that

(δ.1) ϖ ∈ C1
c (−1,+1), in such a way as to have

Qf

(
υλ(im)

)
[ϖ] < 0,

(δ.2) Qf (ζλ) ≥ 0, in a manner that ζλ(0) = 0, ∀ζλ ∈ C1
c (−1,+1).

Resultantly ζ̃λ = ζλ − ζλ(0)ϖ vanishes when the values is 0, and therefore

Qf

(
υλ(im)

) [
ζ̃λ

]
⩾ 0.

□

Marginalia 2.1 (Bifurcation in 1-space). The bifurcation for the gp in 1-space dimension looks
like this: ∥υλ∥L∞(B) on the y = ordinate, with a norm ∥υ∥∞ = υ(0), for all υ ∈ {υλ, υλ(im)}, and
λ̆ −→ λ on the x = abscissa. As long as λ → 0, one sees that, due to Eq. (13b), the solution
υλ(im), which is unstable, blows-up at every x-point, in a state where x ∈ (−1,+1).

The shape is that of a hump-like along the y-axis, starting at the point (0, 0), the origin, which
extends (or rises) its λ̆-peak along the x-axis, whilst the portion of the curve that decreases (or
descends) from the λ̆-peak approaches closer and closer to the y-axis. L

2.1.2. Gelfand–Liouville Problem in 222-Space Dimensionb

Theorem 2.2 (The n = 2 case). Let λ̆ = 2, such that, w.r.t. to the pair of Eqq. (8), there is
(1) a first result υλ, which is minimal, with a stable solution,

υmin
λ (ϱ) = ln

− 8(λ+2
√
2
√
2−λ−4)

λ2{
1 + λ

(
−λ+2

√
2
√
2−λ−4

λ2

)
ϱ2
}2 , υλ ∈ C2

(
B̄
)

(23)

and a second result υλ(im), with an unstable solution,

υλ(im)(ϱ) = ln

8(−λ+2
√
2
√
2−λ+4)

λ2{
1 + λ

(
−λ+2

√
2
√
2−λ+4

λ2

)
ϱ2
}2 , υλ(im) ∈ C2

(
B̄
)
, (24)

a Cc stands for the (linear) space of all continuous functions of compact support: the subscript c means Ccompact.
b The double name comes from Liouville’s survey [55]. On symmetric groups in a differential scene for the

Gelfand–Liouville problem, see Yu. Bozhkov, A.C. Gilli Martins [14].
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both for 0 < λ < λ̆, and ϱ ∈ [0, 1],
(2) one and only one solution under

υ(λ) = ln
4

ϱ4 + 2ϱ2 + 1
, (25)

for λ = λ̆, and ϱ ∈ [0, 1],
(3) no solution of type υλ ∈ C2

(
B̄
)
, for λ > λ̆.

Proof. The solutions we are looking for are positive with the help of the maximum principle, in
which the usual bounded domain Ω ∈ Rn⩾1 applies; inasmuch as the function υ ∈ C2(Ω) ∩ C0(Ω̄)
fulfils {−△ υ ⩾ 0 in Ω,

υ ⩾ 0 on ∂Ω,
(26a)
(26b)

it is evident that in Ω there exists υ = 0, or υ > 0. Any solution requires that the boundary
condition υ(1) = 0, ergo

− 8(λ+2
√
2
√
2−λ−4)

λ2 =

{
1 + λ

(
−λ+2

√
2
√
2−λ−4

λ2

)2}
. (27)

From here we can deduce that the results of our interest are
λ < λ̆ having a solution equal to 2, cf. Eqq. (23) (24),
λ = λ̆ having a solution equal to 1, cf. Eq. (25),
λ > λ̆ having a solution equal to 0, look at point (3).
Not only. The symmetrical radiality of each solution is a corollary of what was proved by

Gidas–Ni–Nirenberg [37], directly including symmetry of positive solutions of second order elliptic
equations. □

NB. A study on the blow-up mechanism for solutions in 2-space of{
−△ υ = ηLp(x)e

υ in Ω ⊂ R2,

υ = 0 on ∂Ω,
(28a)
(28b)

where
υ ∈ L1(Ω),
ηLp is a certain function in Lp(Ω), for 1 < p ⩽ ∞, and
eυ ∈ Lp

ce
(Ω), with pce representing the conjugate exponent of p,a

is explained in H. Brezis et F. Merle [16].

Marginalia 2.2 (Bifurcation in 2-space). The bifurcation for the gp in 2-space dimension is ∥υλ∥L∞(B)

on the y = ordinate, with a norm ∥υ∥∞ = υ(0), for all υ ∈ {υλ, υλ(im)}, and λ̆ −→ λ on the x =
abscissa. One sees that, due to Eq. (24), the solution υλ(im), which is unstable, blows-up at the
(space) origin, since

υλ(im)(ϱ) → 4(−1) ln ϱ ∈ (0, 1).

The shape is identical to that in 1-space dimension. L

2.1.3. Gelfand Problem in a Special Liouville-type Equation

Let 
ϋ(x) +

(
n

x
− 1

x

)
υ̇(x) = − λe−υ(x)

AnBρ=1Rn−2

´ 1

0

(
e−υ(x)xn−1

)
dx
,

υ = 0, υ̇(0) = 0,

(29a)

(29b)
be a Liouville-type equation (cfr. see previous Section), where
λ = sAnBρ=1

Rn−2
´ 1

0
e−υ(x)xn−1dx, in which s is a value (parameter), AnBρ=1

is the surface area
of Bρ=1, and R is the distance-radius.

a Usually the conjugate exponent e.g. of the p-norm is symbolized with p′, but I do not like this formalism, since it is
multi-semantic, and thereupon ambiguous.
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Narrowing the interval to [0, 1], and admitting that υλ(0) = 0, υ̇λ(0) = 0, our equation becomes

−ϋλ(θ) = λ

(
eυλ(θ)

/ˆ 1

0

e−υλ(θ)dθ

)
, (30)

so

υ̇2λ(θ) =
2λ´ 1

0
e−υλ(θ)dθ

e−υλ(θ) − 1, (31)

and

υλ(θ) = log cos2
√

λ

2
´ 1

0
e−υλ(θ)dθ

θ. (32)

Eq. (32) is a regular solution for any eigenvalues λn in 0 ⩾ θ < 1. The final integral will be this:

ˆ 1

0

e−υλ(θ)dθ =

ˆ 1

0

 dθ

cos2
√

λ
2
´ 1
0
e−υλ(θ)dθ

θ

 =

√
2√
λ´ 1

0
e−υλ(θ)dθ

tan

√
λ

2
´ 1

0
e−υλ(θ)dθ

, (33)

which performs as a solution to
´ 1

0
e−υλ(θ)dθ = 2

λ tan2
√

λ
2
´ 1
0
e−υλ(θ)dθ

.
NB. We are talking about a system in 2-space dimension.

2.1.4. Gelfand–Dirichlet Problem in 333- or Higher-Space Dimensiona

Theorem 2.3 (The n ⩾ 3 case). Put 3 ⩽ n ⩽ 9. Then λ̆+ 4 > 2n such that, w.r.t. to the pair of
Eqq. (8),

(1) there are poli-υ-solutions (a finite number) υ ∈ C2
(
B̄
)
, for 0 < λ < λ̆, 2n ̸= λ+ 2,

(2) there are r-solutions, r ∈ N, once it has been imposed a value ε > 0, so that ε > |−2n+λ+4|,
(3) there are poli-υ-solutions (an infinite number), for λ = 2n− 4,
(4) there is one and only one solution, for λ = λ̆,
(5) there is no solution, for λ > λ̆,
(5 bis) there is no υ ∈ C2(Rn)-solution stable of the semi-linear partial differential equation

−△ = λeυ on the Euclidean Rn⩾2-space outside a compact set of Rn, for (let us remind it once
more) 3 ⩽ n ⩽ 9, and the consequential absence of existence of solutions with finite Morse index
υλ(im); thence the sequence (υr)r∈N appears to be bounded in L∞(Ω) iff (υr) of υλ(im) is bounded
in R-space.b

Proof. When there is a solution, it is positive owing to the maximum principle via Picard–Lindelöf
theorem [67] [54] (see Appendix, Theorem 6.1)—an alternative version of which is known as Peano
theorem [66]—,c a demonstrative guarantee for the local existence and uniqueness of solutions with
initial values and derivatives, which are obviously prescribed.

(α) For this reason we start from an equation (an initial value problem) with maximal solution,{
υ(0) = α, υ̇(0) = 0, α > 0,

ϱ−(n−1)
(
ϱn−1υ̇

)
D
+ λeυ = 0,

(34a)

(34b)

generated through the fixed-point theorem. From this pair it is easy to build the integral equation
(35a) and the Emden–Fowler transformation (35b) [28] [32] [33] [34] (see Marginalia 2.4),

υ(ϱ) = α− λ

ˆ ϱ

0

ˆ τ

0

τ
(
t
τ

)n
t

eυ(t)dtdτ, ϱ ⩾ 0,

α+ ψ(t) = υ(ϱ) + 2t, ϱ =
√
2et
√
e−α(n− 2)

λ
.

(35a)

(35b)

a The double name comes from Dirichlet’s survey, explored by D.D. Joseph & T.S. Lundgren [43].
b See E.N. Dancer and A. Farina [23].
c The Peano existence theorem, unlike Picard–Lindelöf theorem, does without the Lipschitz continuity.
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This transforms the equational pair (34) into the following expressions:

ψ̈ + nψ̇ − 2ψ̇ + 2(n− 2)eψ − 2n+ 4

limt→−∞ ψ(t)− 2t = limt→−∞ e−t
(
ψ̇(t)− 2

) = 0, (36)

for which, by setting χ(t)+2t = ψ(t), there is a unique solution in the interval (−∞, T ), determined
by this integral,

χ(t) = 4− 2n

(ˆ t

−∞
e(4−2n)τ

)
dτ

ˆ τ

−∞
ens+χ(s)ds. (37)

NB. Evidence for the aforementioned interval (−∞, T ) emerges from the Lyapunov exponent
[57],a

λl(ψ) = 2(n− 2)eψ − 1

2
ψ(4n− ψ − 8), (38)

hence
dλl(ψ)

dt
= 2(n− 2)eψψ̇ − ψ̇(−ψ̈ + 2n− 4) = (2− n)ψ̇2 ⩽ 0. (39)

If we consequently write the pair of Eqq. of № (36) as
d

dt

(
ψ

ψ̇

)
=
(

ψ̇

−(n−2)(ψ̇−2)−2(n−2)eψ

)
, (40)

we will find that (0, 0) is the unique stationary point, and it and can be depicted as a spiral attractor
with these eigenvalues

1
2

(
−n− i

√
−(n− 10)(n− 2) + 2

)
, (41a)

1
2

(
−n+ i

√
−(n− 10)(n− 2) + 2

)
. (41b)

(β) The ψ-function is presumed to be the solution to the pair of Eqq. of № (36); we accordingly
introduce the orbit

Γ\UnR =
{
(ψ, ψ̇) =

(
ψ(t), ψ̇(t)

)}
t∈R

, (42)

with an asymptotic behavior to ψ̇ = 2, during the time t = −∞, in the phase plane (ψ, ψ̇). Then
the orbit Γ\UnR lies in the half-space

UnR =
{
(ψ, ψ̇)

∣∣ ψ̇ < 2
}
, (43)

and the trajectory spirals towards the stationary (0, 0)-point. And indeed

lim
t→−∞

ϱ−2
{
ψ̇(t) + 2

(
eψ(t) − 1

)}
= λeα

{
2

(n− 2)n

}
> 0. (44)

It is thereby possible to subsequently satisfy, with some passages, the requirements (1) (2) (3) (4)
(5) of the Theorem. Also in these dimensionalities, the symmetrical radiality of each solution is
proved by Gidas–Ni–Nirenberg [37].

□

Marginalia 2.3 (Bifurcation in 3- or higher space). The bifurcation for the gp in 3- or higher-space
dimension has a dual nature.

(1) In D = 3 ⩽ n ⩽ 9 the values approached asymptotically are fixed by ∥υλ∥L∞(B) on the y =

ordinate, and 2(n− 2)
eqv
== 2n− 4 plus λ̆ −→ λ on the x = abscissa.

About the shape: the peak is in λ̆, but the bifurcation scheme has an approximately sinusoidal
trend, which gets smaller and smaller in the multiple succession between a peak and a trough; the
curve remains distant from the y-axis, as it has a winding line along the value 2(n− 2)

eqv
== 2n− 4.

(2) In D ⩾ 10 the value ∥υλ∥L∞(B) is on the y = ordinate, and λ̆ −→ λ on the x = abscissa.
About the shape: the line starts from the origin (0, 0), and creates a curve that approaches

indefinitely near to the vertical axis in λ̆, on the x = abscissa. L

a Cf. [64, margo 13.2.2].
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Marginalia 2.4 (Emden–Fowler tools for non-local Gelfand system). Let{
△ υ + λeυ = 0 in Ω ⊂ Rn,
υ = 0 on ∂Ω,

(45a)
(45b)

indicate a Emden–Fowler equation, where Ω is circular in the R-field. The pair (45) has an
applicative extension to the Gelfand problem in a non-local elliptic equation of this type,−△ υ = λ

eυ(´
Ω
eυdx

)p ,
υ = 0,

(46a)

(46b)

x ∈ (Ω, ∂Ω), where the Dirichlet boundary condition is in force. If Ω coincides with a unit ball
Bnρ = {x ∈ Rn | ∥x∥ = ρ = 1}, with D = 3 ⩽ n ⩽ 9, and 2

n ⩽ p ⩽ 1, one witnesses the formation of
infinitely many different bending lines in the λ − υ plane. Ascertained that Ω is a ring-shaped
object, for p ⩾ 1, there is a solution for λ > 0. See K. Nagasaki & T. Suzuki [63] and T. Miyasita
[61]. L

2.1.5. A Tiny Note on the (Bifurcation) Diagram in the Gelfand Problem

Several examples of diagrams related to the Gelfand problem are in [53, chapp. 9.3.2, 14.2.2,
14.3] S. Liao, D. Bartolucci & A. Jevnikar [8], and in S.-Y. Huang [42].

I always find it humanly funny that (les) mathématiques belonging to different branches can
produce similar if not the same results. The same diagrams, mutatis mutandis, in different
dimensions, are drawn in [47, p. 27, and p. 80 (possible non-local response diagrams)]. This is the
clear symptom that our mathematics, is still laughably too rough.

2.1.6. △∞△∞△∞, or the Infinity Laplacian

The status in which the Laplacian{
−△p υ = λeυ in Ω ⊂ Rn,
υ = 0 on ∂Ω,

(47a)
(47b)

is infinite, videlicet p→ ∞ of gp, is analyzed by F. Charro, B. Son, and P. Wang [19]; also compare
P. Juutinen, P. Lindqvist & J.J. Manfredi [44].

The optimal way that allows to minimize the ratio is

∥∇υ∥∞,ΩnR

∥υ∥∞,ΩnR

∼= lim
p→∞

∥∇υ∥p,ΩnR
∥υ∥p,ΩnR

. (48)

By the way, it is feasible [60] to find some solutions to pairs of Eqq. (47) without the rescalings
λ
( 1
p )
p

p

p→∞−−−→ λmax,

υ(λp)p

p

p→∞−−−→ υ,

(49a)

(49b)

in υ and λ. So, inherently to a viscosity solution to △∞ υ = 0 of the suitable limit problem,min
(
|∇υ| − λmaxe

υ,−△∞ υ
)
= 0 in Ω,

υ = 0 on ∂Ω,

(50a)

(50b)

one attains the solutions υp, which converges uniformly in Ω as p→ ∞,min
(
|∇υ| − 1,−△∞ υ

)
= 0 in Ω,

υ = 0 on ∂Ω,

(51a)

(51b)

concerning the distance function from the boundary of the domain at hand.
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NB. It should be noted that

△∞ υ = ⟨Dυ,D2υDυ⟩ = υxjυxkυxjxk = |∇υ|−2
∑
jk

υxjυxkυxjxk , (52)

emerges as a kind of Euler–Lagrange formula controlling the absolute minimizer for the L∞-
variational problem, with the covariant and the second covariant derivatives, D and D2.

3. Gelfand problem in D = 1 ⩽ n ⩽ 9D = 1 ⩽ n ⩽ 9D = 1 ⩽ n ⩽ 9, with Dirichlet C2,δC2,δC2,δ-boundary

Let us move on to another version of the gp, which can be deduced from the studies of
Crandall–Rabinowitz–Mignot–Puel [22] [59].

Theorem 3.1. Let {
−△ υ = λeυ in Ω ⊂ Rn⩾1

υ = 0 on ∂Ω,

(53a)
(53b)

connote a Gelfand problem in D = 1 ⩽ n ⩽ 9, with Dirichlet C2,δ-boundary, for δ ∈ (0, 2). Then,
there exist

(1) an extremal solution, and
(2) a stable solution υλ inserted in the norm of this inequality, ∥υλ∥L∞(Ω)

a ⩽ ϵ, by selecting a
constant

ϵ= ϵ
(
n,Ω ⊂ Rn⩾1

)
> 0,

to the pair of Eqq. (53). In brief, this theorem aims to prove a regularity for elliptic problems.

Proof. We recover the quadratic form (19) for the pair (53):ˆ
Ω

(
∇υ∇ϖ

)
dx = λ

ˆ
Ω

(eυϖ) dx

= 2δ

ˆ
Ω

|∇υ|2e2δυdx = λ

ˆ
Ω

eυ
(
eδυ − 1

) (
eδυ + 1

)
dx

=
2
´
Ω
|∇
(
eδυ − 1

)
|2dx

δ
= λ

ˆ
Ω

eυ
(
e2δυ − 1

)
dx. (54)

From this last equation we continue with (cf. Secc. 1 and 2.1.1)
ˆ
Ω

∣∣∣∣∣∇
(
eδυ − 1︸ ︷︷ ︸

ζλ

)∣∣∣∣∣
2

dx ⩾ λ

ˆ
Ω

eυ
(
eδυ − 1︸ ︷︷ ︸

ζλ

)2

dx = λ

ˆ
Ω

eυ
(
−2e(δ+1)υ + e2δυ+υ + eυ

)
dx. (55)

Eq. (54) plus Eq. (54) createˆ
Ω

eυ
(
e2δυ − 1

)
dx ⩾

2
´
Ω
eυ
(
−2e(δ+1)υ + e2δυ+υ + eυ

)
dx

δ
. (56)

Leveraging the Hölder inequality [41], one draws a non-equal comparison between these two
expressions:

|Ω|
1
2−

1
2(2δ+1)

(ˆ
Ω

e(2δ+1)υdx

) 1
2(2δ+1)

+ 1
2

⩾
1

2
− δ

4

ˆ
Ω

(
e(2δ+1)υ

)
dx. (57)

It presuppose that eυ is bounded in vector-valued Banach function Lp(Ω)-space, for all p = 2δ + 1.
In view of the fact that D = n ⩽ 9, the presence of δ suggests that p = (2δ + 1) > n

2 . Finally, the
pair of Eqq. (53) together with the inequality

∥υλ∥L∞(Ω) ⩽ ϵ (58)

are in consequence both solved by υ, which is equivalent to the desired regularity. It should be
stressed that the extremal solution is

ῠ(x) = − ln |x|2,

a See footnote a, p. 3.
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upon the occurrence of a coincidence between a bounded Ω-region (of the Euclidean n-space) and
the unit ball Bnρ , when the dimension is D = n ⩾ 10. What does it mean? It is simple: one can
hatch singular stable solutions to the pair (53) in 10- or higher-space dimension. □

4. Non-linearities Issues in (Hemi)spherical Spaces

4.1. Gelfand Problem applied to a Geodesic Ball, or Spherical Cap

The Gelfand problem, in its non-linearity, can be addressed [56] [7] [45] [46] by writing alternately

−△Sn υ = λφ(υ) in Ω ⊂ Sn, υ = 0 on ∂Ω, (59)

where
△ (the Laplace–Beltrami operator) acts on the unit sphere Sn ⊂ R(n⩾1)+1,
φ(0) > 0 ∈ C2(R) is a non-linear convex monotonically increasing function, under which the

postulate

limq→∞
φ(q)
q = +∞

{
φ(q)

eqv
== (1 + q)p>1,

φ(q)
eqv
== eq,

(60a)

(60b)

is assigned, and
∂Ω ̸= ∅.
Let us see why.
(1) Since Ĉ ∼= CP1, where Ĉ is the extended complex plane, can be distinguished in topological

terms, one says that it is equivalent to the 2-sphere in the 3-dimensional real space,

S2 =
{
(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3)2 = 1

}
, (61)

via stereographic projection. The complex C-plane is describable with the plane x3 = 0 in R3, and
the number z = (x+ iy) is identifiable with (x, y, 0), for z ∈ C ∼= R2, and x, y ∈ R. Wherefore the
system of the projective line extended by a point at infinity ∞ is also geometrically equivalent to
the Riemann sphere,

Ĉ eqv
== C ∪ {∞} ∼= CP1 ∼= S2. (62)

The Möbius group Möb(Ĉ) ∼= PSL2(C) ∼= SL2(C)
{±I} is thereby the set of all transformations

z 7→ φαβγδ[Ĉ](z) =
αz + β

γz + δ
, for α, β, γ, δ ∈ C, αδ − βγ ̸= 0,

( α β
γ δ

)
∈ SL2(C) (63)

of the Riemann sphere Ĉ ∼= CP1 ∼= S2, so

Möb(Ĉ) =
{
φ : Ĉ eqv

== C ∪ {∞} → Ĉ eqv
== C ∪ {∞}

∣∣∣∣ φαβγδ[Ĉ](z) = αz + β

γz + δ

}
= aut(Ĉ) ∼= aut(CP1) ∼= PSL2(C), (64)

where the bijective meromorphic mapping

Ĉ eqv
== C ∪ {∞} φ−→ Ĉ eqv

== C ∪ {∞}

is an automorphism of the Riemann sphere, which is purely a Möbius transformation, cf. [64, chap.
2.5.2]

(2) The hyperbolic H-planes in the Beltrami–Poincaré half-space model [9] [10] [11] [68] [69],

Unρ =
{
x = (x1, . . . , xn) ∈ Rn | xn > 0

}
,a (65)

are hemispheres orthogonal to the C-plane, and the geodesics are semicircles orthogonal to C-plane.
The H-planes are spherical caps orthogonal to the unit sphere. The geodesic ball Ω ⊂ Sn goes

to coincide with the spherical cap because of that, centered at the south pole (0, . . . , 0,−1).

a The metric on Unρ is given by g3U = ρ2(xn)−2(dx1 ⊗ dx1 + . . . + dxn ⊗ dxn). The boundary of Un is provided by the
boundary at infinity ∂∞Un = (Rn−1 × {0}) ∪ {∞}.
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(3) The spherical cap

Ωε∈(0,1) =

(x1, . . . , xn+1
)
Rn+1

∣∣∣∣∣
n+1∑
j=1

x2j = 1,− cos{πε} < xn+1 ⩽ 1

 ⊂ Sn (66)

is mapped onto the ball

Bnρ =
{
x = (x1, . . . , xn) ∈ Rn | ∥x∥ = ρ

}
, (67)

with ρ = tan
{

1
2π(1− ε)

}
, ε→ 0.

What is being sought is
(i) the minimal solution to the Gelfand problem on a spherical cap for Dirichlet’s boundary

value problem,
(ii) an asymptotic comportment of the solution, so as to extend to it the whole sphere by means

of a sharp estimate of the torsion function τΩ of Ωε. For instance, the lower bound

∥τΩ∥∞ >
1

λ1(Ω)
,

is asymptotically sharp as ε → 0, where λ1(Ω) is the positive principal Dirichlet eigenvalue of
−△Sn in Ω, and

λ1 = inf
υ ̸=0

´
Ω
|∇υ|2´
Ω
|υ|2

the eigenvalue minimizing the quadratic functional (Dirichlet energy) on the Sobolev space H1(Ω);
it must be specified that

H1(Ω) =
{
υ ∈ L2(Ω), ∂jυ ∈ L2(Ω), 1 ⩽ j ⩽ n

}
(68)

is a pre-Hilbert space (isto é, a separable Hilbert space).

4.2. Gelfand Problem with no Deformation of the RRR-metric and no Decrement of the
Scalar Curvature

It is plausible to address the Gelfand problem grabbing on the fly some suggestions that come
from the theorem of Hang–Wang [38], cf. M. Lai and W. Wei [49], which basically says this: taking
a function, say superharmonic,

υ on Rn⩾3 eqv
== △ ⩽ 0,a

it follows that by the maximum principle, it is not allowed to deform the Euclidean metric in a
conformal way in a bounded region without decreasing the (non-negative) scalar curvature

Rs ⩾ n(n− 1)
eqv
== n+Rs ⩾ n2

somewhere. This echoes the positive energy mass theorem (in general relativity, and not only) by
Schoen–Yau [73] and E. Witten [75].

Here is the graft. The above theorem states that, with small changes of perspective, for a metric
g conformal to the standard metric g0 on Sn+, its boundary is consistent with

g0|∂Sn+, thus g = g0,

and (Sn+, g) is isometric to a standard hemisphere. All of this connects to gp, since it can easily be
reduced to an expression of this type,

−△ υ = λg(υ), υ = 0 on ∂Ω, (69)

when g is non-linear in Ω ⊂ Rn, under the Dirichlet boundary condition. And we are well aware
that there is an extremal λ̆ due to which the Eq. (69) has no solutions, for λ > λ̆. In parallel, the

a The υ is 1 near infinity, and it is identically 1 on Rn⩾3.
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theorem of Hang–Wang fixes these useful values:

(
NB. Is under discussion a g-metric on Sn+

)λ̆ = 1, for n = 2, g(υ) = e2υ,

λ̆ = 1
4 (n− 2)n, for n ⩾ 3, g(υ) = (υ + 1)

n
n−2+

2
n−2 .

(70a)

(70b)

4.3. Gelfand Problem in a Ball-Space under Perturbation

Let us go back to the Theorem 3.1 we ascribed to Crandall–Rabinowitz–Mignot–Puel. This
can give the inspiration for writing an affiliated theorem, which allows us to assert that there are
singular stable solutions, if some Ω-domain preserves a C2-diffeomorphism on a ball, in the event
of perturbations. The proof of this theorem is due to J. Dávila and L. Dupaigne [24].

Starting Theorem 4.1. Let, again,{
−△ υ = λeυ in Ω ⊂ Rn,
υ = 0 on ∂Ω,

(71a)
(71b)

be a Gelfand problem lying in the topology of a unit ball Bρ=1, and subject to the Dirichlet condition
υ|∂B = 0, where Ω is an open set, which is bounded, with a C-smooth boundary, and λ ⩾ 0 is the
usual parameter. Then,

(1) there is a singular solution υ + log |x|2 = 0, if λ = (2n− 1)
(2) there exist a singular solution υ, if D = n ⩾ 4, making small deformations to Bρ=1,
(3) there is an extremal solution, if D = n ⩾ 11 (case in which the parameter λ is the largest

possible one),
(4) there are many cases where there is a bounded extremal solution, if D = n ⩾ 10, in the

presence of non-small perturbations.

Theorem 4.1. Let
ϖ : B̄ρ=1 → Rn

be a C2-map, and Ωt = {x+ tϖ(x) | x ∈ Bρ=1}, t ∈ R+, a smooth bounded region diffeomorphic to
the unit ball, so the pair (71) becomes{−△ υ = λeυ in Ωt ⊂ Rn,

υ = 0 on ∂Ωt.

(72a)
(72b)

If D = n ⩾ 11, and t is small enough, then υ = ῠ(t) proves to be an extremal solution in Ωt and
to (72). Plus, if t0 = t0(n,ϖ) > 0 and t < t0, the solution ῠ(t) is singular in any D = n ⩾ 4; in
addition, there is a value b(t) ∈ Bρ=1 so that∥∥∥∥ῠ(x, t)− log

1

|x− b(t)|2

∥∥∥∥
L∞(Ωt)

+ |λ(t)− 2(n− 2)| −→ 0, as per t→ 0. (73)

At the point of origin, the single solution behaves in this way: ῠ(x, t) = ln λ̆(0)
/
λ̆(t) + ln 1

|x−b(t)|2 +

ε|x− b(t)|, in which limτ→0 ε(τ) = 0.

Hints for a Proof (via Hardy-type’s inequality). Needless to repeat what others have already done.
Better to make a latere demonstration that paradigmatically sums up what is required. The
starting axiom is Hardy’s inequality, or Hardy–Littlewood–Pólya inequality [39] [40], giving it this
form:

ϵh = 1
4 (n− 2)2

ˆ
Rn

ζ2

|x|2
dx ⩽

ˆ
Rn

|∇ζ|2dx, (74)

where

∀ζ ∈

{
C1
c

C∞
0

}
(Rn\{0}) , (75)
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and ϵh is a constant, for n ⩾ 3.
Let us adopt the idea of H. Brezis and J.L. Vázquez [17], who found that, referring to a

semi-linear elliptic equation
−△ = λξ(υ) in Ω, (76)

where ξ is a continuous, positive, increasing and convex function, whose non-linearity is outlined
for υ ⩾ 0, ξ(0) > 0 such that

lim
τ→∞

ξ(τ)

τ
= +∞ on [0,∞),

with Dirichlet boundary υ|∂Ω = 0, there is a correlation between any singular extremal solution
and Hardy inequality (so the former must satisfy the latter), the significance of which is that
the principal eigenvalue of the linearized operator is non-negative. The correlation can be easily
formulated:

λ

ˆ
Ω

ξ̇(υ)ζ2dx ⩽
ˆ
Ω

|∇ζ|2dx, (77)

with the same universal quantification explicated in (75), postulating that Ω ⊂ Rn is a bounded
smooth region, and υ ∈ H1

0(Ω) is a singular weak solution to (76), for λ > 0. If D = n ⩾ 11, the
amount is 2(n− 2) < 1

4 (n− 2)2. As a consequence, by virtue of (73),

λ(t)e♡ <
1

4
(n− 2)2, where ♡ =

∥∥∥∥υ − log
1

|x− b(t)|2

∥∥∥∥
L∞(Ωt)

, (78)

implying

λ(t)

ˆ
Ωt

euζ2 ⩽
1

4
(n− 2)2

ˆ
Rn

ζ2

|x− b(t)|2
⩽
ˆ
Rn

|∇ζ|2, (79)

And in so doing, it is stated that υ(t) is the extremal solution to the pair of Eqq. (72),a and λ(t)
the extremal parameter. On this trail, see also J.L. Vázquez and E. Zuazua [74].

But the fun does not stop here. The pair (72) can be rewritten in agreement with a ball-type
space. Draft

υ(y) =
(
χ+ tϖ̃(t, y)

)
, (80)

△y υ = △x χ+ Ш t(χ), (81)

where

Ш t(χ) = t
∑
j,l

χxl

(
∂2ϖ̃l

∂y2j

)
+ t2

∑
j,k,l

χxkxl

(
∂ϖ̃k

∂yj

)(
∂ϖ̃l

∂yj

)
+ 2t

∑
j,l

χxjxl

(
∂ϖ̃l

∂yj

)
(82)

is a second-order differential operator. The solution to the pair (72) must be

χ(x) = log
1

|x− b|2
+ б , б ∈ H1(Ω), λ = 2n− 4 + s (83)

where
b ∈ B,
б is a small bounded perturbation, and
s ∈ R is a free parameter.
Conclusively, the Eqq. (72) are but
−△ б − 2n− 4

|x− b|2
б = Ш t(б ) +

2n− 4

|x− b|2
(
eб−1 − б

)
+

s

|x− b|2
eб + Ш t

(
log

1

|x− b|2

)
in B,

б = − log
1

|x− b|2
on ∂B.

(84a)

(84b)

a In the light of the foregoing: υ = υ(t).
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The resolution of Eq. (84) requires a system of non-linear elliptic partial differential by way of a
Laplacian with the inverse-square potential,−△− κ

|x− b|2
б = ξ in B eqv

== Bρ=1(0),

б = шf on ∂B,

(85a)

(85b)

where b, κ ∈ R, and шf ∈ C2,δ(∂B). In this respect, see L. Dupaigne [27].
Take a little peek. Let Bρ be an open ball of radius ρ centered at the origin, and ϵ1 > 0 and ϵ2

some constants, with 0 < ϵ2 ⩽ ϵ20
eqv
== 1

4 (n− 2)2, and χ the characteristic function.
Let ζB1 , . . . , ζBn ∈ C∞(Ω) be the solutions of

ζBk (x) ⩾ ϵ1ζ
B
0 (x)

−△ ζBk − ϵ2
|x|2

ζBk = χBρ(xk) in Ω ⊂ Rn,

ζBk = 0 on ∂Ω,

(86a)

(86b)

for 1 ⩽ k ⩽ n. If Bρ(xk) ⊂ B2ρ(x) ⊂ Ω, and −△ υ ⩾ 0 in Ω, en conséquence,

υ(x) ⩾
 
B2ρ(x)

υ = ϵ1

ˆ
B2ρ(x)

υ ⩾ ϵ1

ˆ
Bρ(xk)

υ = ϵ1

ˆ
Ω

υ

(
−△ ζBk − ϵ2

|x|2
ζBk

)
= ϵ1

ˆ
Ω

φζBk ⩾ ϵ1

ˆ
Ω

φζB0 .

(87)
□

5. Synopsis: Classification of Solutions and Non-Solutions in Gelfand Problem

Below is a picture of the situation, which serves as a synoptic guide.
(1) When one has to do with a stable branch, the solution is minimal and stable, for λ ∈ (0, λ̆),

with L∞-Banach space of essentially bounded measurable functions endowed with the essential
supremum norm.

(2) In D = n ⩾ 2, the gp, with λ = λτ = 2n− 4, has a singular solutions υτ (x) = −2 ln |x|.
(3) In D = n ⩾ 3, the function υτ is a solution among all density distributions.
(4) In D = 1 ⩽ n ⩽ 9,
(i) the singular solution υτ does not intersect finite Morse index,
(ii) all solutions of the curve inherent to the bifurcation map is given by λ = λ̆ with turning

points, which means that any solution crossing the stable branch becomes unstable, and the Morse
index is (at least) = 1,

(iii) any stable solution is ultimately uniformly bounded.
(5) In D = 3 ⩽ n ⩽ 9,a

(i) all solutions υτ (x) = −2 ln |x| of the curve inherent to the bifurcation map have infinitely
many turning points in the direction of λτ = 2n− 4, and the Morse index of the trajectory must
be increasing by one unit, each time the solution passes through a turning point,

(ii) there exists a unique solution, if λ has an (extremely) small value,
(iii) there exists a unique solution, for λ = λ̆,
(iv) there are two kind of solutions, for λ close to λ̆,
(v) the gp has infinitely many solutions, for λ = 2n − 4, and finitely many solutions, for

λ ̸= 2n− 4,
(vi) one has a series of solutions, for λ close enough to 2n− 4.
(6) In D = n ⩾ 10,
(i) the solution υτ is stable,
(ii) the gp has a unique solution, if λ ∈ (0, λ̆),

a The paper of W. Chen and J. Dávila [20] offers an investigation into the pair of Eqq. (8), with an infinite multiplicity
of regular solutions, for 3 ⩽ n ⩽ 9, and λ > 0. Among the propositions, it is highlighted that the above-mentioned pair of
equations, in which λ̆ = λ̆(n) > 0, for n ⩾ 1,

(1) presents a minimal solution uλ, if 0 < λ < λ̆,
(2) has a unique solution, if λ = λ̆,
(3) does not present a solution, if λ > λ̆.
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(iii) there exist a singular stable solution, as an extremal solution (with Dirichlet C2,δ-boundary),a

remaining within the Euclidean topology of a ball,
(iv) there exist singular stable solutions, if some Ω-domain preserves a C2-diffeomorphism on a

solid sphere (ball), even in the event of perturbations.
(7) In D = n ⩾ 11, when the parameter λ is the largest possible one, there is an extremal

solution, within a ball-shaped space with perturbations.
(8) Now, let us turn the table here. Pay attention of the gp, adding a vector field V⃗ , which is

smooth of course:
−△ υ + V⃗ (x)∇υ = eυ in Rn. (88)

An apparently sophisticated triple scenario opens up.
(i) There is a stable solution, for n ⩾ 4, if the Lyapunov–Schmidt construction [58] [72] is called

into question, which has the goodness of reducing infinite-dimensional non-linear equations in
Banach spaces to finite-dimensional formulæ.

(ii) There is stable solution, for n ⩾ 11, if the vector field satisfiesdiv V⃗ (x) = 0,

(|x|+ 1)
∣∣∣V⃗ (x)

∣∣∣ ⩽ ϵ,

(89a)

(89b)

with a value ϵ sufficiently small (0 < ϵ), as long as

inf
φ∈C∞

0 (Rn)


ˆ
Rn

(
|∇φ|2 − eυφ2

)
dx

/
∥φ∥L2(Rn)

−△ф+ + V⃗∇ф+ − eυф+


Rn

⩾ 0, (90)

viz. the eigenvalue of the linear operator −△+V⃗∇− eυ is non-negative in C∞
0 (Rn), where ф+ is

a some positive function.
(iii) There is no stable C2-solution, for n ⩽ 9.
For present purposes it is not necessary (and not interesting) to examine the demonstrative

particulars, which can be found in B. Lai and L. Zhang [48].
(9) Gelfand problem for stable W 1,p

loc -solutions to quasi-linear formulæ in a suitable weighted
Sobolev space, was investigated by P. Le et al. [51]. Their start it is not really general, but it is
this:

−div
(
н(x)|∇υ|p−2∇υ

)
= φ(x)eυ,

where н, φ ∈ L1
loc(Rn) are non-negative functions, and p ⩾ 2.

(10) Viscosity solutions to the Gelfand problem for the 1-homogeneous p-Laplacian, es decir,
for a pair that has a form similar to this,(

1
1−p |∇υ|

2−p
)
div
(
|∇υ|p−2∇υ

)
= λeυ

{
−△n

p υ = λeυ in Ω ⊂ Rn,
υ = 0 on ∂Ω,

(91a)
(91b)

are in J. Carmona Tapia et al. [18]. For p ∈ [2,∞], one sets up that
(i) there exists a minimal positive solution, if λ < λ̆,
(ii) there exists no solution, if λ > λ̆.
(11) Gelfand-type quasi-linear elliptic problems with quadratic gradient terms are discussed

instead by D. Arcoya et al. [3]. The couple that acts as a reasoning incipit is{
−△ υ + с(x)|∇υ|2 + υ = λ(1 + υ)p in Ω ⊂ Rn,
υ = 0 on ∂Ω,

(92a)
(92b)

once these parameters 0 < с1 ⩽ с(x) ⩽ с2 are set. The results that are reached are:
(i) in the interval (0, λ̆], λ̆ > 0, there is at least one positive solution,
(ii) there are minimal regular positive solutions,
(α) for each λ ∈ (0, λ̆), and

a For a general look at extremal solutions with regularity, see [21].
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(β) for λ = λ̆ (but take it for granted that the spatial dimensionality, together with the
parameters p, с1, and с2, are placed under sure conditions).

6. Some References on an Affine Problem: Lane–Emden Question

The Lane–Emden Problem [50] [28] is very close to the tentacular Gelfand system; so it is wise
to quote some studies that may be of benefit to someone: [15] [31] [1] [65]. The second of them is
written by M. Fazly and J. Wei, and it is very well done.

Appendix

Picard–Lindelöf Theorem

Theorem 6.1 (Picard–Lindelöf). Let φl ∈ Cb(Ω,Rn) be a Lipschitz continuous function, where
Ω is an open subset of Rn+1, with (t0, x0) ∈ Ω.a We can imagine this set as a space, and more
specifically as a parallelepiped, determined with these coordinates

{(t, x) | t0 ⩽ t ⩽ t0 + α, |x− x0| ⩽ β} ,

or, without alterations of the theorem in question, as a cylinder, in which (t0, x0) are its internal
parameter values.

If φl : Cb(Ω,Rn) → Rn is uniformly et locally Lipschitz continuous in x and in t, then there is
a quantity ε > 0 such that one has an unique local solution x(t) ∈ C1

b [t0, t0 + ε] of the initial value
problem, for an infinitesimal interval [t0, t0 + ε] around t0, where{

x(t) = lim
n→∞

xn(t)
}

eqv
==

{
x(t) = x0 +

ˆ t

t0

φl

(
τ, x(τ)

)
dτ

}
.

In other words, if
φl : [t0, T ]︸ ︷︷ ︸

interval

×Rn → Rn

is a vector field Lipschitz function on the parallelepipedal-space, or on the cylindrical-space, w.r.t.
its second variable, and once it is specified that H is the upper bound (maximum) on φl, ou seja
H = max {|φl(t, x)|} on [t0, t0 + ε], with

ε = min
{
α, βH

}
, (93)

then there exists a unique solution x(t) of the initial value problem, for t ∈ [t0, t0 + ε], or for
t ∈ [t0, t0 + T0], where T0 = min

{
T, βH

}
.

Proof (Sketch). I choose here to give only a demonstrative hint, because this theorem is not the
core of this paper. The proof of Picard–Lindelöf theorem is built on Banach fixed-point theorem
[5], aka Banach–Caccioppoli theorem, whose fixity is confirmed by a certain parameter. The proof
is completed when it is shown that

T0 ⩽ T,

T0 ⩽ β
H ,

T0 <

(
Nl = sup

(t,x)̸=(t,y)

|φl(t, x)− φl(t, y)|
|x− y|

)−1

,

(94a)

(94b)

(94c)

where Nl is a number related to the Lipschitz continuity. □

a The set of continuous functions Cb can be thought of as a (closed) subset of a Banach space [6] (X, ∥ · ∥), i.e. as a
complete normed vector including a vector space X over, say, a scalar R-field, with a norm ∥ · ∥ : X → R.
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Mini-version of Lebesgue’s Dominated Convergence Theorem

Theorem 6.2 (Lebesgue). To put it briefly, let us consider the measure space ( “Ω,Bσ,µ), where
“Ω is a non-empty set equipped with a so-called σ-algebra,
Bσ is a σ-algebra of subsets of “Ω, and
µ : Bσ → [0,∞] is a finite measure on “Ω.
Let {φµn}∞n=1 :

“Ω → F be a sequence of F-valued Bσ-measurable functions on “Ω pointwise
converging µ-almost everywhere to φµ, namely

φµn → φµ, n→ ∞.

Finally we suppose that
|φµn | ⩽ ч,

being ч ⩾ 0 n-integrable. The function φµ is integrable, so thatˆ
“Ω
φµdµ = lim

n→∞

ˆ
“Ω
φµndµ. (95)

Proof. ˆ
“Ω
2чdµ =

ˆ
“Ω
lim inf
n→∞

(
2ч − |φµ − φµn |

)
dµ ⩽ lim inf

n→∞

ˆ
“Ω
2ч − |φµ − φµn |dµ, (96a)

lim sup
n→∞

ˆ
“Ω
|φµ − φµn |dµ ⩽ 0, (96b)

via inequality theorem by P. Fatou [30]. □

Those who are greedy for minutiae in a sequence of C-valued measurable functions, and a
demonstration, see [64, sec. 13.1.2.1].

Outro

Three Bird’s Eye Remarks

(1) Today’s mathematics has lost its way home, the way of a universalized science. It got lost in
a regime of partially-sighted people where ad ricercatorum solutions prevail, and this is not nice.

Anyone who really loves the original and truthful μάθημα hates the sectorization; he abhors
the division of the Mathematics Palace into closed and incommunicating rooms (what I have
elsewhere called cocoon syndrome); he disdains the knowledge that abandons the impetus of being
boldly among things in a transversal manner, that knowledge that does not take—at least in
pectore—big and daring routes, to face dangers, raising the head towards the dome from which
universal questions hang, and contemplate their glare.

The reshuffling of a problem, devoid of a sense of grandeur, which is a sub-problem of a sub-
problem, which is the inàne variant of a problem referring to the same sub-problem, brings joy
exclusively to those who suffer from intellectual myopia, or to those with a siloed-brain. This is
unfortunately the feudal regression in which the Gelfand problem is currently interpreted. And it
cannot be otherwise: we live in an era in which mathematics has its (nefarious) flourishing within
a curtense system.

Mathematics is no longer sailing on the grande rio do Pensamento nowadays, which was once
the moving source of its beauty; it is like a paper boat that glides through a thousand rivulets of
water. Then there are the scholars who enjoy soaking their shoes in puddles a few inches deep:
scholars are like that (to echo da Ponte’s words), or the school for trendies. And with this the
transition from beauty to squalor is accomplished in a flash. Which is followed by the passage from
intelligence to dullness, from usefulness to uselessness, and from maculate conception to sterility.

Surely, a (platitudinous) accusation could be brought against me: this is a simple criticism. I
realize that. And so it is; it is a pars destruens. To silhouette a pars construens we must start
again from the foundations, which cannot be done in an article.
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(2) I ask these simple questions already conceived in 1994 by a great master of the recent past,
E. De Giorgi [25, pp. 720-723, 725, e.m.], who received a very heartfelt admiration from J.F. Nash.
The two men met in Povo di Trento on 6 March 1996.

What happened to the «wisdom value» (valore sapienziale) of mathematics? Or to the «ancient
links of mathematics with all other branches of wisdom»?

«The idea of mathematics [is] not a closed learning reserved to few specialists but an open one
that, while preserving its own autonomy, feeds on dialogue with the other forms of knowledge».

What happened to the «love of mathematics, as an essential component of human wisdom»,
which is «something more than the simple ability to calculate, [or just] manipulate numbers»?

«Mathematics serves above all to have a qualitative idea of what might happen, to widen the
imaginative ability of the experimental scholars or the planner, capable of understanding that a
certain mathematical model can be the right model to interpret certain phenomena».

What happened to «the task to which all of us, scholars of mathematical, physical and natural
sciences and scholars of human sciences, are called»? Det vill säga, what happened to «the redis-
covery of the wisdom value of our disciplines, a necessary premise for the harmonious development
of all branches of knowledge»?

(3) I launch a provocation. Is it possible to incorporate the molecular components of a match
into the theory of groups, without ending up trapped in thousands of sub-categories, or sub-fields
of sub-fields? Is it possible to understand what fire is by looking at the head of a match under a
microscope? What can we understand from phosphorus sulfide and potassium chlorate? They do
not give us much information about the nature of fire.

Contemporary pure mathematics and (mathematical) physics have become this, an accumulation
of academic rubbish-knowledge towards nothingness, which has left behind some wise teachings of
the past. They have become an exercises in style [70] à la Queneau,a only good for raising the
insane h-index (the productivity and citation impact) of journal publications, without providing
real stimuli to the brain.

a R. Queneau, among other things, had a non-marginal level of mathematical competencies [71].
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