Variational Gaussian approximation of the Kushner optimal filter - Archive ouverte HAL
Article Dans Une Revue Lecture Notes in Computer Science Année : 2023

Variational Gaussian approximation of the Kushner optimal filter

Résumé

In estimation theory, the Kushner equation provides the evolution of the probability density of the state of a dynamical system given continuous-time observations. Building upon our recent work, we propose a new way to approximate the solution of the Kushner equation through tractable variational Gaussian approximations of two proximal losses associated with the propagation and Bayesian update of the probability density. The first is a proximal loss based on the Wasserstein metric and the second is a proximal loss based on the Fisher metric. The solution to this last proximal loss is given by implicit updates on the mean and covariance that we proposed earlier. These two variational updates can be fused and shown to satisfy a set of stochastic differential equations on the Gaussian’s mean and covariance matrix. This Gaussian flow is consistent with the Kalman-Bucy and Riccati flows in the linear case and generalize them in the nonlinear one.
Fichier principal
Vignette du fichier
VariationalKushner.pdf (156.14 Ko) Télécharger le fichier
NonLinearFiltering.bib (8.23 Ko) Télécharger le fichier
VariationalKushner.bbl (3.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04218385 , version 1 (02-10-2023)
hal-04218385 , version 2 (03-10-2023)

Identifiants

Citer

Marc Lambert, Silvère Bonnabel, Francis Bach. Variational Gaussian approximation of the Kushner optimal filter. Lecture Notes in Computer Science, 2023, ⟨10.1007/978-3-031-38271-0_39⟩. ⟨hal-04218385v2⟩
118 Consultations
98 Téléchargements

Altmetric

Partager

More