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Introduction

We consider the general filtering problem where we aim to estimate the state x t of a continuous-time stochastic system given noisy observations y t . If the state follows a Langevin dynamic f = -∇V with V a potential function and the observations occur continuously in time, the problem can be described by two stochastic differential equations (SDE) on x t and z t , where z t is related to the observation by the equation dz t = y t dt:

dx t = -∇V (x t )dt + √ 2εdβ ( 1 
)
dz t = h(x t )dt + √ Rdη. (2) 
β and η are independent Wiener processes and Q = 2εI and R play the role of covariance matrices of the associated diffusion processes. Many dynamical systems can be rewritten in the Langevin canonical form [START_REF] Amari | Natural gradient works efficiently in learning[END_REF], see for instance [START_REF] Halder | Gradient flows in uncertainty propagation and filtering of linear Gaussian systems[END_REF]. In essence [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] means "y t = h(x t ) + noise", but one has to resort to [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] to avoid problems related to infinitely many observations. The optimal Bayesian filter corresponds to the conditional probability p t of the state at time t given all past observations. This probability satisfies the Kushner equations which can be split into two parts:

d p t = L (p t )dt + dH (p t ), (3) 
where L is defined by the Fokker-Planck partial differential equation (PDE)

L (p t ) = div[∇V p t ] + ε∆p t , (4) 
whereas the second term corresponds to the Kushner stochastic PDE (SPDE):

dH (p t ) = (h -E p t [h]) T R -1 (dz t -E p t [h]dt)p t ,
where E p t [h] := h(x)p t (x)dx and stochasticity comes from dz t . These equations cannot be solved in the general case, and we must resort to approximation. In this paper, we consider variational Gaussian approximation, which consists in searching for the Gaussian distribution q t closest to the optimal one p t for a particular variational loss. Two variational losses are well suited for our problem. Jordan-Kinderlehrer-Otto (JKO) [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] showed that the following proximal scheme:

argmin L δt (p) = argmin KL p π + 1 2δt d 2 w (p t , p) , (JKO) (5) 
is related to the Fokker-Planck (FP) equation associated to [START_REF] Amari | Natural gradient works efficiently in learning[END_REF] where we denote its stationary distribution π ∝ exp(-V /ε). Indeed, iterating this proximal algorithm yields a curve being solution to FP as δt → 0. It is referred to as variational since it is an optimization problem over the function p, and it involves the Kullback-Leibler divergence defined by KL(p||π) = p log p π , and the Wasserstein (or optimal transport) distance d 2 w (p t , p) [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. The variational loss associated to the Kushner PDE is the Laugesen-Mehta-Meyn-Raginsky (LMMR) proximal scheme [START_REF] Laugesen | Poisson's equation in nonlinear filtering[END_REF] defined by:

argmin H δt (p) = argmin E p 1 2 ||δ z t -h(x)δt|| 2 (Rδt) -1 + KL(p||p t ) , (LMMR) (6) 
where δ z t := z t+δtz t comes from the Euler-Marayama discretization of the observation SDE: δ z t = h(x t )δt + √ Rδ η such that p(δ z t |x t ) = N (h(x t )δt, Rδt). For small δt those schemes generate a sequence of probability distributions that converge to the solutions of the corresponding PDE in the limit δt → 0. We see the KLs in both schemes play a different role, though. In [START_REF] Bures | An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w * -algebras[END_REF], the proximal scheme shows that the solution to the FP equation follows a gradient of the KL to the stationary distribution π. This gradient is computed with respect to the Wasserstein metric. In [START_REF] Halder | Gradient flows in uncertainty propagation and filtering of linear Gaussian systems[END_REF], the proximal scheme defines a gradient over the state prediction p of the expected prediction error. This gradient is computed in the sense of the metric defined by the KL around its null value, which may be related to the Fisher metric.

To approximate the solutions, we propose to constrain them to lie in the space of Gaussian distributions. That can be done by constraining in the proximal schemes the general distribution p t to be a Gaussian distribution q t = N (µ, P). The proximal problems become finite-dimensional and boil down to minimizing L δt and H δt over (µ, P). The Gaussian approximation of the JKO scheme yields in the limit a set of ODEs on µ and P as shown in [START_REF] Lambert | Variational inference via Wasserstein gradient flows[END_REF]. In this paper, we extend these results showing the Gaussian solution to the LMMR scheme corresponds to the R-VGA solution [START_REF] Lambert | The recursive variational Gaussian approximation (R-VGA)[END_REF] which yields in the limit a set of SDEs on µ and P. Moreover, using a two-step approach, we can fuse the two Gaussian solutions to approximate the Kushner equation (3). As shall be shown presently, we find the following SDEs for µ and P: where b t = -E q t [∇V (x)];

dC t = E q t [∇h(x t ) T R -1 (dz t -h(x t )dt)] A t = -E q t [∇ 2 V (x)]; dH t = E q t [(x t -µ t )(dz t -h(x t )dt) T R -1 ∇h(x t )]. (7) 
The equation for P t can be seen as a generalization of the Riccati equation in the nonlinear case. Indeed, if we replace V and h with linear functions, the ODE on P t matches the Riccati equations and we recover the Kalman-Bucy filter, known to solve exactly the Kushner equations. This paper is organized as follows: Section 2 is dedicated to related works on the approximation of the optimal nonlinear filter. In Section 3 we derive the variational Gaussian approximation of the LMMR scheme. In Section 4 we recall the variational Gaussian approximation of the JKO scheme proposed in our previous work. In Section 5 we combine these two results to obtain the Continuous Variational Kalman filter equations and show the equivalence with the Kalman-Bucy filter in the linear case.

Related works

In 1967, Kushner proposed a Gaussian assumed density filter to solve his PDE [START_REF] Kushner | Approximations to optimal nonlinear filters[END_REF]. This filter is derived by keeping only the first two moments of p t in (3) which can be computed in closed form using the Ito formula. These moments involve integrals under the unknown distribution p t and the heuristic is to integrate them rather on the current Gaussian approximation q t leading to a recursive scheme. A more rigorous way to do this approximation was proposed later [START_REF] Hanzon | New results on the projection filter[END_REF][START_REF] Brigo | Approximate nonlinear filtering by projection on exponential manifolds of densities[END_REF] with the projected filter. In this approach, the solution of the Kushner PDE is projected onto the tangent space to Gaussian distributions equipped with the Fisher information metric. This leads to ODEs that are quite different from [START_REF] Halder | Gradient flows in filtering and Fisher-Rao geometry[END_REF]. A third approach is to linearize the stochastic dynamic process to obtain a McKean Vlasov process that allows for Gaussian propagation [START_REF] Lambert | The continuous-discrete variational Kalman filter (CD-VKF)[END_REF]Sec 4.1.1]. The connexion between approximated SDEs and projected filters was analyzed in detail earlier in [START_REF] Brigo | On nonlinear SDE's whose densities evolve in a finite-dimensional family[END_REF]. The latter approach is the one explored in the current paper, i.e., considering proximal schemes associated with the Kushner PDE where we constrain the solution to be Gaussian. It is equivalent to projecting the exact gradient flow onto the tangent space of the manifold of Gaussian distributions. This approach is preferred since it exhibits the problem's geometric structure and allows convergence guarantees to be proven. Approximation of gradient flows is an active field and several recent papers have followed this direction: the connexion between the propagation part of the Gaussian assumed density filter and the variational JKO scheme [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] was recently studied [START_REF] Lambert | Variational inference via Wasserstein gradient flows[END_REF]; the connexion between the update part of the Gaussian assumed density filter and the variational LMMR scheme [START_REF] Laugesen | Poisson's equation in nonlinear filtering[END_REF] was studied in [START_REF] Halder | Gradient flows in filtering and Fisher-Rao geometry[END_REF] where a connexion with a gradient flow was first established but limited to the linear case. To the best of our knowledge, the variational approximation of the LMMR scheme in the nonlinear case has never been addressed. The various ways to obtain the ODEs [START_REF] Halder | Gradient flows in filtering and Fisher-Rao geometry[END_REF] lead to nice connexions between geometric projection, constrained optimization, and statistical linearization. These different approaches are illustrated in Figure 1 which addresses only the approximation of dynamics (1) without measurements (i.e., propagation only) for which all methods prove equivalent.

Variational Gaussian approximation of the LMMR proximal

In this section, we compute the closest Gaussian solution to the LMMR problem [START_REF] Halder | Gradient flows in uncertainty propagation and filtering of linear Gaussian systems[END_REF]. The corresponding Gaussian flow is closely related to natural gradient descent used in information geometry. This flow Distribution p Gaussian approx. q(µ, P)

dx t = -∇V (x t )dt SDE linearization [12] dx t = A(t)(x t -µ t )dt + b(t)dt + √ 2εdβ + √ 2εdβ nonlinear SDE process ⇒ McKean-Vlasov process ∂ p ∂t = div(∇V p) + ε∆p μt = b(t) Riemanian projection [8] Ṗt = A(t)P t + P t A(t) T + 2εI Fokker-Planck ⇒ Variational Gaussian flow KL(p||π) + 1 2δt d w (p, p t ) 2 constrained optim. [13] KL(q||π) + 1 2δt d bw (q, q t ) 2 proximal JKO ⇒ proximal Bures-JKO δ p = -∇ w KL(p||π)
gradient projection [START_REF] Lambert | Variational inference via Wasserstein gradient flows[END_REF] δ q = -∇ bw KL(q||π) W2 gradient flow ⇒ Bures-W2 gradient flow

where

A(t) = -E q t [∇ 2 V (x)]; b(t) = -E q t [∇V (x)]
Figure 1: Various equivalent approaches for Gaussian approximation of the SDE (1). We denote π ∝ exp(-V /ε) as the stationary distribution of the associated Fokker-Planck equation. The left column presents equivalent definitions of p whereas the right column corresponds to the approximated solution q in the space of Gaussian distributions. d w denotes the Wasserstein distance whereas d bw denotes the Bures-Wasserstein distance, which is its restriction to the subset of Gaussian distributions. At the last row, the tangent vector δ p, respectively (resp. δ q) and the gradient ∇ w (resp. ∇ bw ) are defined with respect to the Wasserstein metric space of distribution P(R d ), d 2 w (resp. the Bures-Wasserstein metric space of Gaussians N (R d ), d 2 bw ). These geometries are briefly explained in Section 4.2.

approximates the Kushner optimal filter when the state is static. In the next sections, we will generalize this result to a dynamic state.

The recursive variational Gaussian approximation

The proximal LMMR problem [START_REF] Halder | Gradient flows in uncertainty propagation and filtering of linear Gaussian systems[END_REF] where we constrain the solution q to be a Gaussian reads (given q t a current Gaussian distribution at time t):

q t+δt = arg min q∈N (µ,P) E q 1 2 ||δ z t -h(x)δt|| 2 (Rδt) -1 + KL(q||q t ) (8) 
= arg min q∈N (µ,P)

q(x) log p(δ z t |x)dx + KL(q||q t )

= arg min q∈N (µ,P)

KL q 1 Z p(δ z t |x)q t , (10) 
where we have introduced a normalization constant Z which does not change the problem. Eq [START_REF] Kushner | Approximations to optimal nonlinear filters[END_REF] falls into the framework of variational Gaussian approximation (R-VGA) [START_REF] Lambert | The recursive variational Gaussian approximation (R-VGA)[END_REF]. The solution satisfies the following updates [11, Theorem 1]:

µ t+δt = µ t + P t E q t+δt [∇ x log p(δ z t |x)] P -1 t+δt = P -1 t -E q t+δt [∇ 2 x log p(δ z t |x)],
where the expectations are under the Gaussian q t+δt ∼ N (µ t+δt , P t+δt ) making the updates implict. In the linear case, that is, if we take h(x) = Hx, these updates are equivalent to the online Newton algorithm [START_REF] Lambert | The recursive variational Gaussian approximation (R-VGA)[END_REF]Theorem 2]. Computing the Hessian ∇ 2

x log p can be avoided using integration by part:

P -1 t+δt = P -1 t -P -1 t+δt E q t+δt [(x -µ t+δt )∇ x log p(δ z t |x) T ]
By rearranging the terms and using that P is symmetric (see [START_REF] Lambert | The continuous-discrete variational Kalman filter (CD-VKF)[END_REF]Sec 4.2]) we can let appear an update on the covariance:

P t+δt = P t + 1 2 E q t+δt [(x -µ t )∇ x log p(δ z t |x) T ]P t + 1 2 P t E q t+δt [∇ x log p(δ z t |x)(x -µ t ) T ].
Finally, using that ∇ x log p(δ z t |x) = ∇h(x) T R -1 (δ z th(x)δt) we obtain:

µ t+δt = µ t + P t δC t , P t+δt = P t + 1 2 δ H t P t + 1 2 P t δ H T t , (11) 
where:

δC t = E q t+δt [∇h(x) T R -1 (δ z t -h(x)δt)] δ H t = E q t+δt [(x -µ t )(δ z t -h(x)δt) T R -1 ∇h(x)].
Letting δt → 0, we obtain the following SDE in the sense of Ito:

dµ t = P t dC t , dP t = 1 2 dH t P t + 1 2 P t dH T t , (12) 
where it shall be noted that dH t is non-deterministic owing to dz t . Since the LMMR scheme has been proven to converge to the solution of the Kushner SPDE [START_REF] Laugesen | Poisson's equation in nonlinear filtering[END_REF], this SDE describes the best Gaussian approximation of the optimal filter when the state is static.

Information geometry interpretation

We show here how the LMMR proximal scheme is related to the Fisher information geometry in the general case. Let's consider a family of densities: S = p(.|θ ); θ ∈ Θ; Θ ⊆ R m and let

F(θ ) = ∇ θ log p(x|θ )∇ θ log p(x|θ ) T p(x|θ )dx,
be the Fisher information matrix, where θ regroups all the parameters. If we consider now the proximal LMMR on S, and if we use the second-order Taylor expansion of the KL divergence between these two distributions, we have:

KL(p(x|θ )||p(x|θ t )) = 1 2 (θ -θ t ) T F(θ t )(θ -θ t ) + o((θ -θ t ) 2 ).
Rather than minimizing the proximal LMMR scheme [START_REF] Halder | Gradient flows in uncertainty propagation and filtering of linear Gaussian systems[END_REF] in the infinite space of distributions, we now search the minimum in the finite space of parameters:

θ t+δt = arg min θ ∈Θ E p(x|θ ) 1 2 ||δ z t -h(x)δt|| 2 (Rδt) -1 + 1 2 (θ -θ t ) T F(θ t )(θ -θ t ).
Considering that the minimum must cancel the gradient of the above proximal loss, we obtain:

0 = ∇ θ E p(x|θ ) 1 2 ||δ z t -h(x)δt|| 2 (Rδt) -1 θ t+δt + F(θ t )(θ t+δt -θ t ) θ t+δt = θ t -F(θ t ) -1 ∇ θ 1 2 E p(x|θ ) ||δ z t -h(x)δt|| 2 (Rδt) -1 θ t+δt , (13) 
which corresponds to a gradient descent of the averaged stochastic likelihood:

θ t+δt = θ t -F(θ t ) -1 ∇ θ E p(x|θ ) [-log p(δ z t |x)] θ t+δt . ( 14 
)
Remarkably, the optimal filer equations with a static state x are given by an implicit Bayesian variant of the natural gradient descent [START_REF] Amari | Natural gradient works efficiently in learning[END_REF]. Indeed here x plays the role of the parameter of the likelihood distribution. The original natural gradient should be a descent with the gradient -F(x t ) -1 ∇ x log p(δ z t |x) x t .

Variational Gaussian approximation of the JKO proximal

The canonical Langevin form (1) assumes that the drift term f = -∇V derives from a potential V . This potential has a physical meaning in filtering (consider a gravity field for example). The evolution of the state in the filter mimics the true evolution of the physical system. It's not the case in statistical physics, where the potential is constructed such that V =log π where π is the asymptotic distribution of a variable x which doesn't correspond to a physical system. We used this property in our previous work [START_REF] Lambert | Variational inference via Wasserstein gradient flows[END_REF] and simulated a dynamic to approximate the target π with a Gaussian distribution. Here we do not want to estimate a distribution but to propagate a Gaussian through the nonlinear physical dynamic (1).

The Bures-JKO proximal

The proximal JKO problem [START_REF] Bures | An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w * -algebras[END_REF] where we constrained the solution q to be a Gaussian distribution writes: min q∈N (µ,P)

KL q π + 1 2δt d bw (q, q t ) 2 ,
where d bw (q, q t ) is the Bures distance between two Gaussians given by:

d bw (q, q t ) = ||µ -µ t || 2 + B 2 (P, P t ), (15) 
where B 2 (P, P t ) = Tr(P + P t -2(P

1 2 P t P 1 2 ) 1 2
) is the squared Bures metric [START_REF] Bures | An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w * -algebras[END_REF], which has a derivative available in closed form. After some computation [13, Appendix A] we can obtain implicit equations that the parameters of the optimal Gaussian solution q must satisfy:

µ t+δt = µ t -δt.E q t+δt [∇V (x)] P t+δt = P t -δt.E q t+δt [∇ 2 V (x)]P t -δt.P t E q t+δt [∇ 2 V (x)] T + 2εδt.I, (16) 
and at the limit δt → 0, we obtain the following ODEs:

μt = -E q t [∇V (x)] := b t (17) Ṗt = A t P t + P t A T t + 2εI where A t := -E q t [∇ 2 V (x)].

Wasserstein geometry interpretation

The Wasserstein geometry is defined by the metric space of measure endowed with the Wasserstein distance P(R d ), d 2 w . The definition of a tangent vector in this space is tedious because the measure µ must satisfy the conservation of mass µ(x)dx = 1. To handle this constraint we can use the continuity equation. This equation allows to represent any regular curves of measures with a continuous flow along a vector field v t ∈ L 2 . It is closely related to the Fokker-Planck equation as we show now (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] for more details). The JKO proximal scheme [START_REF] Bures | An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w * -algebras[END_REF] gives a sequence of distribution that satisfies at the limit the Fokker-Planck equation ( 4), this equation rewrites as follows:

ṗt = ∇.(∇V p t ) + ε∇.∇p t = ∇.(∇V p t ) + ε∇.(p t ∇ log p t ) = ∇.(p t (∇V + ε∇ log p t )) = -div(p t v t ), (18) 
which is a continuity equation where v t ∈ L 2 (R d ) plays the role of the tangent vector δ p t along the path p t and satisfies: v t = -∇V -ε∇ log p t = -∇ w KL(p t ||π), with π ∝ exp(-V /ε). The last equality comes from variational calculus in the measure space: the Wasserstein gradient of a functional F is given by the Euclidian gradient of the first variation ∇ w F(ρ) = ∇δ F(ρ), see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Chapter 10]. Let's sum up what's going on: starting from a stochastic state x t following the Langevin dynamic (1) with drift -∇V , we have rewritten the Fokker-Planck equation which describes the evolution of the density p(x t ) as a continuity equation (18) where the diffusion term has disappeared. At this continuity equation correspond a deterministic ODE ẋt = -∇ w KL(p t ||π). It's a nice property of the Wasserstein geometry where PDE can be described by a continuity equation that corresponds to a simple gradient flow.

Following the same track, the sequence of Gaussian distributions satisfying the ODE (17) correspond to a Wasserstein gradient flow given by the continuity equation: qt = -div(q t w t ), where w t = -∇ bw KL(q t ||π) is now a gradient with respect to the Bures-Wasserstein distance (15), see [START_REF] Lambert | Variational inference via Wasserstein gradient flows[END_REF]Appendix B3] for the analytical expression of this gradient.

Variational Gaussian approximation of the Kushner optimal filter

We have tackled the two proximal problems independently but how to solve them jointly? The simplest method to do so is to alternate between propagation through dynamics (1) for a small time δt, and Bayesian update through LMMR in the light of the accumulated observations δ z t , and let δt → 0. This is what we do presently.

The continuous variational Kalman filter

Consider one step of the Euler-Maruyama method with length δt of SDEs (1) and (2). As the Wiener processes β and η are independent, we may write: p(x t , y t+δt , x t+δt ) = p(y t+δt |x t+δt , x t )p(x t+δt , x t ) = p(y t+δt |x t+δt )p(x t+δt |x t ), denoting y t+δt = δ z t . In other words, we can solve the proximal LMMR update equation (10) using as prior q t (x) = N (µ t+δt|t , P t+δt|t ), the solution of the proximal JKO. The LMMR/R-VGA discrete-time equations [START_REF] Lambert | The recursive variational Gaussian approximation (R-VGA)[END_REF] Replacing µ t+δt|t and P t+δt|t by their expressions as the solutions to the JKO scheme (16) and putting in a residual all the terms in δt 2 , we obtain: By Ito calculus, we obtain the continuous variational Kalman updates [START_REF] Halder | Gradient flows in filtering and Fisher-Rao geometry[END_REF].

µ t+δt = µ t +

The Kalman-Bucy filter as a particular case

Let us consider the linear case where the SDEs (1) and ( 2) rewrite:

dx t = Fx t dt + √ 2εdβ , dz t = Gx t dt + √ Rdη.
The various expectations that appear in the proposed filter [START_REF] Halder | Gradient flows in filtering and Fisher-Rao geometry[END_REF] apply either to quantities being independent of x t or being linear or quadratic in x t , yielding dµ t = F µ t dt + P t G T R -1 (dz t -Gµ t dt) d dt P t = FP t + P t F T -P t G T R -1 GP t + 2εI.

We see we exactly recover the celebrated Kalman-Bucy filter.

Conclusion

We have approximated the Kushner optimal filter by a Gaussian filter based on variational approximations related to the JKO and LMMR proximal discrete schemes related to the Wasserstein and Fisher geometry respectively. As the dynamic and observation processes are assumed independent, we can mix the two variational solutions to form a set of SDEs on the Gaussian parameters generalizing the Riccati equations associated to the linear systems. In the linear case, the proposed filter boils down to the Kalman-Bucy optimal filter. It is still unclear, though, which global variational loss is minimized by the optimal filter.

  then become:µ t+δt = µ t+δt|t + P t+δt|t δC t

	P t+δt = P t+δt|t +	1 2	δ H t P t+δt|t +	1 2	P t+δt|t δ H T t .

  δtb t + P t δC t P t+δt = P t + δtA t P t + δtP t A T t + δt2εI +

	1 2	δ H t P t +	1 2	P t δ H T

t + O(δt 2 ).
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