Approximate solution for a class of stochastic differential equation driven by stable processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Approximate solution for a class of stochastic differential equation driven by stable processes

Résumé

In this paper we consider a general class of stochastic differential equations driven by stable processes with Lipschitz drift coefficients and non-Lipschitz diffusion coefficients. An Euler-Maruyama approximate solution is proved whenever the diffusion coefficient is Holder continuous with given exponent. We obtain a strong rate of convergence. Our proposed method is new in this context and is based on a truncation method by separating the large and small jumps of the $\alpha$ stable process in the Lévy-Itô decomposition. Along the paper we give some numerical simulations of stochastic models that match our results, namely some stable driven Ornstein-Uhlenbeck, Cox-Ingersoll-Ross and Lotka-Volterra type processes.
Fichier principal
Vignette du fichier
solym-2024.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04217398 , version 1 (25-09-2023)
hal-04217398 , version 2 (17-01-2024)
hal-04217398 , version 3 (03-02-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04217398 , version 2

Citer

Solym Manou-Abi. Approximate solution for a class of stochastic differential equation driven by stable processes. 2023. ⟨hal-04217398v2⟩
154 Consultations
237 Téléchargements

Partager

More