Workstation Suitability Maps: Generating Ergonomic Behaviors on a Population of Virtual Humans with Multi-task Optimization - Archive ouverte HAL
Article Dans Une Revue IEEE Robotics and Automation Letters Année : 2023

Workstation Suitability Maps: Generating Ergonomic Behaviors on a Population of Virtual Humans with Multi-task Optimization

Résumé

In industrial workstations, the morphology of the worker is a key factor for the feasibility and the ergonomics of an activity. Existing digital human modeling tools can simulate different morphologies at work, but hardly scale to a large population of workers because of limited consideration of morphologyspecific behaviors and computational cost. This paper presents a framework to efficiently evaluate the suitability of a workstation over a large population of workers in a physics-based simulation. Activities are simulated through a two-step optimization process, involving a quadratic-programming-based whole-body controller and a multi-task optimizer for behavioral adaptation. On a screwdriving scenario, we demonstrate how our framework can help ergonomists improve workstation designs thanks to the resulting suitability maps where generated behaviors are optimized for each morphology w.r.t. ergonomics and performance.
Fichier principal
Vignette du fichier
Zhong_2023 (1).pdf (3.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04216552 , version 1 (25-09-2023)

Identifiants

Citer

Jacques Zhong, Vincent Weistroffer, Jean-Baptiste Mouret, Francis Colas, Pauline Maurice. Workstation Suitability Maps: Generating Ergonomic Behaviors on a Population of Virtual Humans with Multi-task Optimization. IEEE Robotics and Automation Letters, 2023, pp.1-8. ⟨10.1109/LRA.2023.3318191⟩. ⟨hal-04216552⟩
117 Consultations
160 Téléchargements

Altmetric

Partager

More