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Workstation Suitability Maps: Generating
Ergonomic Behaviors on a Population of Virtual

Humans with Multi-task Optimization
Jacques Zhong1,2, Vincent Weistroffer1, Jean-Baptiste Mouret2, Francis Colas2, Pauline Maurice2

Abstract—In industrial workstations, the morphology of the
worker is a key factor for the feasibility and the ergonomics of
an activity. Existing digital human modeling tools can simulate
different morphologies at work, but hardly scale to a large popu-
lation of workers because of limited consideration of morphology-
specific behaviors and computational cost. This paper presents a
framework to efficiently evaluate the suitability of a workstation
over a large population of workers in a physics-based simulation.
Activities are simulated through a two-step optimization process,
involving a quadratic-programming-based whole-body controller
and a multi-task optimizer for behavioral adaptation. On a screw-
driving scenario, we demonstrate how our framework can help
ergonomists improve workstation designs thanks to the resulting
suitability maps where generated behaviors are optimized for
each morphology w.r.t. ergonomics and performance.

Index Terms—Modeling and simulating humans, human and
humanoid motion analysis and synthesis, ergonomics, multi-task
optimization

I. INTRODUCTION

MUSCULOSKELETAL disorders (MSD) are a major
health issue in industrial workplaces [1]. They com-

promise the well-being of workers due to chronic body pain
and discomfort. Moreover, MSDs are highly prevalent which
result in a large scale productivity loss due to absenteeism
or presenteeism. Ergonomics assessment aims at identifying
high-risk behaviors of workers performing their activity (e.g.
awkward postures, high forces, repetitive movements), which
then serves to improve workstation designs and thereby reduce
MSDs risks.

The risk of developping MSDs depends on individual fac-
tors [2] which must be accounted for during the evaluation.
One key factor is the morphology which defines the physical
characteristics of the worker, including the anthropometric
dimensions, the muscular capacities or the endurance limits.
For example, small workers have to adopt awkward postures
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Figure 1: Workflow of the framework. A large population
of workers is dynamically simulated using a whole-body
controller, and their behaviors are optimized w.r.t. ergonomics
using multi-task optimization. The resulting map gives an
overview of the workstation suitability for the population.

on workstations designed for an average morphology [3]; a
high body-mass index (BMI) from obesity correlates with a
higher prevalence of MSDs [4]. Thus, workstations need to
be designed not for an average-morphology user, but rather
by considering the whole population of potential workers. To
avoid time-consuming experimental studies, simulation is in-
creasingly used to model and animate humans for ergonomics
evaluation during workstation design processes [5] [6] [7].
Simulation has the potential for fully automated assessments
with a wide range of indicators [8] in early-stage prototyping
of workstations, without needing costly mock-ups or real
human data [5] [9]. In this context, a first challenge consists
in evaluating if a given morphology is capable of performing
an activity in an ergonomic way. Since the human body is
highly redundant and able to interact with the environment
in various ways, an activity can be performed with various
motor behaviors [10]. Yet, the behavior that allows to perform
the activity in an ergonomic way may vary depending on the
morphology. Therefore, the challenge lies in generating human
motions that are optimized w.r.t. the morphology.

Then, since a well-designed workstation should be suitable
for a wide range of workers, ergonomics simulation tools
should account not only for one or a small number, but for
a whole set of different morphologies. Optimizing human
whole-body motions even for one morphology is generally
computionally expensive [7] [11], and previous works do not
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address the scalability issue when a large number of mor-
phologies need to be simulated [9] [12]. Therefore, a second
challenge is to account for a large number of morphologies in
a computationally-efficient way.

This paper thus aims at developing a framework that allows
to assess the suitability of a workstation for a large population
of morphologically distinct workers. To address the afore-
mentioned challenges, i.e. generation of morphology-specific
behaviors and computational efficiency over large morphology
sets, the paper proposes the following contributions:

• A framework that efficiently generates morphology-
specific optimal behaviors w.r.t. ergonomics and activity
performance, for a large number of morphologies.

• A global visualization of the workstation suitability over
a large population of workers through suitability maps.

• An example application of the proposed framework on a
screwdriving activity as a proof of concept.

The proposed approach combines a whole-body controller
(WBC) [13] in a physics engine to simulate the activity on
a variety of morphologies (section III-B) with a multi-task
optimization algorithm (Multi-Task MAP-Elites [14]) to ex-
plore controller configurations and generate behaviors adapted
to each morphology (section III-C) (Figure 1). The framework
is demonstrated on a screw-driving activity (section IV), to
both show how it can help studying workstation suitability and
behavioral strategies over a large population, and benchmark
its computational efficiency (section V).

II. RELATED WORKS

A. Ergonomics evaluation

Traditionnally, ergonomists use pen-and-paper methods to
quantify MSDs risk by observing workers performing the
activity [8]. The indicators used typically consist in a scoring
system implementing guidelines from epidemiological studies,
in terms of postures, repetitiveness or load values. But these
indicators use rough threshold values and are posture-based
with limited considerations for dynamical effects.

Recent works focus on simplifying the ergonomics as-
sessment process towards non-expert users. Using motion
capture, many frameworks can automatically compute a va-
riety of ergonomics indicators, e.g. continuous RULA [15]
or biomechanical-based indicators accounting for dynamical
effects (e.g. joint torques, whole-body stability) [9]. Applica-
tion ranges from online ergonomics assessment [16] to adap-
tive cobotic assistance based on estimating the overloading
torques [17]. Virtual or augmented reality has also been used
to reduce the need for costly physical workstations mock-ups
in ergonomics studies [18]. However, these frameworks still
require real human data, which can be complex and costly to
obtain especially when studying a large population of workers.

B. DHM software and whole-body animation

Digital Human Models (DHM) can be used to simulate
the human body and replace human data. With ergonomics-
oriented DHM software (e.g. Jack [5] [6]), entire worksta-
tions can be designed and simulated without the need for

physical protoypes or motion capture sessions. Various virtual
workers can be created using anthropometric databases [19]
or statistical models from multivariate anthropometrics [20].
Virtual workers are then animated to perform activities, using
pre-recorded animations or inverse-kinematics (IK) techniques
based on user-defined target poses. As discussed in [9], such
animation methods neglect the dynamical effects of body
segments or external loads, which have an impact especially
for outlying morphologies (e.g. high stature, high BMI). In [6],
terms are added in the IK problem to generate motions that
account for external loads and interal efforts minimization,
but only the equations of statics are considered. Overall,
these kinematic-based methods lead to unrealistic whole-body
motions and inaccurate estimations of the internal body efforts.

C. Physics-based DHM

To overcome the limitations of kinematic-based methods,
dynamically simulated DHMs are needed. Musculoskeletal
DHMs (e.g. Anybody [7]) can be dynamically simulated
to model detailed biomechanical effects within the human
body. However, these models are computationally expensive,
especially when it comes to forward dynamics simulation.

An emerging approach in ergonomics consists in simulating
joint-actuated DHMs (i.e. no muscles) in a physics engine
with WBC [21] [9]. WBC are used in humanoid robotics
for real-time computation of optimal joint torques w.r.t user-
defined tasks and constraints [13] [22]. In [21] [9], a WBC is
used for generating dynamically consistent DHM motions and
estimating internal efforts, which paves the way for dynamic-
based ergonomics assessments. However, the parameters of
a WBC must be fine-tuned for each activity and human mor-
phology, which involves a complex black-box problem usually
solved with evolutionary algorithms [11] [12] or Bayesian
optimization with dimensionality reduction [23]. In previous
ergonomics-centered works with several human morphologies,
this problem has either been ignored [9] or solved separately
for each morphology [12], which becomes prohibitively costly
when a large population is considered.

Deep reinforcement learning controllers are another promis-
ing approach, with virtual characters able to reproduce highly
dynamical motions from motion capture inputs [24]. In [25],
the control policy learns the dynamical effects of anthropo-
metric dimensions allowing for real-time gait retargeting to a
continuous space of morphologies. However, these approaches
have a high training cost and a limited configurability with
policies highly overfitted over the reference motions.

Our goal is to assess the suitability of a workstation for a
large population of workers. Our approach uses joint-actuated
DHMs with a WBC, which parameters are optimized w.r.t.
ergonomics to generate morphology-specific behaviors. To
avoid solving this problem from scratch for each morphology,
we use a multi-task optimizer which leverages solutions from
other morphologies to significantly reduce the simulation cost.

III. METHODS

The proposed framework consists in two levels of optimiza-
tion (Figure 1). In the activity simulation part (section III-B),
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the physics-based DHM is animated using optimal joint
torques computed by a whole-body controller. In the behavior
adaptation part (section III-C), the controller parameters are
optimized for each morphology with a multi-task algorithm.

A. Problem statement

The problem consists in assessing the suitability of a
workstation activity a for a population of workers M. The
workstation is suitable for a worker if the worker is able to
complete the activity in an ergonomic way. The same activity
a can be performed using many different whole-body motions
[10]. To account for this variability, the set of possible motor
behaviors for a worker m ∈ M is denoted aB

m. We note af
m
suit

(noted fsuit later on to simplify notation) a measure of the
suitability of activity a for the morphology m. The following
multi-task optimization (MTO) problem is solved:

∀m ∈ M arg min
b∈aBm

af
m
suit(b) (1)

B. Activity simulation

1) Digital human model: The DHM is composed of 21
rigid bodies linked by 20 joints, for a total of 47 internal DoFs
modeled as actuated revolute joints, and 6 additional non-
actuated DoFs from the floating base. Joint-actuated human
models involve lower computational costs compared to mus-
culoskeletal models [7], which is crucial when a large number
of simulations are needed. The DHM is implemented in the
XDE physics engine [26] with the Unity platform.

Different morphologies can be generated by specifying the
height and the BMI of the DHM. The dimensions and inertial
properties of the body segments are automatically scaled
according to average anthropometric coefficients as in [18].
The joint torques capacities τmax (maximum torque each joint
can produce) are scaled with respect to the BMI and height.
τmax changes linearly with respect to the BMI, based on the
muscular strength in obese and non-obese populations from
comparative studies [27] [28] [9]. Then, for a given BMI, τmax

scales linearly with respect to the height by assuming that the
proportion of fat-free mass is constant for a given BMI.

2) QP control: Dynamically-consistent DHM motions are
generated with a whole-body controller based on quadratic
programming (QP) as in [13] [9]. At each simulation step, the
QP controller computes the optimal joint torques allowing the
DHM to perform various tasks (e.g. track hand trajectories,
maintain balance) under physical (e.g. contact conditions) and
biomechanical (e.g. joint limits) constraints, by solving the
following convex optimization problem:

argmin
χ=(τ,fc)

ntask∑
i=0

wi ∥Aiχ− ai∥2 (2a)

s.t. Cinχ ≤ cin (2b)
Ceqχ = ceq (2c)

Mν̇ + h = Sτ +

ncontact∑
k=0

JT
ck
fck (2d)

with:

• χ = (τ, fc) the optimization variables, with τ the joint
torques and fc the body/environment contact wrenches.

• QP tasks (Equation 2a) defined as errors between a cur-
rent and a desired acceleration or force, in the Cartesian
or joint space, where (Ai, ai) serve to express tasks in the
optimization variables χ (see [13]). wi defines the weight
(i.e. priority) of the i-th task among ntask tasks.

• (Ceq , ceq) and (Cin, cin) implement respectively the
equality and inequality constraints corresponding to the
planar contact constraints (feet/ground non sliding con-
tact conditions, always active in this work since we
focus on activities without locomotion) and the joint
limit constraints (velocities, accelerations, torques) that
implements biomechanical limits of the human body.

• The equation of motion as constraint for dynamic con-
sistency (Equation 2d), with M the mass matrix, ν the
generalized velocities, h the Coriolis, centripetal and
gravity terms, S the selection matrix and fck the wrench
at the k-th contact point with Jck the corresponding
Jacobian matrix.

3) QP tasks: The QP problem uses the following set of
tasks that are generic enough to allow the simulation of various
human manual activites (as in [12]):

• Cartesian(s) task(s) on the hand frame(s), where the
reference (i.e. desired) trajectories are activity-specific.

• A head orientation task directed at the hand frame, such
that the worker looks at what he is doing.

• A center of mass (CoM) task to maintain balance.
• Postural (i.e. joint position) tasks on the torso, left arm,

right arm, neck and legs to favor the motion of certain
joints compared to others, and thereby generate different
behaviors by changing the relative tuning of these tasks.
The postural tasks reference is the standing neutral pos-
ture (N-pose) as in REBA [8]

• A torque minimization task to avoid excessive internal
efforts associated with higher risks of MSDs

The tasks and constraints are either defined in the Cartesian
space (thus independent of the morphology) or automatically
rescaled with respect to the morphology (as with the joint
torque limits). In this work, the QP problem is implemented
using the open-source TSID (Task Space Inverse Dynamics)
library [22] 1.

C. Behavioral adaptation

1) Multi-task MAP-Elites: Multi-task MAP-Elites (MTME)
[14] is an evolutionary algorithm dedicated to efficiently find
high-performing solutions for many different but related tasks
(i.e. problems). The main intuition is that similar problems
have similar solutions. Instead of optimizing each problem
separately, MTME keeps the best solution (elite) for each
problem in an archive and iteratively combines these elites
with genetic operators in order to improve the archive. In our
MTO problem (see section III-A), each task (in the sense of
MTME) corresponds to the behavior optimization problem for
one morphology. A simplified pseudo-code of MTME (Alg. 1)

1Source code: https://github.com/stack-of-tasks/tsid
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highlights the main steps of the algorithm. The open-source
reference implementation in Python [14] was used 2.

Algorithm 1 Multi-task MAP-Elites [14] simplified pseudo-
code, applied to our problem.

Archive ← Generate and evaluate random solutions
for K evaluations do

x ← Generate a solution from two elites in Archive
m ← Select a morphology in M
b ← Simulate activity with solution x on morphology m
if fsuit(b) < Archive(m) then

Archive(m) = fsuit(b)
end if

end for

2) Morphology space: The morphology space is a set of
DHMs with different morphological characteristics. In general,
relevant dimensions should be chosen according to the study
e.g. height, BMI, body length ratios.

3) Search space: The search space is the set of parameters
influencing the human motor behavior and optimized by
MTME. The parameters should be chosen so that they have a
significant impact on the motor behavior of the DHMs (e.g.
task parameters of the WBC, DHM feet placement).

4) Suitability cost: The objective is to find, for each mor-
phology, a behavior allowing to complete the workstation
activity in the most ergonomic way. To guide the optimization
process, three cases are considered in the suitability cost fsuit:

fsuit =


p1 if early termination (3a)
fperf + p2 if Cperf false (3b)
fergo if Cperf true (3c)

If the activity is not completed at all (Equation 3a) (early
termination, e.g. the worker falls or is unable to grab a
necessary tool), the cost function is assigned a high penalty
p1 in order to dismiss the solution. If the activity is executed
until the end, the quality of execution is measured with
the performance cost fperf (e.g. accuracy or rapidity), and
compared to the activity performance requirements Cperf (the
definition of fperf and Cperf is activity-specific, see section IV).
If Cperf are not satisfied (Equation 3b), the cost function is the
task performance metrics fperf, plus a small penalty term p2
to reduce the relevance of this solution. If Cperf are satisfied
(Equation 3c), then the cost function is an ergonomic cost fergo
that evaluates MSDs risk. This means the ergonomics of the
motion is considered only when the activity is completed sat-
isfactorily (the feasibility is prioritized over the ergonomics).

In this work, we define the ergonomic cost fergo as the
normalized torques averaged over the joints and the simulation
steps [9] (but it could be replaced by other ergonomic scores):

fergo =
1

T

T∑
t=0

[
1

N

N∑
n=0

[
max

i

(
|τn,i(t)|
τmax
n,i

)]]
(4)

with T the total simulation timesteps, N the number of joint,
τn,i the i-th DoF of the n-th joint and τmax

n,i the maximum

2Source code: https://github.com/resibots/pymap elites

exertable torque of the DoF. This indicator estimates the
overall stress applied on the joints during the whole activity,
on a scale from 0 (no stress at all) to 1 (maximum stress on
all joints).

IV. EXPERIMENTS

We now demonstrate our framework on an example screw-
driving activity as a proof of concept.

A. Screw-driving activity

The activity consists in a simulated assembly line screw-
driving activity. The activity starts with the simulated human
in the N-pose and pre-defined feet positions. The human then
grabs an electric screwdriver (2 kg) with his right hand, and
reaches forward to two points located on a panel above a
conveyor belt, staying 2 s on each point to simulate setting
screws. The whole activity lasts around 10 s. A conveyor belt
(75 cm high) is positioned between the worker and the panel,
and the worker cannot lean on it.

The activity is simulated using the QP tasks defined in
section III-B3, where a reference trajectory for the right hand
Cartesian task is computed from the target waypoints inter-
polated with a minimum-jerk polynomial. The only contacts
included in the QP formulation are the fixed feet/ground
contacts. The activity terminates early if the DHM falls, cannot
reach the tool, or if a lower-body segment collides with the
conveyor belt.

Since our framework is meant to help designers iteratively
improve workstation designs to accomodate a large population
of workers, we present two variants of the example activity,
which represent the iterative design process:

• Scenario A: the conveyor belt is 100 cm wide.
• Scenario B: the conveyor belt is 80 cm wide.

We expect scenario A (initial design) to be less suitable
than scenario B (improved design), especially for smaller
morphologies with limited reaching capabilities.

B. Activity-specific formulation

1) Morphology space: Each morphology is defined by a
height and a BMI. The whole space consists in 10 heights
(from 1.5m to 1.95m) and 10 BMIs (from 16 - underweight
to 34 - obese) both equally spaced, for a total of 100 different
morphologies.

2) Search space: The search space contains 10 parameters
(Table I) that were manually selected, based on pilot tests in
simulation on outlying morphologies:

• The weights (wp,torso, wp,leg, wτmin ) and gains (used for
position servoing [13]) (Kc, Kp) of the QP tasks.

• The reference position xref
com of the CoM task along the

anterior-posterior axis. To ensure the reference CoM does
not lie outside the support polygon, xref

com is normalized
with respect to the limits of the polygon of support.

• The feet positions in the horizontal ground plane, with
(δxft, δyft) the feet spacing and (xroot, yroot) the position
of the midpoint of the segment connecting the two feet
expressed w.r.t. the origin frame.
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Table I: Values of the WBC parameters. The parameters
optimized with MTME and their search intervals are in bold.
Parameters Value(s)
Postural tasks
· Gain Kp [250;2500]
· Legs weight wp,leg [1;100]
· Torso weight wp,torso [1;100]
· Neck weight 0.01
· Left arm weight 1
· Right arm weight 0.001

Cartesian tasks
· Hand gain Kc [1e3;1e4]
· Hand weight 100
· Head gain 500
· Head weight 100

Parameters Value(s)
CoM task
· Gain 200
· Weight 1e5
· Reference (X) xref

com [-0.5;0.8]

Torque min. task
· Weight wτmin [0.1;10]

Feet positioning
· X spacing δxft [-0.4;0.4]
· Y spacing δxft [0.1;0.6]
· X root xroot [-0.4;0.4]
· Y root yroot [0.1;0.6]

3) Performance cost: The activity is performed success-
fully if the DHM brings the screwdriver within a threshold
to the targets. We define the activity performance conditions
Cperf as:

Cperf =

{
ϵp ≤ ϵ∗p = 0.05m

ϵr ≤ ϵ∗r = 10◦
(5)

with ϵp and ϵr respectively the position and orientation errors
(angle between the screwdriver axis and the hole normal
axis), averaged over the timesteps when the tool is expected
to be on a target. ϵ∗p and ϵ∗r are respectively the position
and orientation error thresholds allowed for the activity. The
activity performance cost fperf (Equation 3b) is defined as:

fperf =
1

2

(
max

(
0,

ϵp − ϵ∗p
ϵ∗p

)
+max

(
0,

ϵr − ϵ∗r
ϵ∗r

))
(6)

In Equation 3, we use p1 = 2000, p2 = 1000 to ensure a
strong hierarchy between the three cases.

C. Simulation runs

We ran the framework with MTME on both scenarios A
and B for 50000 evaluations (10 runs), which was enough to
observe a low frequency of updates in the archive of elites
(< 5%) at which we considered the convergence sufficient.
The results presented in section V-A and V-B are based on
the median run in terms of the average value of fsuit over
all morphologies. MTME was also benchmarked against three
other algorithms on scenario A to evaluate its computational
efficiency (section V-C). In this case, the algorithms were all
compared at 30000 evaluations (10 runs each):

• Random: at each evaluation, a random behavior is eval-
uatued for a random morphology. As with MTME, the
elite solution of each morphology is kept in an array.

• CMA-single: the behavior is optimized for each morphol-
ogy separately with CMA-ES, a state-of-the-art black-box
optimizer (classic way of solving a MTO problem with
single-task optimization) [29]. To keep the evaluation
budget constant, each morphology is evaluated 300 times.

• CMA-all: to verify if MTO is needed, we look for one
same optimal solution for all morphologies. Each solution
is evaluated over the entire population, and the average
fsuit over all morphologies is optimized with CMA-ES.

We define the fail rate as the proportion of morphologies
unable to complete the activity. To estimate the minimum
achievable fail rate, the morphologies not satisfying Cperf on
the MTME runs are optimized with CMA-ES with a larger
budget (10000 evaluations each, 5 runs). The fail rate is a
decent approximation of the average suitability cost, as the
penalty terms dominate fsuit if the activity is not completed.

Each run was launched on a computing cluster with a 32
cores CPU (Intel Xeon E5-2620 v4). A run of 30000 evalua-
tions took approximately 5 days regardless of the algorithm.

V. RESULTS

A. Workstation suitability

The suitability of a scenario for the considered population is
evaluated using the suitability scores fsuit of all morphologies.
Mp+ (resp. Mp−) is defined as the set of morphologies that
match (resp. do not match) the performance conditions Cperf
(Equation 3a - Equation 3c). A scenario is considered suitable
if all the morphologies belong to Mp+.

Scenario A: Figure 2 displays the suitability map – i.e.
the suitability scores across morphologies – for scenario A. For
the sake of readability, the map shows only the performance
cost fperf (see Equation 3b) for morphologies in Mp− (red
colors on the map), rather than the full value of fsuit. For
morphologies in Mp+, fsuit equals to fergo (see Equation 3c)
so the map displays the ergonomic cost (green colors).

Twenty-two out of 100 morphologies belong to Mp−. The
suitability of the workstation is mainly affected by the DHM
height: Morphologies smaller than 1.6 m all belong to Mp−,
while morphologies taller than 1.6 all belong to Mp+. In
addition, within Mp− the performance cost averaged over
same height morphologies fH

perf improves with height: fH
perf

ranges from 0.805 for H = 1.5 m to 0.058 for H = 1.6 m
(the lower fperf the better). Within Mp+, the ergonomic cost
fergo improves (i.e. decreases) with increasing height. This
height-dependency is expected, as tall people can reach farther
without having to bent forward. Therefore, scenario A is not
suited to the entirety of the studied population.

Scenario B: The suitability map for scenario B (Figure 3)
only displays the ergonomic cost fergo, as all morphologies are
able to perform the task (i.e. belong to Mp+). The average
fergo over Mp+ is better in Scenario B (0.070± 0.010) than in
scenario A (0.117± 0.026). The dispersion of the fergo values
is lower in scenario B, which indicates a more homogeneous
ergonomic cost over the population. This is consistent with
the conveyor belt being less wide, which enables workers
to move closer to targets while having to bend forward
less. Therefore, scenario B is better suited to the whole
considered population thanks to the reduced width on the
conveyor belt.

The attached video shows the generated motions for a few
morphologies for both scenarios.

B. Behavioral strategies

This part presents an in-depth analysis of scenario A for
which a higher variability on fsuit was observed.
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Figure 2: Suitability map for scenario A and screenshots of example morphologies setting the screw on the second point. The
map shows the performance cost fperf if Cperf is not matched (red colors) and the ergonomic cost fergo otherwise (green colors).
On the screenshots, the colored spheres represent the instantaneous normalized joint torques (green: low, red: high).
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Figure 3: Suitability map for scenario B. Each contour line
delimits a percentile of the fergo values, from the 20th (white
line) to the 80th (black line).

Effect of height: Figure 2 displays example morpholo-
gies performing the activity. Small workers adopt awkward
postures in terms of ergonomics, with the back strongly bent
and the right shoulder raised. Indeed, the back flexion angle
is higher across the whole activity execution for small mor-
phologies compared to taller ones (Figure 4a): the maximum
back flexion angle is 67 ° for a 1.5 m tall DHM compared
to 35 ° for a 1.95 m tall DHM. Figure 4b depicts the CoM
stability margin across time for various DHM heights. Here,
the CoM stability margin defines the distance between the
CoM and the front limit of the support polygon, projected
on the horizontal plane. Overall, this margin decreases with
the height. In addition, while the margin is almost constant
across the whole activity execution for morphologies in Mp+,
it decreases with time for morphologies in Mp− (H = 1.5 m

and H = 1.55 m). Small workers need to bend forward further
than taller ones to reach the target points, which leads to less
stable and overall less ergonomic postures.

Effect of BMI: According to the suitability map (Fig-
ure 2), within Mp+ the ergonomic cost fergo gets worse
(increases) with increasing BMI. The ergonomic cost averaged
over same BMI morphologies fBMI

ergo ranges from 0.096 (i.e.
9.6% of maximum torque capacity) for BMI = 16 (un-
derweight population) to 0.126 (12.6% of maximum torque
capacity) for BMI = 34 (overweight population). Contrary to
the height, the back flexion angle is not significantly affected
by the BMI (Figure 4c). However, higher BMIs results in
higher joint torques especially on the lumbar joints (Figure 4d)
and the lower-body joints. The effect of BMI on lumbar
torque is particularly significant from 3 seconds onwards,
after the DHM grabs the tool and starts bending forward.
This result is consistent with the fact that overweight people
usually have a lower strength to body mass ratio compared
to average BMI people [28]. With the increase of mass (and
the associated inertial effects), reaching for extreme postures
while maintaining balance becomes more difficult.

Behavior variability: Figure 5a shows the value distribu-
tion for each optimized parameter (see Table I) over the elites
solutions. These distributions are multimodal which means that
MTME converges to morphology-specific behaviors (i.e. dif-
ferent optimal behaviors for different morphologies). Figure 5
displays maps of optimal parameter values over morpholo-
gies, for 4 parameters. The torso and legs postural weights
(resp. wp,torso, wp,leg) are lower for small morphologies (resp.
Figure 5b and Figure 5c). With lower postural weights, the
DHM is able to reach a posture farther from the reference
neutral posture, which is needed for smaller DHMs to reach
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Figure 4: Time-series of 4 different kinematic and dynamic
quantities for scenario A. The back flexion angle is measured
from the vertical axis to the projection of the pelvis-neck line
on the sagittal plane, as in REBA [8]. Lumbar torques are
normalized w.r.t. the torques capacities of each morphology.

the targets. Similarly, the CoM reference xref
com is higher for

smaller morphologies (Figure 5d), which is helpful for them
to bend further forward. Moreover, the torque minimization
weight wτmin is lower on taller and heavier morphologies
(Figure 5e). For these morphologies, higher absolute joint
torques are needed to perform the activity, which requires a
lower weight for the torque regularization task.

C. Baseline comparisons

The evolution of the fail rate for MTME and the 3 baseline
algorithms is displayed on Figure 6. At 30000 evaluations,
CMA-all has the highest median fail rate (0.58) and performs
even worse than Random (0.5). With CMA-all, the problem
is optimized as a single-task problem (i.e. one solution for
all morphologies). This shows the necessity of optimizing for
each morphology individually in a multi-task context.

At 30000 evaluations, MTME outperforms all the baselines
with a median fail rate (0.22) lower than that of CMA-single
(0.4) and Random (0.5). MTME shows some variability with
a fail rate difference of 0.11 between the worst run and
the best run; the worst run still outperforms the best run
of any baselines. Moreover, MTME reaches the final fail
rate of CMA-single 6.5 times earlier and that of Random 14
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Figure 5: (a) Distributions of the optimized parameters over
the elite solutions, normalized w.r.t. the search space intervals.
(b) - (e) Maps of optimized parameter values over the mor-
phology space.
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times earlier. This demonstrates the pertinence of using multi-
task optimization through MTME as similar morphologies are
expected to have similar solutions.

The attached video shows the best behavior generated by
each baseline on an average DHM (H=1.7, BMI=24). At
30000 evaluations, the activity is completed only with MTME
and CMA-single, with MTME having a better (i.e. lower)
suitability cost fsuit.

VI. CONCLUSION

The paper presented a framework to study workstation suit-
ability for large populations of workers, by combining whole-
body control and multi-task optimization. On an example
screw-driving scenario with 100 different morphologies, our
framework generated ergonomically-optimized behaviors for
each morphology, and a suitability map over the population.
This can help a designer to identify a poorly designed work-
station and improve it based on the suitability and behavioral
analysis. Moreover, we showed that Multi-Task MAP-Elites
reduces the simulation cost when many morphologies are
considered, compared to other state-of-the-art approaches.

Currently, the whole problem is optimized from scratch
when the workstation or the set of morphology changes.
Future work will explore the transfer of optimized solutions
to resembling scenarios or morphological spaces to further
reduce computational costs. Moreover, some generated mo-
tions are not yet fully human-like, because of some current
limitations of our WBC (a real human might find a better
solution). Yet, this could be improved by various additions to
the controller without affecting the MTME part. For example,
this includes considering multi-contact dynamics (e.g. hand
or legs against the conveyor belt), handling self-collisions
(as in [30]) or optimizing the reference trajectories directly
(as in [12]) or with planning. Future studies will be directed
towards assessing the usability and the validity of the proposed
framework with ergonomists on various scenarios involving
real human data.
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