Algorithms and Hardness for Metric Dimension on Digraphs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Algorithms and Hardness for Metric Dimension on Digraphs

Résumé

In the Metric Dimension problem, one asks for a minimumsize set R of vertices such that for any pair of vertices of the graph, there is a vertex from R whose two distances to the vertices of the pair are distinct. This problem has mainly been studied on undirected graphs and has gained a lot of attention in the recent years. We focus on directed graphs, and show how to solve the problem in linear-time on digraphs whose underlying undirected graph (ignoring multiple edges) is a tree. This (nontrivially) extends a previous algorithm for oriented trees. We then extend the method to unicyclic digraphs (understood as the digraphs whose underlying undirected multigraph has a unique cycle). We also give a fixed-parameter-tractable algorithm for digraphs when parameterized by the directed modular-width, extending a known result for undirected graphs. Finally, we show that Metric Dimension is NPhard even on planar triangle-free acyclic digraphs of maximum degree 6.
Fichier principal
Vignette du fichier
MetricDimensionOnOrientedGraphs.pdf (467.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04216265 , version 1 (24-09-2023)
hal-04216265 , version 2 (13-10-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Antoine Dailly, Florent Foucaud, Anni Hakanen. Algorithms and Hardness for Metric Dimension on Digraphs. 49th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2023), Jun 2023, fribourg, Switzerland. pp.232-245, ⟨10.1007/978-3-031-43380-1_17⟩. ⟨hal-04216265v1⟩
96 Consultations
58 Téléchargements

Altmetric

Partager

More