Influence of prior knowledge on eye movements to scenes as revealed by hidden Markov models
Résumé
Human visual experience usually provides ample opportunity to accumulate knowledge about events unfolding in the environment. In typical scene perception experiments, however, participants view images that are unrelated to each other and, therefore, they cannot accumulate knowledge relevant to the upcoming visual input. Consequently, the influence of such knowledge on how this input is processed remains underexplored. Here, we investigated this influence in the context of gaze control. We used sequences of static film frames arranged in a way that allowed us to compare eye movements to identical frames between two groups: a group that accumulated prior knowledge relevant to the situations depicted in these frames and a group that did not. We used a machine learning approach based on hidden Markov models fitted to individual scanpaths to demonstrate that the gaze patterns from the two groups differed systematically and, thereby, showed that recently accumulated prior knowledge contributes to gaze control. Next, we leveraged the interpretability of hidden Markov models to characterize these differences. Additionally, we report two unexpected and interesting caveats of our approach. Overall, our results highlight the importance of recently acquired prior knowledge for oculomotor control and the potential of hidden Markov models as a tool for investigating it.
Domaines
Sciences cognitivesOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|