Improving Generalization in Facial Manipulation Detection Using Image Noise Residuals and Temporal Features - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Improving Generalization in Facial Manipulation Detection Using Image Noise Residuals and Temporal Features

Résumé

The high visual quality of modern deepfakes raises significant concerns about the trustworthiness of digital media and makes facial tampering detection more challenging. Although current deep learning-based deepfake detectors achieve excellent results when tested on deepfake images or image sequences generated using known methods, generalization—where a trained model is tasked with detecting deepfakes created with previously unseen manipulation techniques—is still a major challenge. In this paper, we investigate the impact of training spatial and spatio-temporal deep learning network architectures in the image noise residual domain using spatial rich model (SRM) filters on generalization performance. To this end, we conduct a series of tests on the manipulation methods of the FaceForensics++, DeeperForensics-1.0 and Celeb-DF datasets, demonstrating the value of image noise residuals and temporal feature exploitation in tackling the generalization task.
Fichier principal
Vignette du fichier
ICIP_final.pdf (4.88 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04206611 , version 1 (13-09-2023)

Identifiants

Citer

Mehdi Atamna, Iuliia Tkachenko, Serge Miguet. Improving Generalization in Facial Manipulation Detection Using Image Noise Residuals and Temporal Features. 2023 IEEE International Conference on Image Processing (ICIP), Oct 2023, Kuala Lumpur, Malaysia. pp.3424-3428, ⟨10.1109/ICIP49359.2023.10222043⟩. ⟨hal-04206611⟩
115 Consultations
153 Téléchargements

Altmetric

Partager

More