Peerannot: classification for crowdsourced image datasets with Python - Archive ouverte HAL
Article Dans Une Revue Computo Année : 2024

Peerannot: classification for crowdsourced image datasets with Python

Résumé

Crowdsourcing is a quick and easy way to collect labels for large datasets, involving many workers. However, workers often disagree with each other. Sources of error can arise from the workers’ skills, but also from the intrinsic difficulty of the task. We present peerannot: a Python library for managing and learning from crowdsourced labels for classification. Our library allows users to aggregate labels from common noise models or train a deep learning-based classifier directly from crowdsourced labels. In addition, we provide an identification module to easily explore the task difficulty of datasets and worker capabilities.
Fichier principal
Vignette du fichier
content_hal.pdf (7.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04202889 , version 1 (14-09-2023)

Licence

Identifiants

Citer

Tanguy Lefort, Benjamin Charlier, Alexis Joly, Joseph Salmon. Peerannot: classification for crowdsourced image datasets with Python. Computo, 2024, ⟨10.57750/qmaz-gr91⟩. ⟨hal-04202889⟩
155 Consultations
115 Téléchargements

Altmetric

Partager

More