
HAL Id: hal-04202889
https://hal.science/hal-04202889v1

Submitted on 14 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Peerannot: classification for crowdsourced image
datasets with Python

Tanguy Lefort, Benjamin Charlier, Alexis Joly, Joseph Salmon

To cite this version:
Tanguy Lefort, Benjamin Charlier, Alexis Joly, Joseph Salmon. Peerannot: classification for crowd-
sourced image datasets with Python. Computo, 2024, �10.57750/qmaz-gr91�. �hal-04202889�

https://hal.science/hal-04202889v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

ISSN 2824-7795

Peerannot: classification for crowd-
sourced image datasets with Python

Tanguy Lefort 1 IMAG, Univ Montpellier, CNRS, Inria, LIRMM
Benjamin Charlier IMAG, Univ Montpellier, CNRS
Alexis Joly Inria, LIRMM, Univ Montpellier, CNRS
Joseph Salmon IMAG, Univ Montpellier, CNRS, IUF

Date published: 2023-08-29 Last modified: 2023-08-29

Abstract

Crowdsourcing is a quick and easy way to collect labels for large datasets, involving many
workers. However, workers often disagree with each other. Sources of error can arise from the
workers’ skills, but also from the intrinsic difficulty of the task. We present peerannot: a Python
library for managing and learning from crowdsourced labels for classification. Our library allows
users to aggregate labels from common noise models or train a deep learning-based classifier
directly from crowdsourced labels. In addition, we provide an identification module to easily
explore the task difficulty of datasets and worker capabilities.

Keywords: crowdsourcing, label noise, task difficulty, worker ability, classification

Contents

1 Introduction: crowdsourcing in image classification 2

2 Notation and package structure 3
2.1 Crowdsourcing notation . 3
2.2 Storing crowdsourced datasets in peerannot . 4

3 Aggregation strategies in crowdsourcing 11
3.1 Classical models . 13

3.1.1 Majority vote (MV) . 13
3.1.2 Naive soft (NS) . 14
3.1.3 Dawid and Skene (DS) . 14
3.1.4 Variations around the DS model . 14
3.1.5 Generative model of Labels, Abilities, and Difficulties (GLAD) 15
3.1.6 Aggregation strategies in peerannot . 15

3.2 Experiments and evaluation of label aggregation strategies 16
3.2.1 Simulated independent mistakes . 16
3.2.2 Simulated correlated mistakes . 20
3.2.3 Simulated mistakes with discrete difficulty levels on tasks 22

1Corresponding author: tanguy.lefort@umontpellier.fr

1

https://orcid.org/0009-0000-6710-3221
https://orcid.org/0000-0002-2161-9940
https://orcid.org/0000-0002-3181-0634
mailto:tanguy.lefort@umontpellier.fr

4 Learning from crowdsourced tasks 24
4.1 Popular models . 24

4.1.1 CrowdLayer . 24
4.1.2 CoNAL . 25

4.2 Prediction error when learning from crowdsourced tasks 25
4.3 Use case with peerannot on real datasets . 26

5 Exploring crowdsourced datasets 27
5.1 Exploring tasks’ difficulty . 28

5.1.1 CIFAR-1OH dataset . 28
5.1.2 LabelMe dataset . 32

5.2 Exploring workers’ reliability . 33
5.2.1 CIFAR-10H . 33
5.2.2 LabelMe . 34

6 Conclusion 37

1 Introduction: crowdsourcing in image classification

Image datasets widely use crowdsourcing to collect labels, involving many workers that can annotate
images for a small cost (or even free for instance in citizen science) and faster than using expert
labeling. Many classical datasets considered in machine learning have been created with human
intervention to create labels, such as CIFAR-10, (Krizhevsky and Hinton 2009), ImageNet (Deng et
al. 2009) or Pl@ntnet (Garcin et al. 2021) in image classification, but also COCO (Lin et al. 2014),
solar photovoltaic arrays (Kasmi et al. 2023) or even macro litter (Chagneux et al. 2023) in image
segmentation and object counting.

Crowdsourced datasets induce at least three major challenges to which we contribute with peerannot:

1) How to identify good workers in the crowd? When multiple answers are given to a single
task, looking for who to trust for which type of task becomes necessary to estimate the ground
truth or later train a model with as few noise sources as possible. The module identify uses
different scoring metrics to create a worker and/or task evaluation. This is particularly relevant
considering the gamification of crowdsourcing experiments (Servajean et al. 2016)

2) How to aggregate multiple labels into a single label from crowdsourced tasks? This
occurs for example when dealing with a single dataset that has been labeled by multiple
workers with disagreements. This is also encountered with other scoring issues such as polls,
reviews, peer-grading, etc. In our framework this is treated with the aggregate command,
that given multiple labels, infers a ground truth label. From aggregated labels, a classifier can
then be trained using the train command.

3) How to learn a classifier from crowdsourced datasets? Where the first question is bound
by aggregating multiple labels into a single one, this considers the case where we do not need
a single label to train on, but instead train a classifier on the crowdsourced data, with the
motivation to perform well on a testing set. This end-to-end vision, is common in machine
learning, however, it requires the actual tasks (the images, texts, videos, etc.) to train on – and
in crowdsourced datasets publicly available, they are not always available. This is treated with
the aggregate-deep command.

The library peerannot addresses these practical questions within a reproducible setting. Indeed,
the complexity of experiments often leads to a lack of transparency and reproducible results for
simulations and real datasets. We propose standard simulation settings with explicit implementation

2

parameters that can be shared. For real datasets, peerannot is compatible with standard neural net-
works architectures from the Torchvision (Marcel and Rodriguez 2010) library and Pytorch (Paszke
et al. 2019), allowing a flexible framework with easy-to-share scripts to reproduce experiments.

Figure 1: From crowdsourced labels to training a classifier neural network, the learning pipeline
using the peerannot library. An optional preprocessing step using the identify command allows
us to remove worse performing workers or images that can not be classified correctly (very bad
quality for example). Then, from the cleaned dataset, the aggregate command may generate a single
label per task from a prescribed strategy. From the aggregated labels we can train a neural network
classifier with the train command. Otherwise, we can directly train a neural network classifier that
takes into account the crowdsourcing setting in its architecture using aggregate-deep.

2 Notation and package structure

2.1 Crowdsourcing notation

Let us consider the classical supervised learning classification framework. A training set 𝒟 =
{(𝑥𝑖, 𝑦⋆𝑖)}

𝑛task
𝑖=1 is composed of 𝑛task tasks 𝑥𝑖 ∈ 𝒳 (the feature space) with (unobserved) ground truth

label 𝑦⋆𝑖 ∈ [𝐾] = {1, … , 𝐾} one of the 𝐾 possible classes. In the following, the tasks considered are
generally RGB images. We use the notation 𝜎(⋅) for the softmax function. In praticular, given a
classifier 𝒞 with logits outputs, 𝜎(𝒞 (𝑥𝑖))[1] represents the largest probability and we can sort the
probabilities as 𝜎(𝒞 (𝑥𝑖))[1] ≥ 𝜎(𝒞 (𝑥𝑖))[2] ≥ ⋯ ≥ 𝜎(𝒞 (𝑥𝑖))[𝐾]. The indicator function is denoted
1(⋅). We use the 𝑖 index notation to range over the different tasks and the 𝑗 index notation for the
workers in the crowdsourcing experiment. Note that indices start at position 1 in the equation to
follow mathematical standard notation such as [𝐾] = {1, … , 𝐾} but it should be noted that, as this is
a Python library, in the code indices start at the 0 position.

With crowdsourced data the ground truth of a task 𝑥𝑖, denoted 𝑦⋆𝑖 is unknown, and there is no single
label that can be trusted as in standard supervised learning (even on the train set!). Instead, there
is a crowd of 𝑛worker workers from which multiple workers (𝑤𝑗)𝑗 propose a label (𝑦

(𝑗)
𝑖)𝑗. The set of

workers answering the task 𝑥𝑖 is denoted by

𝒜(𝑥𝑖) = {𝑗 ∈ [𝑛worker] ∶ 𝑤𝑗 answered 𝑥𝑖} . (1)

3

The cardinal |𝒜(𝑥𝑖)| is called the feedback effort on the task 𝑥𝑖. Note that the feedback effort can not
exceed the total number of workers 𝑛worker. Similarly, one can adopt a worker point of view: the set
of tasks answered by a worker 𝑤𝑗 is denoted

𝒯 (𝑤𝑗) = {𝑖 ∈ [𝑛task] ∶ 𝑤𝑗 answered 𝑥𝑖} . (2)

The cardinal |𝒯 (𝑤𝑗)| is called the workerload of 𝑤𝑗. The final dataset can then be decomposed as:

𝒟train ∶= ⋃
𝑖∈[𝑛task]

{(𝑥𝑖, (𝑦
(𝑗)
𝑖)) for 𝑗 ∈ 𝒜(𝑥𝑖)} = ⋃

𝑗∈[𝑛worker]
{(𝑥𝑖, (𝑦

(𝑗)
𝑖)) for 𝑖 ∈ 𝒯 (𝑤𝑗)} .

In this article, we do not address the setting where workers report their self-confidence (Yasmin et
al. 2022), nor settings where workers are presented a trapping set – i.e a subset of tasks where the
ground truth is known to evaluate them with known labels (Khattak 2017).

2.2 Storing crowdsourced datasets in peerannot

Crowdsourced datasets come in various forms. To store crowdsourcing datasets efficiently and in a
standardized way, peerannot proposes the following structure, where each dataset corresponds to a
folder. Let us set up a toy dataset example to understand the data structure and how to store it.

Listing 1 Dataset storage tree structure.
datasetname

��� train
� ��� class1
� � �� imagename-<key>.png
� � �� ...
� � �� anotherimagename-<anotherkey>.png
� ��� ...
� ��� classK
��� val
��� test
��� metadata.json
��� answers.json

The answers.json file stores the different votes for each task as described in Figure 2. Thus, for
example for an image named smiley_face-1, the associated labels are stored in the answers.json
at the key numbered 1. This key identification system allows us to track directly from the filename
the crowdsourced labels without having to rely on multiple indexing files as can be traditionally
proposed. Furthermore, storing labels in a dictionary is more memory-friendly than having an array
of size (n_task,n_worker) and writing 𝑦 (𝑗)𝑖 = −1 when the worker 𝑤𝑗 did not see the task 𝑥𝑖 and
𝑦 (𝑗)𝑖 ∈ [𝐾] otherwise.

In Figure 2, there are three tasks, 𝑛worker = 4 workers and 𝐾 = 2 classes. Any available task should
be stored in a single file whose name follows the convention described in Listing 1. These files are
spread into a train, val and test subdir as in ImageFolder datasets from torchvision

Finally, a metadata.json file includes relevant information related to the crowdsourcing experiment
such as the number of workers, the number of tasks, etc. For example, a minimal metadata.json file
for the toy dataset presented in Figure 2 is:

4

https://peerannot.github.io/datasets/
https://pytorch.org/vision/stable/generated/torchvision.datasets.ImageFolder.html

Figure 2: Data storage for the toy-data crowdsourced dataset, a binary classification problem (𝐾 = 2,
smiling/not smiling) on recognizing smiling faces. (left: how data is stored in peerannot in a file
answers.json, right: data collected)

{
"name": "toy-data",
"n_classes": 2,
"n_workers": 4,
"n_tasks": 3

}

The toy-data example dataset is available as an example in the peerannot repository. Classical
datasets in crowdsourcing such as CIFAR-10H (Peterson et al. 2019) and LabelMe (Rodrigues, Pereira,
and Ribeiro 2014) can be installed directly using peerannot. To install them, run the install
command from peerannot:

! peerannot install ./datasets/labelme/labelme.py
! peerannot install ./datasets/cifar10H/cifar10h.py

For both CIFAR-10H and LabelMe, the dataset was originally released in classical supervised learning
form (without crowdsourcing). These labels are used as ground truth in evaluations and visualizations.
However, we emphasize that crowdsourcing strategies do not rely on the ground truth (only on the
workers’ answers).

import torch
import seaborn as sns
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from pathlib import Path
import json
import matplotlib.ticker as mtick
import pandas as pd
sns.set_style("whitegrid")

nrow = 5
ncol = 5
fig, axs = plt.subplots(

nrow,
ncol,
sharey="row",
sharex="col",

5

https://github.com/peerannot/peerannot/tree/main/datasets/toy-data

figsize=(12,8)
)

match_ = {0: "bird", 1: "car", 2: "cat", 3: "deer", 4: "dog", 5: "frog", 6: "horse", 7: "plane", 8: "ship", 9: "truck"}
path = Path.cwd() / "datasets" / "cifar10H" / "train"
for i in range(nrow):
img_folder = path / f"{match_[i]}"
all_imgs = list(img_folder.glob("*"))[:ncol]
for j in range(ncol):

image = np.asarray(Image.open(path / all_imgs[j]))
axs[i,j].imshow(image, aspect="equal")
axs[i,j].grid(False)
axs[i,j].set_yticklabels([])
axs[i,j].set_xticklabels([])

rows = list(match_.values())[:ncol]
for ax, row in zip(axs[:, 0], rows):

ax.set_ylabel(row, rotation=90, size='large')
plt.subplots_adjust(wspace=-0.8, hspace=0.25)
plt.tight_layout()
plt.show()

6

bi
rd

ca
r

ca
t

de
er

do
g

Figure 3: Example of images from CIFAR-10H. We display images rowise according to the ground
truth label given initially in CIFAR-10.

Examples of CIFAR-10H images are available in Figure 3, and LabelMe examples in Figure 4 here
below.

nrow = 5
ncol = 5
fig, axs = plt.subplots(

nrow,
ncol,
sharey="row",
sharex="col",
figsize=(12,8)

)
match_ = {0: "coast", 1: "forest", 2: "highway", 3: "insidecity", 4: "mountain", 5: "opencountry", 6: "street", 7: "tallbuilding"}
path = Path.cwd() / "datasets" / "labelme" / "train"
for i in range(nrow):

7

img_folder = path / f"{match_[i]}"
all_imgs = list(img_folder.glob("*"))[:ncol]
for j in range(ncol):

image = np.asarray(Image.open(path / all_imgs[j]))
axs[i,j].imshow(image, aspect="equal")
axs[i,j].grid(False)
axs[i,j].set_yticklabels([])
axs[i,j].set_xticklabels([])

rows = list(match_.values())[:ncol]
for ax, row in zip(axs[:,0], rows):

ax.set_ylabel(row, rotation=90, size='large')
plt.subplots_adjust(wspace=-0.8, hspace=0.25)
plt.tight_layout()
plt.show()

co
as

t
fo

re
st

hi
gh

wa
y

in
sid

ec
ity

m
ou

nt
ai

n

Figure 4: Example of images from LabelMe. We display images rowise according to the ground truth
label given with the crowdsourced data.

8

Each of these tasks has been assigned a ground truth label by the dataset’s authors. Crowdsourcing
votes however bring additional information about possible confusions (see Figure 5).

nrow = 2
ncol = 5
fig, axs = plt.subplots(nrow, ncol, sharey="row", figsize=(15, 8))
match_ = {

0: "bird",
1: "car",
2: "cat",
3: "deer",
4: "dog",
5: "frog",
6: "horse",
7: "plane",
8: "ship",
9: "truck",

}
inv_match_ = {v: k for k, v in match_.items()}
real_class_to_idx = {

"plane": 0,
"car": 1,
"bird": 2,
"cat": 3,
"deer": 4,
"dog": 5,
"frog": 6,
"horse": 7,
"ship": 8,
"truck": 9,

}
inv_real_class_to_idx = {v: k for k, v in real_class_to_idx.items()}
path = Path.cwd() / "datasets" / "cifar10H" / "train"
list_numbers = [231, 26, 766, 0, 34]
names = []
for j in range(ncol):

img_folder = path / f"{match_[j]}"
all_imgs = list(img_folder.glob("*"))
i = 0
id_ = list_numbers[j]
if j == 3:

image = np.asarray(Image.open(path / "deer" / "deer-8153.png"))
names.append("deer-8153")

else:
image = np.asarray(Image.open(path / all_imgs[id_]))
names.append((path / all_imgs[id_]).stem)

axs[i, j].imshow(image)
axs[i, j].axis("off")
axs[i, j].set_yticklabels([])

with open(path / ".." / "answers.json", "r") as f:

9

votes = json.load(f)
for i, name in enumerate(names):

taskid = str(name).split("-")[-1]
worker_votes = votes[taskid]
distrib = np.zeros(len(match_))
for worker, vote in worker_votes.items():

distrib[inv_match_[inv_real_class_to_idx[vote]]] += 1
sns.barplot(

data=pd.DataFrame(
{"label": match_.values(), "voting distribution": distrib},

),
x="label",
y="voting distribution",
ax=axs[1, i],

)
axs[1, i].set_xticklabels(match_.values(), rotation=90)
if i > 0:

axs[1, i].set_yticklabels([])
axs[1, i].set_ylim([0, 100])
axs[1, i].set_ylabel("")

else:
axs[1, i].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))

cols = [rf"$y^\star=${match_[i]}" for i in range(5)]
for ax, col in zip(axs[0], cols):

ax.set_title(col)
for ax in axs.flatten():
ax.xaxis.label.set_size(15)
ax.yaxis.label.set_size(15)
ax.xaxis.set_tick_params(labelsize=13)
ax.yaxis.set_tick_params(labelsize=13)

plt.show()

10

y = bird y = car y = cat y = deer y = dog

bi
rd ca
r

ca
t

de
er

do
g

fro
g

ho
rs

e
pl

an
e

sh
ip

tru
ck

label

vo
tin

g
di

st
rib

ut
io

n

bi
rd ca
r

ca
t

de
er

do
g

fro
g

ho
rs

e
pl

an
e

sh
ip

tru
ck

label

bi
rd ca
r

ca
t

de
er

do
g

fro
g

ho
rs

e
pl

an
e

sh
ip

tru
ck

label

bi
rd ca
r

ca
t

de
er

do
g

fro
g

ho
rs

e
pl

an
e

sh
ip

tru
ck

label

bi
rd ca
r

ca
t

de
er

do
g

fro
g

ho
rs

e
pl

an
e

sh
ip

tru
ck

label

Figure 5: Example of crowdsourced images from CIFAR-10H. Each task has been labelled by multiple
workers. We display the associated voting distribution over the possible classes. In addition, a
ground truth label is provided using the original CIFAR-10 dataset. This ground truth is only used
for performance evaluation.

3 Aggregation strategies in crowdsourcing

The first question we address with peerannot is: How to aggregate multiple labels into a single label
from crowdsourced tasks? The aggregation step can lead to two types of learnable labels ̂𝑦𝑖 ∈ Δ𝐾
(where Δ𝐾 is the simplex of dimension 𝐾 − 1 : Δ𝐾 = {𝑝 ∈ [𝐾] ∶ ∑𝐾

𝑘=1 𝑝𝑘 = 1, 𝑝𝑘 ≥ 0}) depending on
the use case for each task 𝑥𝑖, 𝑖 = 1, … , 𝑛task:

• a hard label: ̂𝑦𝑖 is a Dirac distribution, this can be encoded as a classical label in [𝐾],
• a soft label: ̂𝑦𝑖 ∈ Δ𝐾 can represent any probability distribution on [𝐾]. In that case, each
coordinate of the 𝐾− dimensional vector ̂𝑦𝑖 represents the probability to belong to the given
class.

Learning from soft labels has been shown to improve learning performance and make the classifier
learn the task ambiguity (Zhang et al. 2018; Peterson et al. 2019; Park and Caragea 2022). However,
crowdsourcing is often used as a stepping stone to create a new dataset. We usually expect a
classification dataset to associate a task 𝑥𝑖 to a single label and not a full probability distribution. In
this case, we recommend to release the anonymous answered labels and the aggregation strategy used
to reach a consensus on a single label. With peerannot, both soft and hard labels can be produced.

Note that when a strategy produces a soft label, a hard label can be easily induced by taking the
mode, i.e., the class achieving the maximum probability.

Moreover, the concept of confusion matrices has been commonly used to represent worker abilities.
A confusion matrix 𝜋 (𝑗) ∈ ℝ𝐾×𝐾 of a worker 𝑤𝑗 is defined such that 𝜋 (𝑗)𝑘,ℓ = ℙ(𝑦 (𝑗)𝑖 = ℓ|𝑦⋆𝑖 = 𝑘).

!peerannot simulate --n-worker=10 --n-task=100 --n-classes=5 --strategy hammer-spammer --feedback=5 --seed=0 --folder ./simus/hammer_spammer
!peerannot simulate --n-worker=10 --n-task=100 --n-classes=5 --strategy independent-confusion --feedback=5 --seed=0 --folder ./simus/hammer_spammer/confusion

11

import matplotlib.cm as cm

mats = np.load("./simus/hammer_spammer/matrices.npy")
mats_confu = np.load("./simus/hammer_spammer/confusion/matrices.npy")

def hinton(matrix, max_weight=None, ax=None, classes=None,
my_title={}):

"""Draw Hinton diagram for visualizing a weight matrix."""
ax = ax if ax is not None else plt.gca()

if not max_weight:
max_weight = 2 ** np.ceil(np.log2(np.abs(matrix).max()))

ax.set_title(my_title, y=1.02)
ax.patch.set_facecolor("white")
ax.set_aspect("equal", "box")
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
ax.set_xticks(range(len(classes)))
ax.set_yticks(range(len(classes)))
ax.set_ylabel("True label")
ax.set_xlabel("Proposed label")
ax.set_xlim(-1, len(classes))
ax.set_ylim(-1, len(classes))
ax.set_yticks(range(len(classes)))
ax.set_xticklabels(classes, rotation=90)
ax.set_yticklabels(classes)

blues = cm.Blues
newcolors = blues(np.linspace(0, 1, 256))
for (x, y), w in np.ndenumerate(matrix[classes, :][:, classes]):

idx = np.searchsorted(np.linspace(0, 1, 256), w)
color = newcolors[idx]
size = (

np.sqrt(abs(w) / max_weight)
if w > 0
else np.sqrt(abs(1e-8) / max_weight)

)
x, y = y, x
rect = plt.Rectangle(

[x - size / 2.1, y - size / 2.1],
size,
size,
facecolor=color,
edgecolor='black',

)
ax.add_patch(rect)

ax.margins(y=0.05, x=0.05)
ax.invert_yaxis()

fig, axs = plt.subplots(1, 3, sharey=True)

12

hinton(mats[-1], 1, my_title="Spammer worker", ax=axs[0], classes=np.arange(5))
hinton(mats[0], 1, my_title="Expert worker", ax=axs[2], classes=np.arange(5))
hinton(mats_confu[8], 1, my_title="Common worker", ax=axs[1], classes=np.arange(5))
axs[0].set_ylabel("")
axs[1].set_ylabel("")
axs[2].set_ylabel("")
plt.tight_layout()
plt.show()

0 1 2 3 4

Proposed label

0
1
2
3
4

Spammer worker

0 1 2 3 4
Proposed label

Common worker

0 1 2 3 4

Proposed label

Expert worker

Figure 6: Three types of profiles of worker confusion matrices. The spammer answers independent
from the ground truth label. Expert workers identify classes without mistakes. In practice common
workers are good for some classes but might confuse two (ore more) labels. All workers are simulated
using the peerannot simulate command presented in Section 3.2.

In Figure 6, we illustrate multiple profiles of workers. In particular, one type of worker that can hurt
data quality is the spammer. Raykar and Yu (2011) defined a spammer as a worker that answers
randomly as:

∀𝑘 ∈ [𝐾], ℙ(𝑦 (𝑗)𝑖 = 𝑘|𝑦⋆𝑖) = ℙ(𝑦 (𝑗)𝑖 = 𝑘) . (3)

As the probability distribution by row represent the confusion given a ground truth label, the spammer
has a confusion matrix with near-identical rows. Apart from the spammer, common mistakes often
involve workers ming-up one or several classes. Expert workers have a confusion matrix near the
identity matrix.

3.1 Classical models

We list below the most classical aggregation strategies used in crowdsourcing.

3.1.1 Majority vote (MV)

The most intuitive way to create a label from multiple answers for any type of crowdsourced task is
to take the majority vote (MV). Yet, this strategy has many shortcomings (James 1998) – there is no
noise model, no worker reliability estimated, no task difficulty involved and especially no way to
remove poorly performing workers. This standard choice can be expressed as:

̂𝑦MV
𝑖 = argmax

𝑘∈[𝐾]
∑

𝑗∈𝒜(𝑥𝑖)
1{𝑦 (𝑗)𝑖 =𝑘} .

13

https://peerannot.github.io/models/MV/

3.1.2 Naive soft (NS)

One pitfall withMV is that the label produced is hard, hence the ambiguity is discarded by construction.
A simple remedy consists in using the Naive Soft (NS) labeling, i.e. output the empirical distribution
as the task label:

̂𝑦NS𝑖 = (1
|𝒜(𝑥𝑖)|

∑
𝑗∈𝒜(𝑥𝑖)

1{𝑦 (𝑗)𝑖 =𝑘})𝑗∈[𝐾]
.

With the NS label, we keep the ambiguity, but all workers and all tasks are put on the same level. In
practice, it is known that each worker comes with their abilities, thus modeling this knowledge can
produce better results.

3.1.3 Dawid and Skene (DS)

Refining the aggregation, researchers have proposed a noise model to take into account the workers’
abilities. The Dawid and Skene’s (DS) model (Dawid and Skene 1979) is one of the must studied
(Gao and Zhou 2013) and applied (Servajean et al. 2017; Rodrigues and Pereira 2018). These types of
models are most often optimized using EM-based procedures. Assuming the workers are answering
tasks independently, this model boils down to model pairwise confusions between each possible
class. Each worker 𝑤𝑗 is assigned a confusion matrix 𝜋 (𝑗) ∈ ℝ𝐾×𝐾 as described in Section 3. The
model assumes that for a task 𝑥𝑖, conditionally on the true label 𝑦⋆𝑖 = 𝑘 the label distribution of the

worker’s answer follows a multinomial distribution with probabilities 𝜋 (𝑗)𝑘,⋅ for each worker. Each
class has a prevalence 𝜌𝑘 = ℙ(𝑦⋆𝑖 = 𝑘) to appear in the dataset. Using the independence between
workers, we obtain the following likelihood to maximize (with latent variables 𝜌, 𝜋 = {𝜋 (𝑗)}𝑗 and
𝑇 = {𝑇𝑖,𝑘}𝑖,𝑘 and observed variables {𝑦 (𝑗)𝑖 }𝑖,𝑗):

argmax
𝜌,𝜋,𝑇

∏
𝑖∈[𝑛task]

∏
𝑘∈[𝐾]

[𝜌𝑘 ∏
𝑗∈[𝑛worker]

∏
ℓ∈[𝐾]

(𝜋 (𝑗)𝑘,ℓ)
1
{𝑦(𝑗)𝑖 =ℓ}]

𝑇𝑖,𝑘
,

with 𝑇𝑖,𝑘 = 1{𝑦⋆𝑖 =𝑘}. The final aggregated soft label is ̂𝑦DS𝑖 = 𝑇𝑖,⋅.

Figure 7: Bayesian plate notation for the DS model

3.1.4 Variations around the DS model

Many variants of the DS model have been proposed in the literature, using Dirichlet priors on the
confusion matrices (Passonneau and Carpenter 2014), using 1 ≤ 𝐿 ≤ 𝑛worker clusters of workers

14

https://peerannot.github.io/models/NaiveSoft/
https://peerannot.github.io/models/DS/
https://en.wikipedia.org/wiki/Plate_notation

(Imamura, Sato, and Sugiyama 2018) (DSWC) or even faster implementation that produces only hard
labels (Sinha, Rao, and Balasubramanian 2018).

In particular, the DSWC strategy (Dawid and Skene with Worker Clustering) highly reduces the
dimension of the parameters in the DS model. In the original model, there are 𝐾2×𝑛worker parameters
to be estimated for the confusion matrices only. The DSWC model reduces them to 𝐾2 × 𝐿 + 𝐿
parameters. Indeed, there are 𝐿 confusion matrices Λ = {Λ1, … , Λ𝐿} and the confusion matrix of a
cluster is assumed drawn from a multinomial distribution with weights (𝜏1, … , 𝜏𝐿) ∈ Δ𝐿 over Λ, such
that ℙ(𝜋 (𝑗) = Λℓ) = 𝜏ℓ.

3.1.5 Generative model of Labels, Abilities, and Difficulties (GLAD)

Finally, we present the GLAD model (Whitehill et al. 2009) that not only takes into account the
worker’s ability, but also the task difficulty in the noise model. The likelihood is optimized using an
EM algorithm to recover the soft label ̂𝑦GLAD𝑖 .

Figure 8: Bayesian plate notation for the GLAD model

Denoting 𝛼𝑗 ∈ ℝ the worker ability (the higher the better) and 𝛽𝑖 ∈ ℝ+⋆ the task’s difficulty (the higher
the easier), the model noise is:

ℙ(𝑦 (𝑗)𝑖 = 𝑦⋆𝑖 |𝛼𝑗, 𝛽𝑖) =
1

1 + exp(−𝛼𝑗𝛽𝑖)
.

GLAD’s model also assumes that the errors are uniform across wrong labels, thus:

∀𝑘 ∈ [𝐾], ℙ(𝑦 (𝑗)𝑖 = 𝑘|𝑦⋆𝑖 ≠ 𝑘, 𝛼𝑗, 𝛽𝑖) =
1

𝐾 − 1
(1 − 1

1 + exp(−𝛼𝑗𝛽𝑖)
) .

This results in estimating 𝑛worker + 𝑛task parameters.

3.1.6 Aggregation strategies in peerannot

All of these aggregation strategies – and more – are available in the peerannot library from the
peerannot.models module. Each model is a class object in its own Python file. It inherits from the
CrowdModel template class and is defined with at least two methods:

• run: includes the optimization procedure to obtain needed weights (e.g. the EM algorithm for
the DS model),

• get_probas: returns the soft labels output for each task.

15

https://peerannot.github.io/models/GLAD/
https://en.wikipedia.org/wiki/Plate_notation
https://github.com/peerannot/peerannot/tree/main/peerannot/models/aggregation
https://github.com/peerannot/peerannot/tree/main/peerannot/models/aggregation

3.2 Experiments and evaluation of label aggregation strategies

One way to evaluate the label aggregation strategies is to measure their accuracy. This means that
the underlying ground truth must be known – at least for a representative subset. As the set of 𝑛task
can be seen as a training set for a future classifier, we denote this metric AccTrain on a dataset 𝒟 for
some given aggregated label (̂𝑦𝑖)𝑖 as:

AccTrain(𝒟) = 1
|𝒟 |

|𝒟 |
∑
𝑖=1

1{𝑦⋆𝑖 =argmax𝑘∈[𝐾] ̂(𝑦𝑖)𝑘}
.

In the following, we write AccTrain for AccTrain(𝒟train) as we only consider the full training set so
there is no ambiguity. While this metric is useful, in practice there are a few arguable issues:

• the AccTrain metric does not consider the ambiguity of the soft label, only the most probable
class, whereas in some contexts ambiguity can be informative,

• in supervised learning one objective is to identify difficult or mislabeled tasks (Pleiss et al.
2020; Lefort et al. 2022), pruning those tasks can easily artificially improve the AccTrain, but
there is no guarantee over the predictive performance of a model based on the newly pruned
dataset,

• in practice, ground truth labels are unknown, thus this metric would not be computable.

We first consider classical simulation settings in the literature that can easily be created and repro-
duced using peerannot. For each dataset, we present the distribution of the number of workers
per task (|𝒜(𝑥𝑖)|)𝑖 Equation 1 on the right and the distribution of the number of tasks per worker
(|𝒯 (𝑤𝑗)|)𝑗 Equation 2 on the left.

3.2.1 Simulated independent mistakes

The independent mistakes setting considers that each worker 𝑤𝑗 answers follows a multinomial
distribution with weights given at the row 𝑦⋆𝑖 of their confusion matrix 𝜋 (𝑗) ∈ ℝ𝐾×𝐾. Each confusion
row in the confusion matrix is generated uniformly in the simplex. Then, we make the matrix
diagonally dominant (to represent non-adversarial workers) by switching the diagonal term with
the maximum value by row. Answers are independent of one another as each matrix is generated
independently and each worker answers independently of other workers. In this setting, the DS
model is expected to perform better with enough data as we are simulating data from its assumed
noise model.

We simulate 𝑛task = 200 tasks and 𝑛worker = 30 workers with 𝐾 = 5 possible classes. Each task 𝑥𝑖
receives |𝒜(𝑥𝑖)| = 10 labels. With 200 tasks and 30workers, asking for 10 leads to around 200×10

30 ≃ 67
tasks per worker (with variations due to randomness in the affectations).

! peerannot simulate --n-worker=30 --n-task=200 --n-classes=5 \
--strategy independent-confusion \
--feedback=10 --seed 0 \
--folder ./simus/independent

from peerannot.helpers.helpers_visu import feedback_effort, working_load
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from pathlib import Path

votes_path = Path.cwd() / "simus" / "independent" / "answers.json"
metadata_path = Path.cwd() / "simus" / "independent" / "metadata.json"

16

efforts = feedback_effort(votes_path)
workerload = working_load(votes_path, metadata_path)
feedback = feedback_effort(votes_path)
nbins = 17
fig, ax = plt.subplots(1, 2, figsize=(9, 4))
sns.histplot(workerload, stat="percent", bins=nbins, shrink=1, ax=ax[0])
ax[0].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
ax[0].set_xlabel(r"$\vert\mathcal{T}(w_j)\vert$")
sns.histplot(feedback, stat="percent", bins=nbins, shrink=1, ax=ax[1])
ax[1].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
ax[1].set_xlabel(r"$\vert\mathcal{A}(x_i)\vert$")
ax[1].set_xlim(8, 12)
for i in range(2):
ax[i].xaxis.set_major_locator(MaxNLocator(integer=True))
ax[i].xaxis.label.set_size(15)
ax[i].yaxis.label.set_size(15)
ax[i].xaxis.set_tick_params(labelsize=13)
ax[i].yaxis.set_tick_params(labelsize=13)
ax[i].title.set_size(18)

plt.tight_layout()
plt.show()

57 60 63 66 69 72 75 78 81
| (wj)|

0%

2%

4%

6%

8%

10%

12%

14%

Pe
rc

en
t

8 9 10 11 12
| (xi)|

0%

20%

40%

60%

80%

100%

Pe
rc

en
t

Figure 9: Distribution of number of tasks given per worker (left) and number of labels per task (right)
in the independent mistakes setting.

With the obtained answers, we can look at the aforementioned aggregation strategies performance:

for strat in ["MV", "NaiveSoft", "DS", "GLAD", "DSWC[L=5]", "DSWC[L=10]"]:
! peerannot aggregate ./simus/independent/ -s {strat}

import pandas as pd
import numpy as np
from IPython.display import display
simu_indep = Path.cwd() / 'simus' / "independent"
results = {"mv": [], "naivesoft": [], "glad": [], "ds": [], "dswc[l=5]": [], "dswc[l=10]": []}
for strategy in results.keys():

17

path_labels = simu_indep / "labels" / f"labels_independent-confusion_{strategy}.npy"
ground_truth = np.load(simu_indep / "ground_truth.npy")
labels = np.load(path_labels)
acc = (

np.mean(labels == ground_truth)
if labels.ndim == 1
else np.mean(

np.argmax(labels, axis=1)
== ground_truth

)
)

results[strategy].append(acc)
results["NS"] = results["naivesoft"]
results.pop("naivesoft")
results = pd.DataFrame(results, index=['AccTrain'])
results.columns = map(str.upper, results.columns)
results = results.style.set_table_styles([dict(selector='th', props=[('text-align', 'center')])])
results.set_properties(**{'text-align': 'center'})
results = results.format(precision=3)
display(results)

Table 1: AccTrain metric on simulated independent mistakes considering classical feature-blind label
aggregation strategies

MV GLAD DS DSWC[L=5] DSWC[L=10] NS

AccTrain 0.745 0.780 0.890 0.775 0.770 0.760

As expected by the simulation framework, Table 1 fits the DS model, thus leading to better accuracy
to retrieve the simulated labels for the DS strategy. The MV and NS aggregations do not consider
any worker-ability scoring or the task’s difficulty and performs the worse.

Remark. peerannot can also simulate datasets with an imbalanced number of votes chosen uniformly
at random between 1 and the number of workers available). For example:

! peerannot simulate --n-worker=30 --n-task=200 --n-classes=5 \
--strategy independent-confusion \
--imbalance-votes \
--seed 0 \
--folder ./simus/independent-imbalanced/

sns.set_style("whitegrid")

votes_path = Path.cwd() / "simus" / "independent-imbalanced" / "answers.json"
metadata_path = Path.cwd() / "simus" / "independent-imbalanced" / "metadata.json"
efforts = feedback_effort(votes_path)
workerload = working_load(votes_path, metadata_path)
feedback = feedback_effort(votes_path)
nbins = 17
fig, ax = plt.subplots(1, 2, figsize=(9, 4))
sns.histplot(workerload, stat="percent", bins=nbins, shrink=1, ax=ax[0])
ax[0].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))

18

ax[0].set_xlabel(r"$\vert\mathcal{T}(w_j)\vert$")
sns.histplot(feedback, stat="percent", bins=nbins, shrink=1, ax=ax[1])
ax[1].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
ax[1].set_xlabel(r"$\vert\mathcal{A}(x_i)\vert$")
for i in range(2):
ax[i].xaxis.set_major_locator(MaxNLocator(integer=True))
ax[i].xaxis.label.set_size(15)
ax[i].yaxis.label.set_size(15)
ax[i].xaxis.set_tick_params(labelsize=13)
ax[i].yaxis.set_tick_params(labelsize=13)
ax[i].title.set_size(18)

plt.tight_layout()
plt.show()

96 99 102 105 108 111 114
| (wj)|

0%

2%

5%

8%

10%

12%

15%

18%

Pe
rc

en
t

0 4 8 12 16 20 24 28
| (xi)|

0%

2%

4%

6%

8%

Pe
rc

en
t

Figure 10: Distribution of number of tasks given per worker (left) and number of labels per task
(right) in the independent mistakes setting with voting imbalance enabled.

With the obtained answers, we can look at the aforementioned aggregation strategies performance:

for strat in ["MV", "NaiveSoft", "DS", "GLAD", "DSWC[L=5]", "DSWC[L=10]"]:
! peerannot aggregate ./simus/independent-imbalanced/ -s {strat}

import pandas as pd
import numpy as np
from IPython.display import display
simu_indep = Path.cwd() / 'simus' / "independent-imbalanced"
results = {"mv": [], "naivesoft": [], "glad": [], "ds": [], "dswc[l=5]": [], "dswc[l=10]": []}
for strategy in results.keys():
path_labels = simu_indep / "labels" / f"labels_independent-confusion_{strategy}.npy"
ground_truth = np.load(simu_indep / "ground_truth.npy")
labels = np.load(path_labels)
acc = (

np.mean(labels == ground_truth)
if labels.ndim == 1
else np.mean(

np.argmax(labels, axis=1)

19

== ground_truth
)

)
results[strategy].append(acc)

results["NS"] = results["naivesoft"]
results.pop("naivesoft")
results = pd.DataFrame(results, index=['AccTrain'])
results.columns = map(str.upper, results.columns)
results = results.style.set_table_styles([dict(selector='th', props=[('text-align', 'center')])])
results.set_properties(**{'text-align': 'center'})
results = results.format(precision=3)
display(results)

Table 2: AccTrain metric on simulated independent mistakes with an imbalanced number of votes
per task considering classical feature-blind label aggregation strategies

MV GLAD DS DSWC[L=5] DSWC[L=10] NS

AccTrain 0.845 0.810 0.895 0.845 0.840 0.830

While more realistic, working with an imbalanced number of votes per task can lead to disrupting
orders of performance for some strategies (here GLAD is downgraded with respect to other strategies).

3.2.2 Simulated correlated mistakes

The correlated mistakes are also known as the student-teacher or junior-expert setting (Cao et al.
(2019)). Consider that the crowd of workers is divided into two categories: teachers and students
(with 𝑛teacher+𝑛student = 𝑛worker). Each student is randomly assigned to one teacher at the beginning
of the experiment. We generate the (diagonally dominant as in Section 3.2.1) confusion matrices of
each teacher and the student share the same confusion matrix as their associated teacher. Hence,
clustering strategies are expected to perform best in this context. Then, they all answer independently,
following a multinomial distribution with weights given at the row 𝑦⋆𝑖 of their confusion matrix
𝜋 (𝑗) ∈ ℝ𝐾×𝐾.

We simulate 𝑛task = 200 tasks and 𝑛worker = 30 with 80% of students in the crowd. There are 𝐾 = 5
possible classes. Each task receives |𝒜(𝑥𝑖)| = 10 labels.

! peerannot simulate --n-worker=30 --n-task=200 --n-classes=5 \
--strategy student-teacher \
--ratio 0.8 \
--feedback=10 --seed 0 \
--folder ./simus/student_teacher

votes_path = Path.cwd() / "simus" / "student_teacher" / "answers.json"
metadata_path = Path.cwd() / "simus" / "student_teacher" / "metadata.json"
efforts = feedback_effort(votes_path)
workerload = working_load(votes_path, metadata_path)
feedback = feedback_effort(votes_path)
nbins = 17
fig, ax = plt.subplots(1, 2, figsize=(9, 4))
sns.histplot(workerload, stat="percent", bins=nbins, shrink=1, ax=ax[0])
ax[0].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))

20

ax[0].set_xlabel(r"$\vert\mathcal{T}(w_j)\vert$")
sns.histplot(feedback, stat="percent", bins=nbins, shrink=1, ax=ax[1])
ax[1].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
ax[1].set_xlabel(r"$\vert\mathcal{A}(x_i)\vert$")
ax[1].set_xlim(8, 12)
for i in range(2):
ax[i].xaxis.set_major_locator(MaxNLocator(integer=True))
ax[i].xaxis.label.set_size(15)
ax[i].yaxis.label.set_size(15)
ax[i].xaxis.set_tick_params(labelsize=13)
ax[i].yaxis.set_tick_params(labelsize=13)
ax[i].title.set_size(18)

plt.tight_layout()
plt.show()

51 54 57 60 63 66 69 72 75
| (wj)|

0%

5%

10%

15%

20%

Pe
rc

en
t

8 9 10 11 12
| (xi)|

0%

20%

40%

60%

80%

100%

Pe
rc

en
t

Figure 11: Distribution of number of tasks given per worker (left) and number of labels per task
(right) in the correlated mistakes setting.

With the obtained answers, we can look at the aforementioned aggregation strategies performance:

for strat in ["MV", "NaiveSoft", "DS", "GLAD", "DSWC[L=5]", "DSWC[L=6]", "DSWC[L=10]"]:
! peerannot aggregate ./simus/student_teacher/ -s {strat}

simu_corr = Path.cwd() / 'simus' / "student_teacher"
results = {"mv": [], "naivesoft": [], "glad": [], "ds": [], "dswc[l=5]": [], "dswc[l=6]": [], "dswc[l=10]": []}
for strategy in results.keys():
path_labels = simu_corr / "labels" / f"labels_student-teacher_{strategy}.npy"
ground_truth = np.load(simu_corr / "ground_truth.npy")
labels = np.load(path_labels)
acc = (

np.mean(labels == ground_truth)
if labels.ndim == 1
else np.mean(

np.argmax(labels, axis=1)
== ground_truth

)

21

)
results[strategy].append(acc)

results["NS"] = results["naivesoft"]
results.pop("naivesoft")
results = pd.DataFrame(results, index=['AccTrain'])
results.columns = map(str.upper, results.columns)
results = results.style.set_table_styles([dict(selector='th', props=[('text-align', 'center')])])
results.set_properties(**{'text-align': 'center'})
results = results.format(precision=3)
display(results)

Table 3: AccTrain metric on simulated correlated mistakes considering classical feature-blind label
aggregation strategies

MV GLAD DS DSWC[L=5] DSWC[L=6] DSWC[L=10] NS

AccTrain 0.685 0.645 0.755 0.795 0.780 0.815 0.690

With Table 3, we see that with correlated data (24 students and 6 teachers), using 5 confusion matrices
with DSWC[L=5] outperforms the vanilla DS strategy that does not consider the correlations. And
the best-performing method here estimates only 10 confusion matrices (instead of 30 for the vanilla
DS model).

3.2.3 Simulated mistakes with discrete difficulty levels on tasks

For the final simulation setting, we consider the so called discrete difficulty presented in Whitehill
et al. (2009). Contrary to other simulations, we here consider that workers belong to two levels of
abilities: good or bad, and tasks have two levels of difficulty: easy or hard. The keyword ratio-diff
indicates the prevalence of each level of difficulty, it is defined as the ratio of easy tasks over hard
tasks:

ratio-diff =
ℙ(easy)
ℙ(hard)

with ℙ(easy) + ℙ(hard) = 1 .

Difficulties are then drawn at random. Tasks that are easy are answered correctly by every worker.
Tasks that are hard are answered following the confusion matrix assigned to each worker (as in
Section 3.2.1). Each worker then answers independently to the presented tasks.

We simulate 𝑛task = 500 tasks and 𝑛worker = 100 with 35% of good workers in the crowd and 50% of
easy tasks. There are 𝐾 = 5 possible classes. Each task receives |𝒜(𝑥𝑖)| = 10 labels.

! peerannot simulate --n-worker=100 --n-task=200 --n-classes=5 \
--strategy discrete-difficulty \
--ratio 0.35 --ratio-diff 1 \
--feedback 10 --seed 0 \
--folder ./simus/discrete_difficulty

votes_path = Path.cwd() / "simus" / "discrete_difficulty" / "answers.json"
metadata_path = Path.cwd() / "simus" / "discrete_difficulty" / "metadata.json"
efforts = feedback_effort(votes_path)
workerload = working_load(votes_path, metadata_path)
feedback = feedback_effort(votes_path)

22

https://peerannot.github.io/datasets/simulate_discrete_difficulty/

nbins = 17
fig, ax = plt.subplots(1, 2, figsize=(9, 4))
sns.histplot(workerload, stat="percent", bins=nbins, shrink=1, ax=ax[0])
ax[0].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
ax[0].set_xlabel(r"$\vert\mathcal{T}(w_j)\vert$")
sns.histplot(feedback, stat="percent", bins=nbins, shrink=1, ax=ax[1])
ax[1].yaxis.set_major_formatter(mtick.PercentFormatter(decimals=0))
ax[1].set_xlabel(r"$\vert\mathcal{A}(x_i)\vert$")
ax[1].set_xlim(8, 12)
for i in range(2):
ax[i].xaxis.set_major_locator(MaxNLocator(integer=True))
ax[i].xaxis.label.set_size(15)
ax[i].yaxis.label.set_size(15)
ax[i].xaxis.set_tick_params(labelsize=13)
ax[i].yaxis.set_tick_params(labelsize=13)
ax[i].title.set_size(18)

plt.tight_layout()
plt.show()

12 15 18 21 24 27 30
| (wj)|

0%

5%

10%

15%

20%

Pe
rc

en
t

8 9 10 11 12
| (xi)|

0%

20%

40%

60%

80%

100%

Pe
rc

en
t

Figure 12: Distribution of number of tasks given per worker (left) and number of labels per task
(right) in the setting with simulated discrete difficulty levels.

With the obtained answers, we can look at the aforementioned aggregation strategies performance:

for strat in ["MV", "NaiveSoft", "DS", "GLAD", "DSWC[L=2]", "DSWC[L=5]"]:
! peerannot aggregate ./simus/discrete_difficulty/ -s {strat}

simu_corr = Path.cwd() / 'simus' / "discrete_difficulty"
results = {"mv": [], "naivesoft": [], "glad": [], "ds": [], "dswc[l=2]": [], "dswc[l=5]": []}
for strategy in results.keys():
path_labels = simu_corr / "labels" / f"labels_discrete-difficulty_{strategy}.npy"
ground_truth = np.load(simu_corr / "ground_truth.npy")
labels = np.load(path_labels)
acc = (

np.mean(labels == ground_truth)
if labels.ndim == 1

23

else np.mean(
np.argmax(labels, axis=1)
== ground_truth

)
)

results[strategy].append(acc)
results["NS"] = results["naivesoft"]
results.pop("naivesoft")
results = pd.DataFrame(results, index=['AccTrain'])
results.columns = map(str.upper, results.columns)
results = results.style.set_table_styles([dict(selector='th', props=[('text-align', 'center')])])
results.set_properties(**{'text-align': 'center'})
results = results.format(precision=3)
display(results)

Table 4: AccTrainmetric on simulatedmistakes when tasks are associated a difficulty level considering
classical feature-blind label aggregation strategies

MV GLAD DS DSWC[L=2] DSWC[L=5] NS

AccTrain 0.800 0.845 0.810 0.600 0.660 0.790

Finally, in this setting involving task difficulty coefficients, the only strategy that involves a latent
variable for the task difficulty, knowing GLAD, outperforms the other strategies (see Table 4). Note
that in this case, creating clusters of answers leads to worse decisions than an MV aggregation.

To summarize our simulations, we see that depending on workers answering strategies, different
latent variable models perform best. However, these are unknown outside of a simulation framework,
thus if we want to obtain labels from multiple responses, we need to investigate multiple models.
This can be done easily with peerannot as we demonstrated using the aggregate module. However,
one might not want to generate a label, simply learn a classifier to predict labels on unseen data.
This leads us to another module part of peerannot.

4 Learning from crowdsourced tasks

Commonly, tasks are crowdsourced to create a large annotated training set as modern machine
learning models require more and more data. The aggregation step then simply becomes the first step
in the complete learning pipeline. However, instead of aggregating labels, modern neural networks
are directly trained end-to-end from multiple noisy labels.

4.1 Popular models

In recent years, directly learning a classifier from noisy labels was introduced. Two of the most
used models: CrowdLayer (Rodrigues and Pereira 2018) and CoNAL (Chu, Ma, and Wang 2021), are
directly available in peerannot. These two learning strategies directly incorporate a DS-inspired
noise model in the neural network’s architecture.

4.1.1 CrowdLayer

CrowdLayer trains a classifier with noisy labels as follows. Let the scores (logits) output by a given
classifier neural network 𝒞 be 𝑧𝑖 = 𝒞(𝑥𝑖). Then CrowdLayer adds as a last layer 𝜋 ∈ ℝ𝑛worker×𝐾×𝐾, the

24

https://github.com/peerannot/peerannot/blob/main/peerannot/models/agg_deep/Crowdlayer.py

tensor of all 𝜋 (𝑗)’s such that the crossentropy loss (CE) is adapted to the crowdsourcing setting into
ℒCrowdLayer

𝐶𝐸 and computed as:

ℒCrowdLayer
𝐶𝐸 (𝑥𝑖) = ∑

𝑗∈𝒜(𝑥𝑖)
CE (𝜎 (𝜋 (𝑗)𝜎(𝑧𝑖)) , 𝑦

(𝑗)
𝑖) ,

where the crossentropy loss for two distribution 𝑢, 𝑣 ∈ Δ𝐾 is defined as CE(𝑢, 𝑣) = ∑𝑘∈[𝐾] 𝑢𝑘 log(𝑣𝑘).

The confusion matrices of DS are taken into the network architecture as a new layer of weights
to transform the output probabilities. The backbone classifier predicts a distribution that is then
corrupted through the added layer to learn the worker-specific confusion.

4.1.2 CoNAL

For some datasets, it was noticed that global confusion occurs between the proposed classes. It is the
case for example in the LabelMe dataset (Rodrigues et al. 2017) where classes overlap. In this case,
Chu, Ma, and Wang (2021) proposed to extend the CrowdLayer model by adding global confusion
matrix 𝜋𝑔 ∈ ℝ𝐾×𝐾 to the model on top of each worker’s confusion.

Given the output 𝑧𝑖 = 𝒞(𝑥𝑖) ∈ ℝ𝐾 of a given classifier and task, CoNAL interpolates between the
prediction corrected by local confusions 𝜋 (𝑗)𝑧𝑖 and the prediction corrected by a global confusion
𝜋𝑔𝑧𝑖. The loss function is computed as follows:

ℒCoNAL
𝐶𝐸 (𝑥𝑖) = ∑

𝑗∈𝒜(𝑥𝑖)
CE(ℎ(𝑗)𝑖 , 𝑦 (𝑗)𝑖) ,

with ℎ(𝑗)𝑖 = 𝜎 ((𝜔(𝑗)
𝑖 𝜋𝑔 + (1 − 𝜔(𝑗)

𝑖)𝜋 (𝑗))𝑧𝑖) .

The interpolation weight 𝜔(𝑗)
𝑖 is unobservable in practice. So, to compute ℎ(𝑗)𝑖 , the weight is obtained

through an auxiliary network. This network takes as input the image and worker information
and outputs a task-related vector 𝑣𝑖 and a worker-related vector 𝑢𝑗 of the same dimension. Finally,

𝑤 (𝑗)
𝑖 = (1 + exp(−𝑢⊤𝑗 𝑣𝑖))−1.

Both CrowdLayer and CoNAL model worker confusions directly in the classifier’s weights to learn
from the noisy collected labels and are available in peerannot as we will see in the following.

4.2 Prediction error when learning from crowdsourced tasks

The AccTrainmetric presented in Section 3.2 might no longer be of interest when training a classifier.
Classical error measurements involve a test dataset to estimate the generalization error. To do so, we
present hereafter two error metrics. Assuming we trained our classifier 𝒞 on a training set and that
there is a test set available with known ground truths:

• the test accuracy is computed as 1
𝑛test

∑𝑛test
𝑖=1 1{𝑦⋆𝑖 = ̂𝑦𝑖}.

• the expected calibration error (Guo et al. 2017) over 𝑀 equally spaced bins 𝐼1, … , 𝐼𝑀 partition-
ning the interval [0, 1], is computed as:

ECE =
𝑀
∑
𝑚=1

|𝐵𝑚|
𝑛task

|acc(𝐵𝑚) − conf(𝐵𝑚)| ,

with 𝐵𝑚 = {𝑥𝑖|𝒞 (𝑥𝑖)[1] ∈ 𝐼𝑚} the tasks with predicted probability in the 𝑚-th bin, acc(𝐵𝑚)
the accuracy of the network for the samples in 𝐵𝑚 and conf(𝐵𝑚) the associated empirical

25

https://github.com/peerannot/peerannot/blob/main/peerannot/models/agg_deep/CoNAL.py

confidence. More precisely:

acc(𝐵𝑚) =
1

|𝐵𝑚|
∑
𝑖∈𝐵𝑚

1(̂𝑦𝑖 = 𝑦⋆𝑖) and conf(𝐵𝑚) =
1

|𝐵𝑚|
∑
𝑖∈𝐵𝑚

𝜎(𝒞 (𝑥𝑖))[1] .

The accuracy represents how well the classifier generalizes, and the expected calibration error (ECE)
quantifies the deviation between the accuracy and the confidence of the classifier. Modern neural
networks are known to often be overconfident in their predictions (Guo et al. 2017). However, it has
also been remarked that training on crowdsourced data, depending on the strategy, mitigates this
confidence issue. That is why we propose to compare them both in our coming experiments. Note
that the ECE error estimator is known to be biased (Gruber and Buettner 2022). Smaller training
sets are known to have a higher ECE estimation error. And in the crowdsourcing setting, openly
available datasets are often quite small.

4.3 Use case with peerannot on real datasets

Few real crowdsourcing experiments have been released publicly. Among the available ones,
CIFAR-10H (Peterson et al. 2019) is one of the largest with 10000 tasks labeled by workers (the
testing set of CIFAR-10). The main limitation of CIFAR-10H is that there are few disagreements
between workers and a simple majority voting already leads to a near-perfect AccTrain error. Hence,
comparing the impact of aggregation and end-to-end strategies might not be relevant (Peterson et al.
2019; Aitchison 2021), it is however a good benchmark for task difficulty identification and worker
evaluation scoring.

The LabelMe dataset was extracted from crowdsourcing segmentation experiments and a subset of
𝐾 = 8 classes was released in Rodrigues et al. (2017).

Let us use peerannot to train a VGG-16 with two dense layers on the LabelMe dataset. Note that
this modification was introduced to reach state-of-the-art performance in (Chu, Ma, and Wang 2021).
Other models from the torchvision library can be used, such as Resnets, Alexnet etc.

for strat in ["MV", "NaiveSoft", "DS", "GLAD"]:
! peerannot aggregate ./labelme/ -s {strat}
! peerannot train ./labelme -o labelme_${strat} -K 8 --labels=./labelme/labels/labels_labelme_${strat}.npy --model modellabelme --n-epochs 500 -m 50 -m 150 -m 250 --scheduler=multistep --lr=0.01 --num-workers=8 --pretrained --data-augmentation --optimizer=adam --batch-size=32 --img-size=224 --seed=1

for strat in ["CrowdLayer", "CoNAL[scale=0]", "CoNAL[scale=1e-4]"]:
! peerannot aggregate-deep ./labelme -o labelme_${strat} --answers ./labelme/answers.json -s ${strat} --model modellabelme --img-size=224 --pretrained --n-classes=8 --n-epochs=500 --lr=0.001 -m 300 -m 400 --scheduler=multistep --batch-size=228 --optimizer=adam --num-workers=8 --data-augmentation --seed=1

command to save separately a specific part of conal model (memory intensive otherwise)
path_ = Path.cwd() / "datasets" / "labelme"
best_conal = torch.load(path_ / "best_models" / "labelme_conal[scale=1e-4].pth", map_location="cpu")
torch.save(best_conal["noise_adaptation"]["local_confusion_matrices"], path_ / "best_models"/ "labelme_conal[scale=1e-4]_local_confusion.pth")

def highlight_max(s, props=''):
return np.where(s == np.nanmax(s.values), props, '')

def highlight_min(s, props=''):
return np.where(s == np.nanmin(s.values), props, '')

import json
dir_results = Path().cwd() / 'datasets' / "labelme" / "results"
meth, accuracy, ece = [], [], []
for res in dir_results.glob("modellabelme/*"):

26

filename = res.stem
, mm = filename.split("")
meth.append(mm)
with open(res, "r") as f:

dd = json.load(f)
accuracy.append(dd["test_accuracy"])
ece.append(dd["test_ece"])

results = pd.DataFrame(list(zip(meth, accuracy, ece)), columns=["method", "AccTest", "ECE"])
results["method"] = ["NS", "CoNAL[scale=0]", "CrowdLayer", "CoNAL[scale=1e-4]", "MV", "DS", "GLAD"]
results = results.sort_values(by="AccTest", ascending=True)
results.reset_index(drop=True, inplace=True)
results = results.style.set_table_styles([dict(selector='th', props=[('text-align', 'center')])])
results.set_properties(**{'text-align': 'center'})
results = results.format(precision=3)
results.apply(highlight_max, props='background-color:#e6ffe6;', axis=0, subset=["AccTest"])
results.apply(highlight_min, props='background-color:#e6ffe6;', axis=0, subset=["ECE"])
display(results)

Table 5: Generalization performance on LabelMe dataset depending on the learning strategy from
the crowdsourced labels. The network used is a VGG-16 with two dense layers for all methods.

method AccTest ECE

0 MV 81.061 0.189
1 NS 85.606 0.143
2 CrowdLayer 86.448 0.136
3 CoNAL[scale=1e-4] 87.205 0.117
4 DS 87.542 0.124
5 GLAD 88.468 0.115
6 CoNAL[scale=0] 88.889 0.112

As we can see, CoNAL strategy performs best. In this case, it is expected behavior as CoNAL
was created for the LabelMe dataset. However, using peerannot we can look into why modeling
common confusion returns better results with this dataset. To do so, we can explore the
datasets from two points of view: worker-wise or task-wise in Section 5.

5 Exploring crowdsourced datasets

If a dataset requires crowdsourcing to be labeled, it is because expert knowledge is long and costly to
obtain. In the era of big data, where datasets are built using web scraping (or using a platform like
Amazon Mechanical Turk), citizen science is popular as it is an easy way to produce many labels.

However, mistakes and confusions happen during these experiments. Sometimes involuntarily
(e.g. because the task is too hard or the worker is unable to differentiate between two classes) and
sometimes voluntarily (e.g. the worker is a spammer).

Underlying all the learning models and aggregation strategies, the cornerstone of crowdsourcing
is evaluating the trust we put in each worker depending on the presented task. And with the
gamification of crowdsourcing (Servajean et al. 2016; Tinati et al. 2017), it has become essential to
find scoring metrics both for workers and tasks to keep citizens in the loop so to speak. This is the
purpose of the identification module in peerannot.

27

https://www.mturk.com/

Our test cases are both the CIFAR-10H dataset and the LabelMe dataset to compare the worker and
task evaluation depending on the number of votes collected. Indeed, the LabelMe dataset has only
up to three votes per task whereas CIFAR-10H accounts for nearly fifty votes per task.

5.1 Exploring tasks’ difficulty

To explore the tasks’ intrinsic difficulty, we propose to compare three scoring metrics:

• the entropy of the NS distribution: the entropy measures the inherent uncertainty of the
distribution to the possible outcomes. It is reliable with a big enough and not adversarial crowd.
More formally:

∀𝑖 ∈ [𝑛task], Entropy(̂𝑦𝑁𝑆
𝑖) = − ∑

𝑘∈[𝐾]
(𝑦𝑁𝑆
𝑖)𝑘 log ((𝑦𝑁𝑆

𝑖)𝑘) .

• GLAD’s scoring: by construction, Whitehill et al. (2009) introduced a scalar coefficient to score
the difficulty of a task.

• theWeighted Area Under theMargins (WAUM): introduced by Lefort et al. (2022), this weighted
area under the margins indicates how difficult it is for a classifier 𝒞 to learn a task’s label. This
procedure is done with a budget of 𝑇 > 0 epochs. Given the crowdsourced labels and the trust
we have in each worker denoted 𝑠(𝑗)(𝑥𝑖) > 0, the WAUM of a given task 𝑥𝑖 ∈ 𝒳 and a set of
crowdsourced labels {𝑦 (𝑗)𝑖 }𝑗 ∈ [𝐾]|𝒜(𝑥𝑖)| is defined as:

WAUM(𝑥𝑖) ∶=
1

|𝒜(𝑥𝑖)|
∑

𝑗∈𝒜(𝑥𝑖)
𝑠(𝑗)(𝑥𝑖) {

1
𝑇

𝑇
∑
𝑡=1

𝜎(𝒞 (𝑥𝑖))𝑦 (𝑗)𝑖
− 𝜎(𝒞 (𝑥𝑖))[2]} .

The weights 𝑠(𝑗)(𝑥𝑖) are computed à-la Servajean et al. (2017):

∀𝑗 ∈ [𝑛worker]∀𝑖 ∈ [𝑛task], 𝑠(𝑗)(𝑥𝑖) = ⟨𝜎(𝒞 (𝑥𝑖)), diag(𝜋 (𝑗))⟩ .

The WAUM is a generalization of the AUM by Pleiss et al. (2020) to the crowdsourcing setting.
A high WAUM indicates a high trust in the task classification by the network given the crowd
labels. A low WAUM indicates a difficulty for the network to classify the task into the given
classes (taking into consideration the trust we have in each worker for the task considered).
Where other methods only consider the labels and not directly the tasks, the WAUM directly
considers the learning trajectories to identify ambiguous tasks. One pitfall of the WAUM is
that it is dependent of the architecture used.

Note that each of these statistics is useful in its context. The entropy can not be used in a setting
with small |𝒜(𝑥𝑖)| (few labels per task), in particular for the LabelMe dataset it is uninformative. The
WAUM can handle any number of labels, but the larger the better. However, as it uses a deep learning
classifier, the WAUM needs the tasks (𝑥𝑖)𝑖 in addition to the proposed labels while the other strategies
are feature-blind.

5.1.1 CIFAR-1OH dataset

First, let us consider a dataset with a large number of tasks, annotations and workers: the CIFAR-10H
dataset by Peterson et al. (2019).

! peerannot identify ./datasets/cifar10H -s entropy -K 10 --labels ./datasets/cifar10H/answers.json
! peerannot aggregate ./datasets/cifar10H/ -s GLAD
! peerannot identify ./datasets/cifar10H/ -K 10 --method WAUM \

--labels ./datasets/cifar10H/answers.json --model resnet34 \
--n-epochs 100 --lr=0.01 --img-size=32 --maxiter-DS=50 \
--pretrained

28

import plotly.graph_objects as go
from plotly.subplots import make_subplots
from PIL import Image
import itertools

classes = (
"plane",
"car",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",

)

def load_data(dataset, n_classes, classes):

entrop = np.load(f"./datasets/{dataset}/identification/entropies.npy")
path_train = Path(f"./datasets/{dataset}/train")
glad = 1 / np.exp(

np.load(f"./datasets/{dataset}/identification/glad/difficulties.npy")[
:, 1

]
)
dfwaum = pd.read_csv(

f"./datasets/{dataset}/identification/resnet34/waum_0.01_yang/waum.csv"
) if dataset.startswith("cifar") else pd.read_csv(

f"./datasets/{dataset}/identification/modellabelme/waum_0.01_yang/waum.csv"
)
tasks = dfwaum.sort_values(by="waum")["task"].values
img_ns, img_glad, img_waum = [], [], []
idxs_ns = np.argsort(entrop)[::-1]
idxs_glad = np.argsort(glad)[::-1]
idxs_waum = [Path(task).stem.split("-")[1] for task in tasks]
for idxs, im_store in zip(

[idxs_ns, idxs_glad, idxs_waum], [img_ns, img_glad, img_waum]
):

imgs = []
for k in range(n_classes):

imgs.append([])
flag = 0
for (id_, file) in list(

itertools.product(idxs, path_train.glob(f"{classes[k]}/*"))
):

if file.stem.endswith(f"-{id_}"):
im = Image.open(file)

29

if dataset.startswith("cifar"):
im = im.resize((32,32))

else:
im = im.resize((64, 64)) # memory saving

imgs[k].append(np.array(im))
flag += 1

if flag == 12:
break

image_k_row1 = np.hstack(imgs[k][:6])
image_k_row2 = np.hstack(imgs[k][6:])
image_k = np.vstack((image_k_row1, image_k_row2))
im_store.append(image_k)

all_images = [img_ns, img_glad, img_waum]
return all_images

def get_visible_strat(strategy):
ll = [False] * (n_classes * 3)
for k in range(n_classes * strategy, n_classes * (strategy + 1)):

ll[k] = True
return ll

def get_layer_strat(strategy):
ll_layer = ["below"] * (n_classes * 3)
for k in range(n_classes * strategy, n_classes * (strategy + 1)):

ll_layer[k] = "above"
return ll_layer

def get_visible_class(lab):
ll = [False] * (n_classes * 3)
for k in range(3):

ll[n_classes * k + lab] = True
return ll

def generate_plot(n_classes, all_images):
fig = make_subplots(

rows=3, cols=1, subplot_titles=("Entropy", "GLAD difficulty", "WAUM"), vertical_spacing=0.1
)
button_classes = [

dict(
args=[{"visible": get_visible_class(k)}],
label=f"{classes[k]}",
method="update",

)
for k in range(n_classes)

]
buttons_method = [

30

dict(
args=[

{"visible": get_visible_strat(0), "layer": get_layer_strat(0)}
],
label="entropy",
method="update",

),
dict(

args=[
{"visible": get_visible_strat(1), "layer": get_layer_strat(1)}

],
label="glad",
method="update",

),
dict(

args=[
{"visible": get_visible_strat(2), "layer": get_layer_strat(1)}

],
label="waum",
method="update",

),
]
layout = go.Layout(

updatemenus=[
{

"type": "buttons",
"buttons": button_classes,
"active": 3,
"showactive": True,
"direction": "down", # Display buttons horizontally
"x": 0.1, # X-position of the buttons (0.5 centers them)
"y": 1., # Y-position of the buttons

},
]

)
data = [

go.Image(
z=all_images[method][k],
visible=True if k == 3 else False,
name=f"{classes[k]} - {method}",

)
for method in range(len(all_images))
for k in range(n_classes)

]

for k in range(n_classes * len(all_images)):
fig.add_trace(

data[k],
row=1 + k // n_classes,
col=1,

31

)
fig.update_layout(layout)
fig.update_layout(width=800, height=700, margin=dict(l=0, r=0, t=30, b=0, autoexpand=True))
fig.update_xaxes(showticklabels=False).update_yaxes(showticklabels=False)
fig.show()

n_classes = 10
all_images = load_data("cifar10H", n_classes, classes)
generate_plot(n_classes, all_images)

Unable to display output for mime type(s): text/html

Most difficult tasks identified depending on the strategy used (entropy, GLAD or WAUM) using a
Resnet34.

Unable to display output for mime type(s): text/html

The entropy, GLAD’s difficulty, and WAUM’s difficulty each show different images as exhibited in
the interactive Figure. We highlight that for the cat label, each strategy retrieves images that are
mislabeled in the ground truth labeling. Indeed, the frog, dog and fox images are labeled as cat
in CIFAR-10. And while the entropy and GLAD output similar tasks, in this case the WAUM often
differs. We can also observe an ambiguity induced by the labels in the truck category, with the
presence of a trailer that is technically a mixup between a car and a truck.

5.1.2 LabelMe dataset

As for the LabelMe dataset, one difficulty in evaluating tasks’ intrinsic difficulty is that there a limited
amount of votes available per task. Hence, the entropy in the distribution of the votes is no longer a
reliable metric, and we need to rely on other models.

Now, let us compare the tasks’ difficulty distribution depending on the strategy considered using
peerannot.

! peerannot identify ./datasets/labelme -s entropy -K 8 --labels ./datasets/labelme/answers.json
! peerannot aggregate ./datasets/labelme/ -s GLAD
! peerannot identify ./datasets/labelme/ -K 8 --method WAUM --labels ./datasets/labelme/answers.json --model modellabelme --lr=0.01 --n-epochs 100 --maxiter-DS=100 --alpha=0.01 --pretrained --optimizer=sgd

classes = {
0: "coast",
1: "forest",
2: "highway",
3: "insidecity",
4: "mountain",
5: "opencountry",
6: "street",
7: "tallbuilding",

}
classes = list(classes.values())
n_classes = len(classes)
all_images = load_data("labelme", n_classes, classes)
generate_plot(n_classes, all_images) # create interactive plot

Unable to display output for mime type(s): text/html

32

Most difficult tasks identified depending on the strategy used (entropy, GLAD or WAUM) using a
VGG-16 with two dense layers.

Note that in this experiment, because the number of labels given per task is in {1, 2, 3}, the entropy
only takes four values. In particular, tasks with only one label all have a null entropy, so not just
consensual tasks.

The underlying difficulty of these tasks mainly comes from the overlap in possible labels. For example,
tallbuildings are most often found insidecities, and so are streets. In the opencountry we
find forests, river-coasts and mountains.

5.2 Exploring workers’ reliability

From the labels we can explore different worker evaluation scores. GLAD’s strategy estimates a
reliability scalar coefficient 𝛼𝑗 per worker. With strategies looking to estimate confusion matrices,
we investigate two scoring rules for workers:

• The trace of the confusion matrix: the closer to 𝐾 the better the worker.
• The closeness to spammer metric (Raykar and Yu 2011) (also called spammer score) that is the
Frobenius norm between the estimated confusion matrix �̂� (𝑗) and the closest rank-1 matrix.
The further to zero the better the worker. On the contrary, the closer to zero, the more likely it
is the worker to be a spammer. This score separates spammers from common workers and
experts (with profiles as in Figure 6).

When the tasks are available, confusion-matrix-based deep learning models can also be used. We
thus add to the comparison the trace of the confusion matrices with CrowdLayer and CoNAL on
the LabelMe datasets. For CoNAL, we only consider the trace of the confusion matrix 𝜋 (𝑗) in the
pairwise comparison. Moreover, for CrowdLayer and CoNAL we show in Figure 14 the weights
learned without the softmax operation by row to keep the comparison as simple as possible with the
actual outputs of the model.

5.2.1 CIFAR-10H

The CIFAR-10H dataset has few disagreements among workers. However, these strategies disagree
on the ranking of good against best workers as they do not measure the same properties.

! peerannot aggregate ./datasets/cifar10H/ -s GLAD
for method in ["trace_confusion", "spam_score"]:
! peerannot identify ./datasets/cifar10H/ --n-classes=10 \

-s {method} --labels ./datasets/cifar10H/answers.json

path_ = Path.cwd() / "datasets" / "cifar10H"
results_identif = {"Trace DS": [], "spam_score": [], "glad": []}
results_identif["Trace DS"].extend(np.load(path_ / 'identification' / "traces_confusion.npy"))
results_identif["spam_score"].extend(np.load(path_ / 'identification' / "spam_score.npy"))
results_identif["glad"].extend(np.load(path_ / 'identification' / "glad" / "abilities.npy")[:, 1])
results_identif = pd.DataFrame(results_identif)
g = sns.pairplot(results_identif, corner=True, diag_kind="kde", plot_kws={'alpha':0.2})
plt.tight_layout()
plt.show()

33

0.0

0.2

0.4

0.6

0.8

1.0

sp
am

_s
co

re

2.5 5.0 7.5 10.0
Trace DS

0

1

2

gl
ad

0.00 0.25 0.50 0.75 1.00
spam_score

1 0 1 2 3
glad

Figure 13: Comparison of ability scores by workers for the CIFAR-10H dataset. All metrics computed
identify the same poorly performing workers. A mass of good and expert workers can be seen as the
dataset presents few disagreements, thus few data to seperate good from best workers.

From Figure 13, we can see that in this dataset, different methods easily separate the worse workers
from the rest of the crowd (workers in the left tail of the distribution).

5.2.2 LabelMe

Finally, let us evaluate workers for the LabelMe dataset. Because of the lack of data (up to 3 labels
per task), ranking workers is more difficult than in the CIFAR-10H dataset.

! peerannot aggregate ./datasets/labelme/ -s GLAD
for method in ["trace_confusion", "spam_score"]:
! peerannot identify ./datasets/labelme/ --n-classes=8 \

-s {method} --labels ./datasets/labelme/answers.json
CoNAL and CrowdLayer were run in section 4

34

path_ = Path.cwd() / "datasets" / "labelme"
results_identif = {"Trace DS": [], "Spam score": [], "glad": [], "Trace CrowdLayer": [], "Trace CoNAL[scale=1e-4]": []}
best_cl = torch.load(path_ / "best_models" / "labelme_crowdlayer.pth", map_location="cpu")
best_conal = torch.load(path_ / "best_models" / "labelme_conal[scale=1e-4]_local_confusion.pth", map_location="cpu")
pi_conal = best_conal
results_identif["Trace CoNAL[scale=1e-4]"].extend([torch.trace(pi_conal[i]).item() for i in range(pi_conal.shape[0])])
results_identif["Trace CrowdLayer"].extend([torch.trace(best_cl["confusion"][i]).item() for i in range(best_cl["confusion"].shape[0])])
results_identif["Trace DS"].extend(np.load(path_ / 'identification' / "traces_confusion.npy"))
results_identif["Spam score"].extend(np.load(path_ / 'identification' / "spam_score.npy"))
results_identif["glad"].extend(np.load(path_ / 'identification' / "glad" / "abilities.npy")[:, 1])
results_identif = pd.DataFrame(results_identif)
g = sns.pairplot(results_identif, corner=True, diag_kind="kde", plot_kws={'alpha':0.2})
plt.tight_layout()
plt.show()

35

0.0

0.2

0.4

0.6

0.8

Sp
am

 sc
or

e

0.0
0.2
0.4
0.6
0.8
1.0
1.2

gl
ad

6

7

8

9

10

11

12

Tr
ac

e
Cr

ow
dL

ay
er

0 5 10
Trace DS

80

60

40

20

0

20

Tr
ac

e
Co

NA
L[

sc
al

e=
1e

-4
]

0.0 0.5 1.0
Spam score

0 1
glad

5 10
Trace CrowdLayer

100 0
Trace CoNAL[scale=1e-4]

Figure 14: Comparison of ability scores by workers for the labelme dataset. With few labels per
task, workers are more difficult to rank. It is more difficult to separate workers with their abilities in
this crowd. Hence the importance of investigating the generalization performance of the methods
presented in the previous section.

We can see in Figure 14 that the number of labels available by task highly impacts the worker
evaluation scores. The spam score, DS model and CoNAL all show similar results in the distribution
shape (bimodal distribution) whereas GLAD and CrowdLayer are more concentrated. However, this
does not account for the ranking of a given worker by the methods considered. The exploration of the
dataset let us look at different scores, but generalization performance presented in Section 4.3 should
also be considered in crowdsourcing. This difference in worker evaluation scores indeed further
highlights the importance of using multiple test metrics to compare model’s prediction performance
in crowdsourcing. We have seen that the library peerannot allows users to explore the datasets,
both in terms of tasks and workers, and easily compare predictive performance in this setting.

In practice, the data exploration step can be used to detect possible ambiguities in the dataset’s tasks,
but also remove answers from spammers to improve the data quality as shown in Figure 1. The easy

36

access to the different strategies allows the user to decide if, for their collected dataset, there is a
need for more recent deep-learning based strategies to improve the results. This is the case for the
LabelMe dataset. Otherwise, the user can decide that standard aggregation-based crowdsourcing
strategies are sufficient and for example, if there are plenty of votes per tasks like in CIFAR-10H,
that the entropy in the votes distribution is a criterion that identified enough ambiguous tasks for
their case. As often, not a single strategy works best for all datasets, hence the need to perform easy
comparisons with peerannot.

6 Conclusion

We introduced peerannot, a library to handle crowdsourced datasets. This library enables both
easy label aggregation and direct training strategies with classical state-of-the-art classifiers. The
identification module of the library allows exploring the collected data from both the tasks and the
workers’ point of view for better scorings and data cleaning procedures. Our library also comes
with templated datasets to better share crowdsourced datasets. Going beyond templating, it helps
the crowdsourcing community to have openly accessible strategies to test, compare and improve in
order to develop common strategies to analyse more and more common crowdsourced datasets.

We hope that this library helps reproducibility in the crowdsourcing community and also standardizes
training from crowdsourced datasets. New strategies can easily be incorporated into the open-source
code available on github. Finally, as peerannot is mostly directed to handle classification datasets,
one of our future works would be to consider other peerannot modules to handle crowdsourcing for
object detection, segmentation and even worker evaluation in other contexts like peer-grading.
Aitchison, L. 2021. “A Statistical Theory of Cold Posteriors in Deep Neural Networks.” In ICLR.
Cao, P, Y Xu, Y Kong, and Y Wang. 2019. “Max-MIG: An Information Theoretic Approach for Joint

Learning from Crowds.” In ICLR.
Chagneux, M, S LeCorff, P Gloaguen, C Ollion, O Lepâtre, and A Bruge. 2023. “Macrolitter Video

Counting on Riverbanks Using State Space Models and Moving Cameras.” Computo, February.
https://computo.sfds.asso.fr/published-202301-chagneux-macrolitter.

Chu, Z, J Ma, and H Wang. 2021. “Learning from Crowds by Modeling Common Confusions.” In
AAAI, 5832–40.

Dawid, AP, and AM Skene. 1979. “Maximum Likelihood Estimation of Observer Error-Rates Using
the EM Algorithm.” J. R. Stat. Soc. Ser. C. Appl. Stat. 28 (1): 20–28.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. “ImageNet: A Large-Scale Hierarchical
Image Database.” In CVPR.

Gao, G, and D Zhou. 2013. “Minimax Optimal Convergence Rates for Estimating Ground Truth from
Crowdsourced Labels.” arXiv Preprint arXiv:1310.5764.

Garcin, C., A. Joly, P. Bonnet, A. Affouard, J.-C. Lombardo, M. Chouet, M. Servajean, T. Lorieul, and
J. Salmon. 2021. “Pl@ntNet-300K: A Plant Image Dataset with High Label Ambiguity and a
Long-Tailed Distribution.” In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks.

Gruber, S G, and F Buettner. 2022. “Better Uncertainty Calibration via Proper Scores for Classification
and Beyond.” In Advances in Neural Information Processing Systems.

Guo, C, G Pleiss, Y Sun, and KQ Weinberger. 2017. “On Calibration of Modern Neural Networks.” In
ICML, 1321.

Imamura, H, I Sato, and M Sugiyama. 2018. “Analysis of Minimax Error Rate for Crowdsourcing and
Its Application to Worker Clustering Model.” In ICML, 2147–56.

James, GM. 1998. “Majority Vote Classifiers: Theory and Applications.” PhD thesis, Stanford
University.

Kasmi, G, Y-M Saint-Drenan, D Trebosc, R Jolivet, J Leloux, B Sarr, and L Dubus. 2023. “A Crowd-

37

https://github.com/peerannot/peerannot
https://computo.sfds.asso.fr/published-202301-chagneux-macrolitter

sourced Dataset of Aerial Images with Annotated Solar Photovoltaic Arrays and Installation
Metadata.” Scientific Data 10 (1): 59.

Khattak, FK. 2017. “Toward a Robust and Universal Crowd Labeling Framework.” PhD thesis,
Columbia University.

Krizhevsky, A, and G Hinton. 2009. “Learning Multiple Layers of Features from Tiny Images.”
University of Toronto.

Lefort, T, B Charlier, A Joly, and J Salmon. 2022. “Identify Ambiguous Tasks Combining Crowdsourced
Labels by Weighting Areas Under the Margin.” arXiv Preprint arXiv:2209.15380.

Lin, Tsung-Yi, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollá r, and C. Lawrence Zitnick. 2014. “Microsoft COCO:
Common Objects in Context.” CoRR abs/1405.0312. http://arxiv.org/abs/1405.0312.

Marcel, S, and Y Rodriguez. 2010. “Torchvision the Machine-Vision Package of Torch.” In Proceedings
of the 18th ACM International Conference on Multimedia, 1485–88. MM ’10. New York, NY, USA:
Association for Computing Machinery.

Park, Seo Yeon, and Cornelia Caragea. 2022. “On the Calibration of Pre-Trained Language Models
Using Mixup Guided by Area Under the Margin and Saliency.” In ACML, 5364–74.

Passonneau, R J., and B Carpenter. 2014. “The Benefits of a Model of Annotation.” Transactions of the
Association for Computational Linguistics 2: 311–26.

Paszke, A, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, et al. 2019. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” In NeurIPS, 8024–35.

Peterson, J C., R M. Battleday, T L. Griffiths, and O Russakovsky. 2019. “Human Uncertainty Makes
Classification More Robust.” In ICCV, 9617–26.

Pleiss, G, T Zhang, E R Elenberg, and K Q Weinberger. 2020. “Identifying Mislabeled Data Using the
Area Under the Margin Ranking.” In NeurIPS.

Raykar, V C, and S Yu. 2011. “Ranking Annotators for Crowdsourced Labeling Tasks.” In NeurIPS,
1809–17.

Rodrigues, F, M Lourenco, B Ribeiro, and F C Pereira. 2017. “Learning Supervised Topic Models for
Classification and Regression from Crowds.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (12): 2409–22.

Rodrigues, F, and F Pereira. 2018. “Deep Learning from Crowds.” In AAAI. Vol. 32.
Rodrigues, F, F Pereira, and B Ribeiro. 2014. “Gaussian Process Classification and Active Learning

with Multiple Annotators.” In ICML, 433–41. PMLR.
Servajean, M, A Joly, D Shasha, J Champ, and E Pacitti. 2016. “ThePlantGame: Actively Training

Human Annotators for Domain-Specific Crowdsourcing.” In Proceedings of the 24th ACM In-
ternational Conference on Multimedia, 720–21. MM ’16. New York, NY, USA: Association for
Computing Machinery.

———. 2017. “Crowdsourcing Thousands of Specialized Labels: A Bayesian Active Training Approach.”
IEEE Transactions on Multimedia 19 (6): 1376–91.

Sinha, V B, S Rao, and V N Balasubramanian. 2018. “Fast Dawid-Skene: A Fast Vote Aggregation
Scheme for Sentiment Classification.” arXiv Preprint arXiv:1803.02781.

Tinati, R, M Luczak-Roesch, E Simperl, and W Hall. 2017. “An Investigation of Player Motivations in
Eyewire, a Gamified Citizen Science Project.” Computers in Human Behavior 73: 527–40.

Whitehill, J, T Wu, J Bergsma, J Movellan, and P Ruvolo. 2009. “Whose Vote Should Count More:
Optimal Integration of Labels from Labelers of Unknown Expertise.” In NeurIPS. Vol. 22.

Yasmin, R, M Hassan, J T Grassel, H Bhogaraju, A R Escobedo, and O Fuentes. 2022. “Improving
Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine
Learning.” Frontiers in Artificial Intelligence 5: 848056.

Zhang, H, M Cissé, Y N. Dauphin, and D Lopez-Paz. 2018. “Mixup: Beyond Empirical Risk Minimiza-
tion.” In ICLR.

38

http://arxiv.org/abs/1405.0312

	Introduction: crowdsourcing in image classification
	Notation and package structure
	Crowdsourcing notation
	Storing crowdsourced datasets in peerannot

	Aggregation strategies in crowdsourcing
	Classical models
	Majority vote (MV)
	Naive soft (NS)
	Dawid and Skene (DS)
	Variations around the DS model
	Generative model of Labels, Abilities, and Difficulties (GLAD)
	Aggregation strategies in peerannot

	Experiments and evaluation of label aggregation strategies
	Simulated independent mistakes
	Simulated correlated mistakes
	Simulated mistakes with discrete difficulty levels on tasks

	Learning from crowdsourced tasks
	Popular models
	CrowdLayer
	CoNAL

	Prediction error when learning from crowdsourced tasks
	Use case with peerannot on real datasets

	Exploring crowdsourced datasets
	Exploring tasks' difficulty
	CIFAR-1OH dataset
	LabelMe dataset

	Exploring workers' reliability
	CIFAR-10H
	LabelMe

	Conclusion

