Comparison of optimization parametrizations for regional lung compliance estimation using personalized pulmonary poromechanical modeling
Résumé
Interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) or post-COVID-19 pulmonary fibrosis, are progressive and severe diseases characterized by an irreversible scarring of interstitial tissues that affects lung function. Despite many efforts, these diseases remain poorly understood and poorly treated. In this paper, we propose an automated method for the estimation of personalized regional lung compliances based on a poromechanical model of the lung. The model is personalized by integrating routine clinical imaging data-namely computed tomography images taken at two breathing levels in order to reproduce the breathing kinematic-notably through an inverse problem with fully personalized boundary conditions that is solved to estimate patient-specific regional lung compliances. A new parametrization of the inverse problem is introduced in this paper, based on the combined estimation of a personalized breathing pressure in addition to material parameters, improving the robustness and consistency of estimation results. The method is applied to three IPF patients and one post-COVID-19 patient. This personalized model could help better understand the role of mechanics in pulmonary remodeling due to fibrosis; moreover, patient-specific regional lung compliances could be used as an objective and quantitative biomarker for improved diagnosis and treatment follow up for various interstitial lung diseases.
Origine | Fichiers produits par l'(les) auteur(s) |
---|