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Abstract
Interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) or
post-COVID-19 pulmonary fibrosis, are progressive and severe diseases
characterized by an irreversible scarring of interstitial tissues that af-
fects lung function. Despite many efforts, these diseases remain poorly
understood and poorly treated. In this paper we propose an automated
method for the estimation of personalized regional lung compliances
based on a poromechanical model of the lung. The model is person-
alized by integrating routine clinical imaging data – namely computed
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tomography images taken at two breathing levels in order to repro-
duce the breathing kinematic – notably through an inverse problem
with fully personalized boundary conditions that is solved to estimate
patient-specific regional lung compliances. A new parametrization of
the inverse problem is introduced in this paper, based on the com-
bined estimation of a personalized breathing pressure in addition to
material parameters, improving the robustness and consistency of es-
timation results. The method is applied to three IPF patients and
one post-COVID-19 patient. This personalized model could help bet-
ter understand the role of mechanics in pulmonary remodeling due
to fibrosis; moreover, patient-specific regional lung compliances could
be used as an objective and quantitative biomarker for improved
diagnosis and treatment follow up for various interstitial lung diseases.

Keywords: Pulmonary Mechanics, Poromechanics, Finite Element Method,
Image-based Estimation, Optimization

1 Introduction1

Idiopathic pulmonary fibrosis (IPF) is still today a poorly understood disease,2

characterized by the thickening and stiffening of lung interstitial tissues [1, 2].3

It is a severe chronic disease leading to progressive and irreversible deteriora-4

tion of lung function due to impaired gas exchange, with very few available5

treatments [3]. As the disease progresses, patients suffer form persistant and6

increasing symptoms of dyspnea, dry cough, chest pain, fatigue, etc. [3].7

More recently, post-COVID-19 pulmonary fibrosis has been frequently re-8

ported [4, 5]. About 8% of patients present severe lung capacity impairment,9

chest pain, painful muscles, ageusia, anosmia or fibrotic damage that could10

be attributed to the COVID-19 infection [6]. The severity of the initial symp-11

toms is correlated with a higher risk of persistent respiratory complications [7].12

These long-term complications may cause substantial patients disability and13

even death due to lung fibrosis progression in the following years, and thus14

drastically increase pulmonary fibrosis prevalence [8].15

Like in other clinical fields [9, 10], patient-specific numerical models are in-16

tended to play a role in such clinical issues, through individualized diagnosis,17

prognosis and long term follow up, evaluating effectiveness of a treatment over18

time from a mechanical point of view [11, 12]. Moreover, they could give ad-19

ditional information to clinicians in order to propose individualized therapies.20

Regarding post-COVID-19 patients, these models may help for early detection21

of pulmonary fibrosis.22

Pulmonary fibrosis is also associated to more fundamental issues. For in-23

stance, the underlying mechanisms involved in progression and worsening over24

time are not fully understood. One of the hypotheses is the existence of a me-25

chanical vicious circle [13–15]. According to this assumption, the thickening of26

the interstitial tissues due to pulmonary fibrosis locally increases its rigidity27
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inducing higher stresses, which activates the production of collagen fibers by1

fibroblasts in the surrounding area [16]. Only a few studies have tried to eval-2

uate this hypothesis. A possible investigative approach, that we will sustain in3

this paper, is through personalized biomechanical modeling of fibrotic lungs4

based on medical imaging.5

Numerical modeling of lungs, and especially finite-element modeling, have6

been widely used in the literature to study air flow and gas exchange [17]. At7

a more general level including mechanical deformation and fluid-solid interac-8

tion, it is an active research field that aims to understand the biomechanics9

of the lung and its function under normal and pathological conditions, both10

through a micromechanical approach [18–20] or at the organ level [11, 21, 22],11

and through multiphysics and multiscale approaches [23, 24]. Several authors12

have demonstrated the need of using heterogeneous mechanical behavior for13

lung tissue modeling. One can refer for instance to [25, 26], that performed14

ex-vivo 3D digital image correlation or digital volume correlation deformation15

measurements of inflated lungs at organ level. Thus, various constitutive laws16

have been considered for the parenchyma either or not based on microstructure17

or experimental measurements [27, 28].18

In this context, a lung biomechanical model was recently proposed in [29]19

based on a general poromechanical formulation in large strains [30–32]. The20

model uses a two-phase mixture theory under the assumption of fluid incom-21

pressibility and isothermal conditions. The fluid phase represents air in the22

alveoli, while the solid phase represents tissues and blood, and is modeled with23

an hyperelastic free energy potential suitable for biological soft tissues such as24

lung parenchyma. The boundary conditions for breathing modeling, already25

detailed in [29], are a negative pleural pressure applied on the external surface26

of the lungs and a frictionless bilateral contact with the thorax. The model27

is associated to a personalization pipeline, introduced in [33], which allows to28

generate patient-specific models based on clinical images, and thus to obtain29

biomarkers combining the laws of physics and acquired data, opening the door30

for a better understanding, diagnosis and treatment of pulmonary fibrosis.31

The work presented in this paper focuses on improving the lung model32

personalization pipeline based on clinical data presented in [33], for the esti-33

mation of patients regional lung compliances. Segmentation and meshing steps34

were improved and automated. The method relies on two 3DCT images for35

each patient, taken at end-exhalation and end-inhalation (breath holding),36

which are routinely acquired on patients diagnosed with pulmonary fibrosis,37

either IPF or post-COVID-19, at Avicenne APHP Hospital, Bobigny, France.38

Patient-specific information, such as lungs and thorax geometry, breathing39

kinematics, local porosity and fibrotic regions are extracted from the images.40

The image registration step, from which breathing kinematics is derived, was41

made more robust through a multi-level (rigid body, affine and full motion)42

decomposition. Then, regional lung compliances are estimated through an in-43

verse problem. Since pleural pressure cannot be measured in clinical routine,44

a generic pleural pressure was used for all patients in [33], leading in some45
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Table 1: Acquisition and reconstruction CT parameters for each patient.

CT parameters
Patients

IPF1 IPF2 IPF3 COVID1

Manufacturer SIEMENS SIEMENS SIEMENS GE

Model SOMATOM SOMATOM SOMATOM Revolution HD

KVP 120 120 120 120

Convolution kernel I70f/4 I70f/4 I70f/4 LUNG

Columns 512 512 512 611

Rows 512 512 512 611

Axial pixel spacing [mm] 0.66 0.7 0.68 0.6

Slice thickness [mm] 0.75 0.75 0.75 0.6

cases to inconsistent estimation results. In this paper, we assess this major1

drawback by introducing a new parametrization based on the estimation of2

a personalized pleural pressure in addition to material parameters, allowing3

the use of fully patient-specific boundary conditions for the inverse problem.4

Results on IPF patients are compared to previous work [33], and results on5

post-COVID-19 are presented for the first time.6

2 Materials and Methods7

2.1 Thoracic Imaging8

The personalized poromechanical modeling tools presented in this paper are9

based on patient-specific clinical data such as lung geometry, lung porosity and10

breathing kinematics, which are obtained from clinical imaging. CT scans are11

usually used for interstitial lung diseases [34, 35], and are routinely performed12

for the diagnosis, classification and long term followup at Avicenne APHP13

Hospital, Bobigny, France. Two high resolution 3DCT scans were performed14

on each patient, at end-exhalation and end-inhalation, in the supine position15

with the arms above the head and in breath-hold during image acquisition,16

following French guidelines [36]. Visual image analysis and classification were17

done by a radiologist.18

In this study, 3DCT scans of three IPF patients and one post-COVID-1919

patient were selected. The CT parameters used for acquisition and reconstruc-20

tion are given in Table 1. Patient data were retrospectively retrieved according21

to the French law on medical research and compiled as required by the Com-22

mission Nationale de l’Informatique et des Libertés (CNIL). The study not23

requiring an informed consent received authorization CLEA-2019-96 from the24

Comité Local d’Éthique d’Avicenne (CLEA).25
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2.2 Recall on Lung Poromechanical Modeling1

2.2.1 General Modeling Assumptions2

As a general reminder, poromechanical modeling is intended to capture the3

heterogeneous mechanical behavior of the lung at organ level due to the in-4

corporation of microscopic information, such as local porosity. In this model,5

the lung parenchyma was considered as a two-phase poroelastic continuum.6

We used a general large strain mixture theory presented in [32] and applied7

to lung modeling in [29]. The solid phase regroups lung interstitial tissue and8

blood, and the fluid phase corresponds to air present in airways and alveoli.9

Both solid and fluid phases were considered as incompressible under normal10

breathing conditions, so that lung volume change is due to added and removed11

fluid phase to the mixture respectively with inhalation and exhalation. Thus,12

the model relies on lung local porosity information in the reference configura-13

tion, representing the volume fraction of air. Moreover, the following additional14

hypotheses were made:15

• The transformation is assumed to be isothermal.16

• End-exhalation and end-inhalation states were considered at static equilib-17

rium.18

• Internal fluid pressure is homogeneous and equal to atmospheric pressure.19

• The existence of an unknown unloaded configuration at equilibrium corre-20

sponding to a null pleural pressure.21

• The end-exhalation pleural pressure was set to a normal value of -0.5 kPa.22

2.2.2 Poromechanical Framework23

We define the following kinematic mapping between the reference configura-24

tion, denoted Ω0, and the deformed configuration, denoted ω:25

χ :=

{
Ω0 → ω

X 7→ x =χ (X) .
(1)

The corresponding deformation gradient is26

F (X) := ∇χ = 1 +∇U, (2)

where the displacement field is27

U(X) :=χ(X)−X = x (X)−X. (3)

The associated local volume change of the mixture is28

J := det
(
F
)
= Φs +Φf, (4)
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with Φs and Φf respectively the solid and fluid contributions to the mixture1

volume change. Moreover, we have2 {
Φf = ϕf · J
Φs = ϕs · J = (1− ϕf) · J

, (5)

where ϕs and ϕf are respectively the solid and fluid volume fraction in the3

deformed configuration. Thus, we have, in the reference configuration Ω0, Φf0+4

Φs0 = 1, and, in the deformed configuration ω, ϕf + ϕs = 1.5

We also introduce the right Cauchy-Green deformation tensor6

C := FT · F , (6)

and its first three invariants:7 
I1 := tr

(
C
)

I2 := 1
2

(
tr
(
C
)2 − tr

(
C2

))
I3 := det

(
C
)
= J2

. (7)

The Green-Lagrange strain tensor is denoted by8

E :=
1

2

(
C − 1

)
. (8)

In addition to these kinematics variables, another variable is needed to9

characterize the fluid transport within the mixture. Thus, we define the fluid10

mass change per unit reference mixture volume, denoted ρf±. Using the fluid11

incompressibility assumption, we have:12

ρf± = ρf0 · (Φf − Φf0) , (9)

with ρf0 the reference fluid mass density.13

2.2.3 Poromechanical Equilibrium Laws14

The weak form of the balance of linear momentum in the current and reference15

configurations are, respectively:16 ∫
ω

σ : ε (u∗) dω =Wext (u
∗) ∀u∗, (10)

and17 ∫
Ω0

Σ : dU E · U∗ dΩ0 =Wext (U
∗) ∀U∗, (11)
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where σ and Σ are the Cauchy and second Piola-Kirchhoff stress tensors.1

ε (u∗) is the linearized strain tensor, dU E ·U∗ is the differential of the Green-2

Lagrange strain tensor and Wext is the virtual work of the external forces that3

will be detailed in Section 2.2.5. We also consider the local mixture equilibrium4

between the fluid pressure pf and the solid hydrostatic pressure ps (formally5

defined in the next paragraph) such that6

pf = ps. (12)

2.2.4 Poromechanical Constitutive Law7

Following the second principle of thermodynamics, the second Piola-Kirchhoff8

stress tensor derives from a Helmholtz free energy function of the mixture,9

denoted ψ, with respect to E. ψ is decomposed additively into a solid part ψs10

and a fluid part ψf:11

ψ
(
E, ρf±

)
= ψs

(
E,Φs

)
+ ψf (Φf) . (13)

Thus,12

Σ =
∂ψ

(
E, ρf±

)
∂E

=
∂ψs

∂E
− psJC

−1, (14)

where the solid hydrostatic pressure ps := −∂ψs

∂Φs
is related to the volume13

change.14

The free energy function associated with the solid mechanical behavior is15

decomposed following:16

ψs
(
E,Φs

)
=W skel

(
E
)
+W bulk (Φs) (15)

where the first term W skel accounts for the solid structure behavior and the17

second term W bulk stems from the compressibility of the solid phase. Ac-18

cording to [29, 33], the hyperelastic response of the lung tissues may then be19

represented using the following strain-energy functions:20 
W skel

(
E
)
= α

(
eδ(J

2−1−2 ln(J))−1
)

+ β1 (I1 − 3− 2 ln(J)) + β2 (I2 − 3− 4 ln(J))

W bulk (Φs) = κ

(
Φs

Φs0
− 1− ln

(
Φs

Φs0

)) , (16)

where α, β1, β2, δ are material parameters and κ is the solid bulk modulus21

which should be large enough to ensure quasi-incompressibility of the solid22

part. These parameters θ represent the effective behavior of the mixture,23
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intrinsically taking into account the local reference porosity such that:1

θ = (1− Φf0) θ = Φs0θ ∀θ ∈ {α, β1, β2, κ}. (17)

One can note that homogeneous material parameters weighted with the local2

reference porosity can produce highly heterogeneous effective poromechanical3

behavior, depending on the heterogeneity of the porosity field, which is needed4

for the lung parenchyma [37].5

2.2.5 Lung Model6

As presented in [33], since the initial configuration at end-exhalation is not7

stress free, the first step is to compute an unloaded configuration corresponding8

to a null pleural pressure. This is an inverse problem in which the initial9

porosity corresponding to the loaded end-exhalation configuration, denoted10

γe, is known. The only initial boundary condition is an homogeneous negative11

pleural pressure ppl,e, set to -0.5 kPa on the whole lung surface, while rigid12

body motion are blocked. The two unknowns are the inverse displacement u013

and the reference porosity Φf0. The weak form of the problem is:14

Find (u0, ϕf0) such that
∀u∗,

∫
ωe

σ(u0, ϕf0) : ε(u
∗) dω = −

∫
γe

ppl,e n · u∗ dγ

∀x, pf = −∂W bulk

∂Φs
(u0, ϕf0)

(18)

where ϕf0 = Φf0 ◦χ−1
0
J−1 using the inverse mapping χ−1

0
. The model bound-15

ary conditions and some poromechanical quantities are illustrated in Figure16

1, where we used the multiplicative decomposition of the global deformation17

gradient as follow:18

F = F
b
· F

0
. (19)

After the resolution of the inverse problem, the pre-stressed end-exhalation19

configuration at equilibrium is fully known. The loading towards the end-20

inhalation configuration involves much more complex boundary conditions. In21

addition to the negative pleural pressure on the whole lung surface, a bilateral22

sliding contact with no friction and no separation, is set between the lung and23

the thorax surface. The problem is then described by the following system of24
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Ω0

ω

Φ0

ϕ

χ, F

χ
0
, F

0

χ
b
, F

bppl,e
ppl,i

U thorax

Figure 1: Schematic representation of the main poromechanical quantities and
model boundary conditions. From left to right, unloaded configuration, initial end-
exhalation configuration and loaded end-inhalation configuration.

equations:1

Find (U,Φf) such that

∀U∗,

∫
Ω0

∂W skel

∂E
: dU E · U∗ dΩ0 −

∫
Ω0

pfJC
−1 : dU E · U∗ dΩ0

= −
∫
Γ0

pplJ
(
F−T ·N0

)
· U∗ dΓ0

∀X, pf = −∂W bulk

∂Φs

(20)

2.3 Model Personalization Procedure2

Figure 2 illustrates the required patients data, i.e., clinical images and seg-3

mentation in green, and the fully automated pipeline for the personalized4

estimation of regional lung compliance in blue.5

2.3.1 Images Segmentation6

The 3DCT images at end-exhalation and end-inhalation are respectively7

denoted Ie and Ii. From these images, lungs and thorax geometries are seg-8

mented, where the thorax designates the volume composed of both lungs and9

the mediastinum. For each lung, an healthy and a diseased region are distin-10

guished in the end-exhalation image Ie. The lung segmentation is performed11

using a U-Net convolutional neural network specialized in the texture classi-12

fication of fibrotic lungs [38]. A Dice loss function was selected for network13

training. The learning optimizer used a stochastic gradient with momentum14
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Figure 2: Schematic representation of the personalized lung modeling pipeline with
the required clinical data in green and the automated computational pipeline in blue.

and considered a learning rate which varied with time according to a triangu-1

lar learning cycle schedule [39, 40]. The database used for training and testing2

the convolutional neural network model was collected at Avicenne Hospital,3

Bobigny, France. The database included 156 patients totaling 2266 axial im-4

ages. Among them, 137 patients (2076 slices) are used for train and validation5

and 19 patients (190 slices) for test. The ground truth annotations were per-6

formed manually by an expert radiologist using an in-house software. The7

segmentation algorithm provides healthy and diseased lung regions, the latter8

differentiating between fibrosis, ground glass and emphysema patterns. For all9

our study cases, the segmentation results were validated by an expert radiolo-10

gist. Based on the lung segmentation, the thorax region was computed as the11

convex-hull volume encompassing the lungs and the mediastinum, extended12

in the cranio-caudal direction down to the lung basis. Such task automa-13

tion is an important improvement with respect to our previous work [33]14

where lung healthy/diseased regions and thorax volume were defined manually15

based on lung shape segmentation [38]. Note that the diseased region includes16

all anomalies related to fibrosis such as scar tissues, ground-glass opacities,17

honeycombing, etc. [41].18

2.3.2 Mesh Generation19

The segmented image slices are combined into a 3D image using the Visual-20

ization Toolkit (VTK) [42] for both end-exhalation and end-inhalation states.21

From the 3D images, the left lung, right lung and thorax are separately meshed.22

In previous work [33], the healthy and diseased regions segmentation of each23

lung was a binary field projected onto the finite element mesh, which did not24
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explicitly represent the healthy-diseased interface. One of the improvements1

introduced in this paper is the explicit meshing of the healthy and diseased2

regions interface, directly from the automatic segmentation introduced above,3

using the Computational Geometry Algorithms Library (CGAL) [43]. The 3D4

mesh generation tool from CGAL allows the generation of an isotropic mesh5

composed of multiple components or subdomains, here the two lung regions,6

with a coherent mesh interface. Linear tetrahedron is used.7

2.3.3 Porosity Projection8

The porosity field is then computed from the CT images, which measure the9

attenuation of X-rays in the tissue related to density. Thus, each image pixel10

is displayed according to the mean attenuation of the tissue formulated in the11

Hounsfield units (HU) scale. Assuming a linear variation of porosity with HU,12

the local porosity can be computed with the expression:13

ϕf(x) =
HU(x)−HUtissue

HUair −HUtissue
, (21)

with HUtissue = 0HU considering that biological tissues are mainly composed14

of water and HUair = −1000HU. The porosity field computed from the end-15

exhalation image is projected onto the corresponding finite element mesh,16

assuming a constant value on each element. This value is equal to the mean of17

pixel values for all pixels inside the element.18

2.3.4 Image Registration19

From the meshes of lungs and thorax, new binary masks are created using20

VTK tools, respectively Ml,e and Ml,i from empty 3D images of dimensions21

corresponding to Ie and Ii.22

The displacement field of the thorax between end-exhalation and end-23

inhalation is computed using finite element-based image registration. The24

method is described in [44], and the code is freely available at https://gitlab.25

inria.fr/mgenet/dolfin_warp. In our case, the registration problem involves the26

end-exhalation thoracic mesh and the Ml,e and Ml,i thoracic binary masks.27

Since the image registration problem of shapes is ill-posed [45], a very small hy-28

perelastic regularization term is used to prevent convergence issues. Moreover,29

to improve the robustness of the registration, which is especially difficult as30

thorax displacements during breathing can be very large (several centimeters),31

we introduce here an multi-level registration algorithm:32

1. First a rigid body displacement field Urb is computed.33

2. From Urb as initial solution, an affine displacement field Uaffine then is34

computed.35

3. Finally the thorax displacement finite element field U thorax is computed36

using Uaffine as initial solution.37

https://gitlab.inria.fr/mgenet/dolfin_warp
https://gitlab.inria.fr/mgenet/dolfin_warp
https://gitlab.inria.fr/mgenet/dolfin_warp
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Table 2: Model parameters used in simulations for imposed ppl,i and imposed αh

estimations.

Parameters
Imposed ppl,i Imposed αh

healthy diseased healthy diseased

α [kPa] – – 0.0275 –

β1 [kPa] 0.2 0.2 0.2 0.2

β2 [kPa] 0.4 0.4 0.4 0.4

δ [–] 0.5 0.5 0.5 0.5

pf [kPa] 0 0

ppl,e [kPa] -0.5 -0.5

ppl,i [kPa] -1.85 –

The external surface of the volumetric thoracic mesh is then extracted with1

the corresponding nodal displacements and converted into shell elements.2

2.3.5 Model Parameters Estimation3

Patient-specific mechanical parameters of the skeleton energy W skel are es-4

timated using the above data. In this study we consider lungs with two5

regions, healthy and fibrotic tissues. Each region is defined as sets of elements6

with homogeneous material model properties. Two kinds of estimation are7

performed:8

1. Identification of the material parameters for both regions imposing a generic9

end-inhalation pleural pressure ppl,i as already presented in [33].10

2. Identification of the diseased region material parameters Θd and end-11

inhalation pleural pressure ppl,i imposing a generic healthy region material12

parameter Θh.13

However, the estimation problem of four parameters with the small amount14

of data available is highly ill-posed. Consequently, only the main volumetric15

stiffness parameters Θh/d =
{
αh/d

}
, are estimated and the others are set as16

presented in Table 2.17

The estimation problem is formulated as an optimization problem, in18

which the solution is the set of parameters minimizing a cost function f ,19

characterizing the distance between the model and the data and defined in20

the next paragraph. The optimization process is solved using the stochas-21

tic derivative-free numerical optimization algorithm CMA-ES [46, 47], which22

evaluates the direct problem multiple times with different sets of parameters.23

Thus, for each CMA-ES evaluation the direct problem consists in computing24

the stress-free reference configuration from the end-exhalation configuration25
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and the loaded end-inhalation configuration from the reference configuration.1

The stress-free reference configuration is computed using the FEniCS library2

[48] to solve the inverse hyperelastic problem (18) (code is freely available at3

https://gitlab.inria.fr/mgenet/dolfin_mech), while the loaded configuration is4

computed solving (20) using the Abaqus/Standard finite-element solver [49].5

As detailed in [33], the cost function used in the optimization process is6

additively composed of two terms. The first one characterizes the discrepancy7

between the end-exhalation and end-inhalation images after mapping with the8

model, while the second term characterizes the discrepancy between the mea-9

sured (from the images) and predicted (from the model) lung shape changes.10

In the sum, the weights are chosen such that both terms have an equivalent11

order of magnitude in the optimal state.12

2.4 Regional Compliance Definition13

In order to quantify the regional softness of the lung tissues, independently14

from the constitutive behavior and the patient-specific lung geometry, we de-15

fine a global compliance Ct0→t1 between two time points t0 and t1. It is defined16

as a volume change divided by a pressure change, such that:17

Ct0→t1 =
Vt1 − Vt0

ppl,t1 − ppl,t0
, (22)

where Vt0 and ppl,t0 are respectively the lung volume and pleural pressure at18

time point t0, and Vt1 and ppl,t1 are the lung volume and pleural pressure at19

time point t1. In order to define the compliance independently from the patient,20

we take Vt0 = 1.3 L and ppl,t0 = −0.5 kPa for all patients, and compute Vt121

on a simple Rivlin cube simulation.22

3 Results23

In this section we present results of the identification. As described in Section24

2.3.5, two kinds of identification are performed based on clinical data: either by25

imposing a generic end-inhalation pleural pressure, or by imposing a generic26

healthy compliance. Results are given in Table 3.27

3.1 Parameters Identification28

We first reproduced identifications performed in [33] on patients IPF1, IPF229

and IPF3, with the improved and fully automated personalization pipeline.30

In these computations the end-inhalation pleural pressure is set to ppl,i =31

−1.85 kPa for all patients and regional material parameters αh and αd are32

estimated. Results are presented in Table 3, and are qualitatively consistent33

with the identification of [33].34

In order to address some of the limitations of the previous estimation,35

especially reduce the sensitivity to the quality of the clinical data such as36

https://gitlab.inria.fr/mgenet/dolfin_mech
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Table 3: Comparison of the identified parameters for both kind of estimation,
imposed ppl,i and imposed αh

Patients
Imposed ppl,i Imposed αh

αh [kPa] αd [kPa] αd [kPa] ppl,i [kPa]

IPF1 0.021 0.199 5.532 -3.405
IPF2 27.42 1.682 5.753 -0.925
IPF3 0.005 3.859 6.634 -6.727

COVID1 0.006 0.021 3.252 -2.082

large variability in patients breath, we propose to no longer impose the end-1

inhalation pleural pressure, and instead impose the lung healthy region stiffness2

(αh = 0.0275 kPa) for all patients (see Table 2). Results are presented in Table3

3.4

3.2 Clinical Analysis5

3.2.1 Regional Compliance6

If global pulmonary compliance is a frequently used biomarker for clinicians7

that need to quantify impact and severity of pulmonary fibrosis, regional com-8

pliance as presented in this article is not yet used in clinical routine. The9

method used for the computation of the compliance is presented in Section10

2.4. Results for both kinds of identification are shown in Figure 3.11

Compliance of the healthy lung region is higher than that of the diseased12

region except for the patient IPF2. This specificity is likely due to the very13

small amount of breathing between end-exhalation and end-inhalation images,14

resulting in a very small change in lung volume (around 14% while usually15

above 70%). These results are consistent with the literature reporting higher16

stiffness of fibrotic tissues [2, 18, 50]. As a reminder, normal compliance un-17

der natural breathing usually range from 0.6 to 1 L/kPa [51], which is also18

consistent with our results.19

The use of a non-patient specific pleural pressure systematically lead to es-20

timate a lower compliance for the diseased region in comparison to the regional21

identification. Also, compliance estimation for patient IPF2 is more consistent22

since the small change in volume, due to clinical data, affects the value of the23

pleural pressure and no longer the stiffness of the lung tissues.24

Note that patient COVID1 presents for both type of identification a larger25

compliance for the diseased region that the IPF patients, which might indicate26

an earlier stage of the disease.27
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Imposed ppl,i Imposed αh

Figure 3: Regional compliances and pleural pressure for each patient for both
estimations, with imposed ppl,i (left) and with imposed αh (right).
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Figure 4: Comparison of fluid fraction of the mixture (left) and the solid hydrostatic
pressure [kPa] (right) in a sagittal slice of the lung for patient IPF1 in the case of a
non-patient specific pleural pressure estimation (imposed ppl,i).

3.2.2 Stress Distribution1

The assumption of a vicious mechanical circle has been formulated in the liter-2

ature [13, 15, 16]. This assumption states that mechanics may play a role in the3

evolution of pulmonary fibrosis and can be summarized as follows: a lower com-4

pliance of the diseased tissues leads to unphysiological stress concentrations5

that activate the production of collagen fibers inducing more fibrosis.6

Figures 4 and 5 illustrate the local porosity and hydrostatic pressure distri-7

bution in the lung at end-inhalation for patient IPF1, in the case of estimation8

ppl,i imposed and αh imposed, respectively. The two regions considered as9

healthy and diseased can be distinguished looking at the porosity field, with10

a much lower fluid volume fraction of the mixture in the diseased area. The11

results clearly show an heterogeneous hydrostatic pressure field across the in-12

terface of the two regions, with stress concentrations in fibrotic tissues near13

healthy tissues that seem to support the mechanical vicious circle assumption.14

Moreover, one can observe a much more heterogeneous porosity field in the15
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Figure 5: Comparison of fluid fraction of the mixture (left) and the solid hydrostatic
pressure [kPa] (right) in a sagittal slice of the lung for patient IPF1 in the case of a
patient specific pleural pressure estimation (imposed αh).

lung looking at results from estimation imposing αh in comparison to estima-1

tion imposing ppl,i, with higher fluid volume fraction in the healthy region and2

lower in the diseased region. Thus, higher stress levels and stress concentrations3

across the interface can be observed in case of identification with imposed αh.4

4 Discussion5

Personalized lung poromechanical modeling could represent an important tool6

for the better understanding of some of the mechanisms involved in pulmonary7

fibrosis. The patient-specific modeling pipeline presented in this study uses8

routine clinical images and aims to provide regional lung compliance in an9

automated way so that it can be run on large patients database. It builds upon10

[33], and the main pipelines improvements are summarized below:11

• The segmentation and meshing steps were automated, as described in12

Section 2.3.1.13

• Healthy and diseased regions are now explicitly represented in the mesh, with14

a coherent mesh interface, instead of a projected binary field, as described15

in Section 2.3.2.16

• The image registration step was made more robust through a multi-level17

(rigid body, affine and full motion) decomposition, as described in Section18

2.3.4.19

• The parameter estimation step was made more consistent with a new20

parametrization of the optimization problem based on the estimation of21

a personalized pleural pressure in addition to material parameters, as22

described in Section 2.3.5.23

• The entire model personalization pipeline was automated.24

If global lung compliance is widely used by clinicians, regional lung compliance25

currently cannot be measured without the use of such tool. This additional26
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personalized information about the patient could be helpful for further clin-1

ical decisions, quantify severity and evolution of the disease or evaluate the2

effectiveness of a treatment from a mechanical point of view.3

In this study, poromechanical model of the lung was applied to three pa-4

tients suffering from IPF and one from post-COVID-19 pulmonary fibrosis. We5

obtained results that are consistent with the current state of understanding of6

the disease. The parameters estimation systematically led to a stiffer diseased7

region in comparison to the healthy region, expect for patient IPF2 in the case8

where both lung regions stiffness where identified imposing the end-inhalation9

pleural pressure. This result highlights the very high sensitivity of this estima-10

tion to the quality of clinical data, since it is caused by the very small amount11

of breathing between end-exhalation and end-inhalation images. Imposing the12

stiffness of the healthy region, while the stiffness of the diseased region and13

the pleural pressure are estimated, gave the more consistent results. Indeed,14

for patient IPF2 the small amount of breathing led to the identification of a15

low pleural pressure instead of low tissue compliance. Moreover, the patient16

specific pleural pressure estimation systematically led to lower compliance of17

the diseased region in comparison to the patient specific healthy region stiff-18

ness identification, as well as higher pleural pressure (except for patient IPF2).19

Compliance quantification should also be studied in relation to other clinical20

observations such as spirometry or carbon monoxide diffusing capacity and21

compared to reference values [52].22

Another interest of the poromechanical model is the study of the stress field23

in the lung tissues. Indeed, our model could help better understand the role of24

mechanics in pulmonary abnormal remodeling due to fibrosis. The existence25

of stress concentration at the border of the fibrotic region tends to confirm the26

hypothesis of the role of a mechanical vicious circle in the course of the disease.27

Results obtained from estimations using a patient specific pleural pressure28

give more heterogeneous porosity and stress fields in the lung that would still29

enforce the previous hypothesis. However, the model still needs to be applied on30

more patients, and longitudinally, in order to establish conclusive observations.31

Thus, the pipeline automation presented in this study drastically reduces32

the need for manual intervention and offers the perspective to be used on33

large patients database of segmented lungs with healthy and diseased regions34

in further work. However, the computational cost is still high and the tool de-35

veloped is complex to set up in an outsourcing context, such as in a radiology36

department. Thus, other methods are promising and should be explored. One37

can cite for instance methods of mechanical parameters identification based38

on full-field measurements and not requiring an actual resolution of the model39

[53, 54], which could allow to compute regional lung compliances directly40

from finite element image registration without dealing with complex and still41

approximated boundary conditions. This reduction of modeling complexity42

would allow more robust and computationally efficient numerical simulations.43

44
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The present study has several limitations, both at the modeling and estima-1

tion levels, that are discussed in the following paragraphs. First, we considered2

a two-phases continuum, solid and fluid, were the solid phase regroups tis-3

sues and blood and the fluid phase corresponds to air. It would be possible to4

model three phases, considering for instance an independent but non patient-5

specific phase for blood. However, this rather simple representation allows the6

use of a poromechanical framework at the organ scale, taking into account7

heterogeneous porosity from personalized clinical data and projected onto the8

finite element mesh. One of the direct implication is that the measured poros-9

ity is not exactly represented but averaged inside an element. Moreover, we10

make the underlying assumption that the mechanical properties of the solid11

part of the mixture is homogeneous within one region of the mesh. A possible12

improvement could be the use of multi-scale model explicitly modeling lung13

interstitial tissues and airways [55].14

Improving boundary conditions and loadings could also lead to more rel-15

evant model parameters estimation. Gravity, for instance, could be to taken16

into account, both on the tissue itself and the imposed pleural pressure. In-17

deed, effect of gravity on human lung deformation have been studied in for18

instance in [56], and authors showed that gravitational effects are significant19

on lung deformation, especially in the top part of the lung that is far from the20

diaphragm, and tends to improve model accuracy. And in terms of boundary21

conditions, the modeling of organs in the mediastinum such as heart, vessels22

and trachea, constraining lungs displacements could improve the parameters23

estimation.24

Furthermore, our model currently only represents two breathing states,25

namely end-exhalation & end-inhalation, considered in static equilibrium, and26

could be extended to dynamics to take into account inertia and hystere-27

sis effects. However, patient-specific modeling always requires some trade-off28

between the model and clinically available data, and current computed to-29

mography scans are very limited in terms of time frames. But recent magnetic30

resonance imaging techniques have allowed truly 4D imaging of the breath-31

ing lung [57], which could, once coupled to a dynamical poromechanics model,32

lead to more physiological personalized models.33

Regarding the estimation pipeline itself, due to our personalized model-34

ing approach – namely we do not use directly lung displacements that could35

be computed from image registration, but directly the images – the patients36

breathing kinematic is not perfectly reproduced in our modeling with the37

current boundary conditions, i.e., homogeneous pleural pressure and thorax38

displacement extracted from the images. As already mentioned, one solution39

would be to use identification methods that consider directly the full-field40

kinematics extracted from the images [53, 54]. In the current setting, as al-41

ready noted in [33], the breathing motion error (i.e., the distance between the42

motion predicted by the model and the one observed in the images), is bet-43

ter quantified when using a displacement-based cost function rather than an44

image-based cost function.45
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We assumed the existence of two regions in the lungs, considered as healthy1

and diseased, with homogeneous material properties. Note that, as mentioned2

above, the actual mechanical behavior within each region is still heterogeneous3

due to the heterogeneous porosity field. These regions are segmented using a4

method described in [38] and explicitly meshed. The addition of several regions5

corresponding to specific CT visual analysis could be studied such as presence6

of ground-glass opacities, reticulations, honeycombing, etc. However, the use7

of multiple regions would considerably increase the space of solutions of the8

inverse analysis process that may lead to non-uniqueness of the solution and9

increase the uncertainty of the quantification.10

Since inverse problems are often ill-posed, we have limited our estimation11

to two parameters for each patient. An interesting outlook could be to perform12

uncertainty quantification when dealing with this small amount of input data13

with intrinsic noise. An interesting approach, based on a Bayesian multi-fidelity14

Monte-Carlo framework, has been recenty proposed in the literature [58].15
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