Observation of light thermalization to negative-temperature Rayleigh-Jeans equilibrium states in multimode optical fibers - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2023

Observation of light thermalization to negative-temperature Rayleigh-Jeans equilibrium states in multimode optical fibers

Résumé

Although the temperature of a thermodynamic system is usually believed to be a positive quantity, under particular conditions, negative temperature equilibrium states are also possible. Negative temperature equilibriums have been observed with spin systems, cold atoms in optical lattices and two-dimensional quantum superfluids. Here we report the observation of Rayleigh-Jeans thermalization of light waves to negative temperature equilibrium states. The optical wave relaxes to the equilibrium state through its propagation in a multimode optical fiber, i.e., in a conservative Hamiltonian system. The bounded energy spectrum of the optical fiber enables negative temperature equilibriums with high energy levels (high order fiber modes) more populated than low energy levels (low order modes). Our experiments show that negative temperature speckle beams are featured, in average, by a non-monotonous radial intensity profile. The experimental results are in quantitative agreement with the Rayleigh-Jeans theory without free parameters. Bringing negative temperatures to the field of optics opens the door to the investigation of fundamental issues of negative temperature states in a flexible experimental environment.
Fichier principal
Vignette du fichier
LU19060_to_arxiv.pdf (7.74 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04198191 , version 1 (06-09-2023)

Licence

Identifiants

Citer

K. Baudin, J. Garnier, A. Fusaro, N. Berti, C. Michel, et al.. Observation of light thermalization to negative-temperature Rayleigh-Jeans equilibrium states in multimode optical fibers. Physical Review Letters, 2023, 130 (6), pp.063801. ⟨10.1103/PhysRevLett.130.063801⟩. ⟨hal-04198191⟩
66 Consultations
24 Téléchargements

Altmetric

Partager

More