Validation of calibration strategies for macroscopic traffic flow models on synthetic data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Validation of calibration strategies for macroscopic traffic flow models on synthetic data

Résumé

We analyze two calibration approaches for parameter identification and traffic speed reconstruction in macroscopic traffic flow models. We consider artificially created noisy loop detector data as our field measurements. Due to the knowledge of the ground truth calibration parameter, we can give a sound assessment with respect to the performance of the considered methods. Our analysis shows that, in the proposed setting, the first order traffic flow model together with the proposed Kennedy O'Hagan approach performs better in reconstructing the speed traffic quantity than the other approaches.
Fichier principal
Vignette du fichier
Validation of calibration strategies for macroscopic traffic flow models on synthetic data.pdf (798.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04197769 , version 1 (06-09-2023)

Identifiants

  • HAL Id : hal-04197769 , version 1

Citer

Alexandra Würth, Mickael Binois, Paola Goatin. Validation of calibration strategies for macroscopic traffic flow models on synthetic data. 8th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS 2023), Jun 2023, Saint-Laurent-Du-Var, France. ⟨hal-04197769⟩
81 Consultations
96 Téléchargements

Partager

More